Diagnosis and Risk Stratification in Waldenström Macroglobulinemia

Authors:
Saurabh Zanwar Division of Hematology, Mayo Clinic, Rochester, MN

Search for other papers by Saurabh Zanwar in
Current site
Google Scholar
PubMed
Close
 MBBS
and
Prashant Kapoor Division of Hematology, Mayo Clinic, Rochester, MN

Search for other papers by Prashant Kapoor in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Waldenström macroglobulinemia (WM) is a B-cell lymphoma characterized by the presence of bone marrow lymphoplasmacytic infiltration and circulating monoclonal immunoglobulin M protein. The clinical presentation of WM is variable, ranging from gradually progressive cytopenias, organomegaly, fatigue, B symptoms, and peripheral neuropathy to the more emergent presentation with symptomatic hyperviscosity, cryoglobulinemia, hemolytic anemia–associated symptoms, acquired von Willebrand disease or acquired hemophilia–associated bleeding. Approximately 1 in 5 patients with WM are asymptomatic at diagnosis and classified as having smoldering WM, not requiring WM-directed therapy. Although WM typically has an indolent, relapsing-remitting course, the outcomes are heterogeneous. The prognosis of patients with WM is known to be impacted by certain clinical and laboratory features at initial presentation, with advanced age, elevated serum lactate dehydrogenase, and low serum albumin unfavorably affecting the outcome. Although complications such as histologic transformation or light and/or heavy chain (AL/ALH) amyloidosis are infrequent, their occurrence adversely influences the disease course. The International Prognostic Staging System for WM (IPSS-WM) is a validated model, often used in clinical practice, but needs to be reexamined in the current era. The discovery of the recurrent MYD88L265P gain-of-function point mutation and the subclonal CXCR4 mutations has helped improve our understanding of the WM biology, and the prognostic impact of these mutations is under evaluation, with somewhat inconsistent findings thus far across studies. This review discusses the clinical presentation, diagnostic criteria, and prognostic markers of WM.

Submitted October 17, 2023; final revision received February 2, 2024; accepted for publication February 21, 2024.

Disclosures: Dr. Kapoor has disclosed serving as a consultant for GSK, BeiGene, Pharmacyclics, X4 Pharmaceuticals, Casma Therapeutics, Inc., AbbVie, Sanofi, and Karyopharm Therapeutics; and receiving grant/research support from GSK, Amgen, Regeneron Pharmaceuticals, Bristol Myers Squibb, Loxo Oncology, Ichnos Sciences, Karyopharm Therapeutics, Sanofi, and AbbVie. Dr. Zanwar has disclosed not receiving any financial consideration from any person or organization to support the preparation, analysis, results, or discussion of this article.

Supplementary material: Supplementary material associated with this article is available online at https://doi.org/10.6004/jnccn.2024.7024. The supplementary material has been supplied by the author(s) and appears in its originally submitted form. It has not been edited or vetted by JNCCN. All contents and opinions are solely those of the author. Any comments or questions related to the supplementary materials should be directed to the corresponding author.

Correspondence: Prashant Kapoor, MD, Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Email: kapoor.prashant@mayo.edu

Supplementary Materials

    • Supplemental Materials (PDF 691 KB)
  • Collapse
  • Expand
  • 1.

    Sekhar J, Sanfilippo K, Zhang Q, et al. Waldenström macroglobulinemia: a Surveillance, Epidemiology, and End Results database review from 1988 to 2005. Leuk Lymphoma 2012;53:16251626.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kastritis E, Kyrtsonis MC, Morel P, et al. Competing risk survival analysis in patients with symptomatic Waldenström macroglobulinemia: the impact of disease unrelated mortality and of rituximab-based primary therapy. Haematologica 2015;100:e446449.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wang H, Chen Y, Li F, et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study. Cancer 2012;118:37933800.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McMaster ML. The epidemiology of Waldenström macroglobulinemia. Semin Hematol 2023;60:6572.

  • 5.

    Treon SP, Hunter ZR, Aggarwal A, et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol 2006;17:488494.

  • 6.

    Gertz MA. Waldenström macroglobulinemia: 2019 update on diagnosis, risk stratification, and management. Am J Hematol 2019;94:266276.

  • 7.

    Kapoor P, Singh E, Radhakrishnan P, et al. Splenectomy in plasma cell dyscrasias: a review of the clinical practice. Am J Hematol 2006;81:946954.

  • 8.

    Klein CJ, Moon JS, Mauermann ML, et al. The neuropathies of Waldenström’s macroglobulinemia (WM) and IgM-MGUS. Can J Neurol Sci 2011;38:289295.

  • 9.

    Zanwar S, Abeykoon JP, Ansell SM, et al. Primary systemic amyloidosis in patients with Waldenström macroglobulinemia. Leukemia 2019;33:790794.

  • 10.

    Kapoor P, Rajkumar SV. Current approach to Waldenström macroglobulinemia. Blood Rev 2023;62:101129.

  • 11.

