Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology

Authors:
Al B. Benson III Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Search for other papers by Al B. Benson III in
Current site
Google Scholar
PubMed
Close
 MD
,
Alan P. Venook UCSF Helen Diller Family Comprehensive Cancer Center

Search for other papers by Alan P. Venook in
Current site
Google Scholar
PubMed
Close
 MD
,
Mohamed Adam UCSF Helen Diller Family Comprehensive Cancer Center

Search for other papers by Mohamed Adam in
Current site
Google Scholar
PubMed
Close
 MD
,
George Chang The University of Texas MD Anderson Cancer Center

Search for other papers by George Chang in
Current site
Google Scholar
PubMed
Close
 MD, MS, MHCM
,
Yi-Jen Chen City of Hope National Medical Center

Search for other papers by Yi-Jen Chen in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Kristen K. Ciombor Vanderbilt-Ingram Cancer Center

Search for other papers by Kristen K. Ciombor in
Current site
Google Scholar
PubMed
Close
 MD
,
Stacey A. Cohen Fred Hutchinson Cancer Center

Search for other papers by Stacey A. Cohen in
Current site
Google Scholar
PubMed
Close
 MD
,
Harry S. Cooper Fox Chase Cancer Center

Search for other papers by Harry S. Cooper in
Current site
Google Scholar
PubMed
Close
 MD
,
Dustin Deming University of Wisconsin Carbone Cancer Center

Search for other papers by Dustin Deming in
Current site
Google Scholar
PubMed
Close
 MD
,
Ignacio Garrido-Laguna Huntsman Cancer Institute at the University of Utah

Search for other papers by Ignacio Garrido-Laguna in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jean L. Grem Fred & Pamela Buffett Cancer Center

Search for other papers by Jean L. Grem in
Current site
Google Scholar
PubMed
Close
 MD
,
Paul Haste Indiana University Melvin and Bren Simon Comprehensive Cancer Center

Search for other papers by Paul Haste in
Current site
Google Scholar
PubMed
Close
 MD
,
J. Randolph Hecht UCLA Jonsson Comprehensive Cancer Center

Search for other papers by J. Randolph Hecht in
Current site
Google Scholar
PubMed
Close
 MD
,
Sarah Hoffe Moffitt Cancer Center

Search for other papers by Sarah Hoffe in
Current site
Google Scholar
PubMed
Close
 MD
,
Steven Hunt Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Search for other papers by Steven Hunt in
Current site
Google Scholar
PubMed
Close
 MD
,
Hisham Hussan UC Davis Comprehensive Cancer Center

Search for other papers by Hisham Hussan in
Current site
Google Scholar
PubMed
Close
 MD
,
Kimberly L. Johung Yale Cancer Center/Smilow Cancer Hospital

Search for other papers by Kimberly L. Johung in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Nora Joseph University of Michigan Rogel Cancer Center

Search for other papers by Nora Joseph in
Current site
Google Scholar
PubMed
Close
 MD
,
Natalie Kirilcuk Stanford Cancer Institute

Search for other papers by Natalie Kirilcuk in
Current site
Google Scholar
PubMed
Close
 MD
,
Smitha Krishnamurthi Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute

Search for other papers by Smitha Krishnamurthi in
Current site
Google Scholar
PubMed
Close
 MD
,
Midhun Malla O’Neal Comprehensive Cancer Center at UAB

Search for other papers by Midhun Malla in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Jennifer K. Maratt Indiana University Melvin and Bren Simon Comprehensive Cancer Center

Search for other papers by Jennifer K. Maratt in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Wells A. Messersmith University of Colorado Cancer Center

Search for other papers by Wells A. Messersmith in
Current site
Google Scholar
PubMed
Close
 MD
,
Jeffrey Meyerhardt Dana-Farber Brigham and Women’s Cancer Center