    Zanwar S, Abeykoon JP, Durot E, et al. Impact of MYD88L265P mutation status on histological transformation of Waldenström macroglobulinemia. Am J Hematol 2020;95:274281.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Abeykoon JP, Zanwar S, Ansell SM, et al. Predictors of symptomatic hyperviscosity in Waldenström macroglobulinemia. Am J Hematol 2018;93:13841393.

  • 13.

    Berentsen S. Cold agglutinin-mediated autoimmune hemolytic anemia in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009;9:110112.

  • 14.

    Hivert B, Caron C, Petit S, et al. Clinical and prognostic implications of low or high level of von Willebrand factor in patients with Waldenstrom macroglobulinemia. Blood 2012;120:32143221.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Napolitano M, Siragusa S, Mancuso S, et al. Acquired haemophilia in cancer: a systematic and critical literature review. Haemophilia 2018;24:4356.

  • 16.

    Sidana S, Rajkumar SV, Dispenzieri A, et al. Clinical presentation and outcomes of patients with type 1 monoclonal cryoglobulinemia. Am J Hematol 2017;92:668673.

  • 17.

    Menke MN, Feke GT, McMeel JW, et al. Ophthalmologic techniques to assess the severity of hyperviscosity syndrome and the effect of plasmapheresis in patients with Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009;9:100103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Love TJ, Rögnvaldsson S, Thorsteinsdottir S, et al. Prevalence of MGUS is high in the Istopmm study but the prevalence of IgA MGUS does not increase with age in the way other immunoglobulin subtypes do. Blood 2022;140(Suppl 1):256258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Treon SP, Gustine J, Xu L, et al. MYD88 wild-type Waldenstrom macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol 2018;180:374380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Campo E, Jaffe ES, Cook JR, et al. The international consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood 2022;140:12291253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kapoor P, Ansell SM, Fonseca R, et al. Diagnosis and management of Waldenström macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines 2016. JAMA Oncol 2017;3:12571265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kyle RA, Treon SP, Alexanian R, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30:116120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zanwar S, Abeykoon JP, Ansell SM, et al. Disease outcomes and biomarkers of progression in smouldering Waldenström macroglobulinaemia. Br J Haematol 2021;195:210216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gobbi PG, Baldini L, Broglia C, et al. Prognostic validation of the international classification of immunoglobulin M gammopathies: a survival advantage for patients with immunoglobulin M monoclonal gammopathy of undetermined significance? Clin Cancer Res 2005;11:17861790.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Paiva B, Montes MC, García-Sanz R, et al. Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM-MGUS and Waldenström’s macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia 2014;28:166173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013;121:25222528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Xu L, Hunter ZR, Yang G, et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013;121:20512058.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kyle RA, Benson JT, Larson DR, et al. Progression in smoldering Waldenstrom macroglobulinemia: long-term results. Blood 2012;119:44624466.

  • 30.

    Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012;367:826833.

  • 31.

    Zanwar S, Abeykoon JP, Ansell SM, et al. Characteristics and outcome of patients with MYD88 wild-type Waldenström macroglobulinemia. J Clin Oncol 2020;38(Suppl):Abstract 8550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Patkar N, Subramanian PG, Deshpande P, et al. MYD88 mutant lymphoplasmacytic lymphoma/Waldenström macroglobulinemia has distinct clinical and pathological features as compared to its mutation negative counterpart. Leuk Lymphoma 2015;56:420425.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Chen L, Zheng L, Chen P, et al. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. J Med Chem 2020;63:1331613329.

  • 34.

    Yang G, Buhrlage SJ, Tan L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood 2016;127:32373252.

  • 35.

    Jiménez C, Sebastián E, Chillón MC, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia 2013;27:17221728.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014;123:16371646.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 2014;123:41204131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia 2015;29:169176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gustine JN, Xu L, Yang G, et al. Bone marrow involvement and subclonal diversity impairs detection of mutated CXCR4 by diagnostic next-generation sequencing in Waldenström macroglobulinaemia. Br J Haematol 2021;194:730733.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Dimopoulos M, Opat S, D’Sa S, et al. ASPEN biomarker analysis: response to BTK inhibitor treatment in patients with Waldenström macroglobulinemia harboring CXCR4, TP53, and TERT mutations. Presented at the 11th International Workshop on Waldenström’s Macroglobulinemia; October 27–30, 2022; Madrid, Spain.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Gustine JN, Tsakmaklis N, Demos MG, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Br J Haematol 2019;184:242245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Krzisch D, Guedes N, Boccon-Gibod C, et al. Cytogenetic and molecular abnormalities in Waldenström’s macroglobulinemia patients: correlations and prognostic impact. Am J Hematol 2021;96:15691579.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nguyen-Khac F, Lambert J, Chapiro E, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström’s macroglobulinemia. Haematologica 2013;98:649654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Varettoni M, Zibellini S, Arcaini L, et al. MYD88 (L265P) mutation is an independent risk factor for progression in patients with IgM monoclonal gammopathy of undetermined significance. Blood 2013;122:22842285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Moreno DF, López-Guerra M, Paz S, et al. Prognostic impact of MYD88 and CXCR4 mutations assessed by droplet digital polymerase chain reaction in IgM monoclonal gammopathy of undetermined significance and smouldering Waldenström macroglobulinaemia. Br J Haematol 2023;200:187196.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Bustoros M, Sklavenitis-Pistofidis R, Kapoor P, et al. Progression risk stratification of asymptomatic Waldenström macroglobulinemia. J Clin Oncol 2019;37:14031411.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Talaulikar D, Tomowiak C, Toussaint E, et al. Evaluation and management of disease transformation in Waldenström macroglobulinemia. Hematol Oncol Clin North Am 2023;37:787799.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hunter ZR, Xu L, Tsakmaklis N, et al. Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv 2018;2:29372946.