Search for other papers by Jeffrey Meyerhardt in
Current site
Google Scholar
PubMed
Close
 MD, MPH
,
Eric D. Miller The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Search for other papers by Eric D. Miller in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Mary F. Mulcahy Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Search for other papers by Mary F. Mulcahy in
Current site
Google Scholar
PubMed
Close
 MD
,
Steven Nurkin Roswell Park Comprehensive Cancer Center

Search for other papers by Steven Nurkin in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Michael J. Overman The University of Texas MD Anderson Cancer Center

Search for other papers by Michael J. Overman in
Current site
Google Scholar
PubMed
Close
 MD
,
Aparna Parikh Mass General Cancer Center

Search for other papers by Aparna Parikh in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Hitendra Patel UC San Diego Moores Cancer Center

Search for other papers by Hitendra Patel in
Current site
Google Scholar
PubMed
Close
 MD
,
Katrina Pedersen Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Search for other papers by Katrina Pedersen in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Leonard Saltz Memorial Sloan Kettering Cancer Center

Search for other papers by Leonard Saltz in
Current site
Google Scholar
PubMed
Close
 MD
,
Charles Schneider Abramson Cancer Center at the University of Pennsylvania

Search for other papers by Charles Schneider in
Current site
Google Scholar
PubMed
Close
 MD
,
David Shibata The University of Tennessee Health Science Center

Search for other papers by David Shibata in
Current site
Google Scholar
PubMed
Close
 MD
,
Benjamin Shogan The UChicago Medicine Comprehensive Cancer Center

Search for other papers by Benjamin Shogan in
Current site
Google Scholar
PubMed
Close
 MD
,
John M. Skibber The University of Texas MD Anderson Cancer Center

Search for other papers by John M. Skibber in
Current site
Google Scholar
PubMed
Close
 MD
,
Constantinos T. Sofocleous Memorial Sloan Kettering Cancer Center

Search for other papers by Constantinos T. Sofocleous in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Anna Tavakkoli UT Southwestern Simmons Comprehensive Cancer Center

Search for other papers by Anna Tavakkoli in
Current site
Google Scholar
PubMed
Close
 MD, MSc
,
Christopher G. Willett Duke Cancer Institute

Search for other papers by Christopher G. Willett in
Current site
Google Scholar
PubMed
Close
 MD
,
Christina Wu Mayo Clinic Comprehensive Cancer Center

Search for other papers by Christina Wu in
Current site
Google Scholar
PubMed
Close
 MD
,
Lisa A. Gurski National Comprehensive Cancer Network

Search for other papers by Lisa A. Gurski in
Current site
Google Scholar
PubMed
Close
 PhD
,
Jenna Snedeker National Comprehensive Cancer Network

Search for other papers by Jenna Snedeker in
Current site
Google Scholar
PubMed
Close
 MS, ASCP
, and
Frankie Jones National Comprehensive Cancer Network

Search for other papers by Frankie Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer and the second leading cause of cancer death in the United States. Management of disseminated metastatic CRC involves various active drugs, either in combination or as single agents. The choice of therapy is based on consideration of the goals of therapy, the type and timing of prior therapy, the mutational profile of the tumor, and the differing toxicity profiles of the constituent drugs. This manuscript summarizes the data supporting the systemic therapy options recommended for metastatic CRC in the NCCN Guidelines for Colon Cancer.

  • Collapse
  • Expand
  • 1.

    Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74:1249.

  • 2.

    Cheng L, Eng C, Nieman LZ, et al. Trends in colorectal cancer incidence by anatomic site and disease stage in the United States from 1976 to 2005. Am J Clin Oncol 2011;34:573580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70:145164.

  • 4.

    Bailey CE, Hu CY, You YN, et al. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975–2010. JAMA Surg 2015;150:1722.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Weinberg BA, Marshall JL, Salem ME. The growing challenge of young adults with colorectal cancer. Oncology (Williston Park) 2017;31:381389.

  • 6.