  • 49.

    Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014;123:27912796.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Castillo JJ, Xu L, Gustine JN, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenström macroglobulinaemia treated with ibrutinib. Br J Haematol 2019;187:356363.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Treon SP, Meid K, Gustine J, et al. Long-term follow-up of ibrutinib monotherapy in symptomatic, previously treated patients with Waldenström macroglobulinemia. J Clin Oncol 2021;39:565575.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Zanwar S, Abeykoon JP, Castillo JJ, et al. A multicenter, international collaborative study evaluating frontline therapy with bendamustine rituximab for Waldenström macroglobulinemia. Hemasphere 2022;6:Abstract P1159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in Waldenstrom’s macroglobulinemia. Clin Cancer Res 2017;23:63256335.

  • 54.

    D’Sa S, Matous JV, Advani R, et al. Report of consensus panel 2 from the 11th international workshop on Waldenström’s macroglobulinemia on the management of relapsed or refractory WM patients. Semin Hematol 2023;60:8089.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Castillo JJ, Olszewski AJ, Kanan S, et al. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: an analysis of the Surveillance, Epidemiology and End Results database. Br J Haematol 2015;169:8189.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Dhodapkar MV, Hoering A, Gertz MA, et al. Long-term survival in Waldenstrom macroglobulinemia: 10-year follow-up of Southwest Oncology Group-directed Intergroup trial S9003. Blood 2009;113:793796.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Kastritis E, Morel P, Duhamel A, et al. A revised international prognostic score system for Waldenström’s macroglobulinemia. Leukemia 2019;33:26542661.

  • 58.

    Chohan KL, Paludo J, Vallumsetla N, et al. Survival trends in young patients with Waldenström macroglobulinemia: over five decades of experience. Am J Hematol 2023;98:432439.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Zanwar S, Abeykoon JP, Ansell SM, et al. Waldenström macroglobulinemia in the very elderly (≥75 years): clinical characteristics and outcomes. Blood 2020;136(Suppl 1):4445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Ghobrial IM, Fonseca R, Gertz MA, et al. Prognostic model for disease-specific and overall mortality in newly diagnosed symptomatic patients with Waldenstrom macroglobulinaemia. Br J Haematol 2006;133:158164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Anagnostopoulos A, Zervas K, Kyrtsonis MC, et al. Prognostic value of serum beta2-microglobulin in patients with Waldenstrom’s macroglobulinemia requiring treatment. Clin Lymphoma Myeloma 2006;7:205209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Kastritis E, Kyrtsonis MC, Hadjiharissi E, et al. Validation of the International Prognostic Scoring System (IPSS) for Waldenstrom’s macroglobulinemia (WM) and the importance of serum lactate dehydrogenase (LDH). Leuk Res 2010;34:13401343.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood 2009;113:41634170.

  • 64.

    Ruan G, Zanwar S, Abeykoon JP, et al. Predictors of short-term survival in Waldenström macroglobulinemia. Leuk Lymphoma 2020;61:29752979.

  • 65.

    Elsawa SF, Ansell SM. Cytokines in the microenvironment of Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009;9:4345.

  • 66.

    Zanwar S, Le-Rademacher J, Durot E, et al. Simplified risk stratification model for patients with Waldenström macroglobulinemia. J Clin Oncol 2024;42:25272536.

  • 67.

    Varettoni M, Zibellini S, Defrancesco I, et al. Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica 2017;102:20772085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Durot E, Kanagaratnam L, Zanwar S, et al. A prognostic index predicting survival in transformed Waldenström macroglobulinemia. Haematologica 2021;106:29402946.

  • 69.

    Gertz MA, Abonour R, Heffner LT, et al. Clinical value of minor responses after 4 doses of rituximab in Waldenström macroglobulinaemia: a follow-up of the Eastern Cooperative Oncology Group E3A98 trial. Br J Haematol 2009;147:677680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    de Tute R, Counsell N, Rawstron A, et al. Minimal residual disease (MRD) in Waldenstrom macroglobulinaemia (WM): depletion of WM-phenotype B-cells is strongly associated with progression following rituximab-based therapy. Presented at the 11th International Workshop on Waldenström’s Macroglobulinemia; October 27–30, 2022; Madrid, Spain.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30:110115.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 427 427 427
PDF Downloads 377 377 377
EPUB Downloads 0 0 0