    Meng L, Thapa R, Delgado MG, et al. Association of age with treatment-related adverse events and survival in patients with metastatic colorectal cancer. JAMA Netw Open 2023;6:e2320035.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Goldberg RM, Rothenberg ML, Van Cutsem E, et al. The continuum of care: a paradigm for the management of metastatic colorectal cancer. Oncologist 2007;12:3850.

  • 8.

    Parikh AR, Leshchiner I, Elagina L, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med 2019;25:14151421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Parseghian CM, Sun R, Woods M, et al. Resistance mechanisms to anti-epidermal growth factor receptor therapy in RAS/RAF wild-type colorectal cancer vary by regimen and line of therapy. J Clin Oncol 2023;41:460471.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:16261634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Baselga J, Rosen N. Determinants of RASistance to anti-epidermal growth factor receptor agents. J Clin Oncol 2008;26:15821584.

  • 12.

    Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009;27:663671.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Roock W, Piessevaux H, De Schutter J, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 2008;19:508515.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:17571765.

  • 15.

    Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007;25:32303237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lièvre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008;26:374379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tejpar S, Celik I, Schlichting M, et al. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 2012;30:35703577.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:14081417.

  • 19.

    Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:10231034.

  • 20.

    Sorich MJ, Wiese MD, Rowland A, et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 2015;26:1321.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Allegra CJ, Rumble RB, Hamilton SR, et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J Clin Oncol 2016;34:179185.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Mol Diagn 2017;19:187225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jones RP, Sutton PA, Evans JP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer 2017;116:923929.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Neumann J, Zeindl-Eberhart E, Kirchner T, et al. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract 2009;205:858862.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Schirripa M, Nappo F, Cremolini C, et al. KRAS G12C metastatic colorectal cancer: specific features of a new emerging target population. Clin Colorectal Cancer 2020;19:219225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Yoon HH, Tougeron D, Shi Q, et al. KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res 2014;20:30333043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Henry JT, Coker O, Chowdhury S, et al. Comprehensive clinical and molecular characterization of KRASG12C-Mutant Colorectal Cancer. JCO Precis Oncol 2021;5:PO.20.00256.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Modest DP, Ricard I, Heinemann V, et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 2016;27:17461753.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Price TJ, Bruhn MA, Lee CK, et al. Correlation of extended RAS and PIK3CA gene mutation status with outcomes from the phase III AGITG MAX STUDY involving capecitabine alone or in combination with bevacizumab plus or minus mitomycin C in advanced colorectal cancer. Br J Cancer 2015;112:963970.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:10651075.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Prescribing information for panitumumab injection for intravenous use. 2021. Accessed March 22, 2024. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy- refractory metastatic colorectal cancer treated with cetuximab. JAMA 2010;304:18121820.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Peeters M, Douillard JY, Van Cutsem E, et al. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol 2013;31:759765.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Schirripa M, Loupakis F, Lonardi S, et al. Phase II study of single-agent cetuximab in KRAS G13D mutant metastatic colorectal cancer. Ann Oncol 2015;26:2503.

  • 35.

    Segelov E, Thavaneswaran S, Waring PM, et al. Response to cetuximab with or without irinotecan in patients with refractory metastatic colorectal cancer harboring the KRAS G13D mutation: Australasian Gastro-Intestinal Trials group ICECREAM study. J Clin Oncol 2016;34:22582264.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Rowland A, Dias MM, Wiese MD, et al. Meta-analysis comparing the efficacy of anti-EGFR monoclonal antibody therapy between KRAS G13D and other KRAS mutant metastatic colorectal cancer tumours. Eur J Cancer 2016;55:122130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Artale S, Sartore-Bianchi A, Veronese SM, et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 2008;26:42174219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Etienne-Grimaldi MC, Formento JL, Francoual M, et al. K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res 2008;14:48304835.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Knijn N, Mekenkamp LJ, Klomp M, et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 2011;104:10201026.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009;361:9899.

  • 41.

    Van Cutsem E, Köhne CH, Láng I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29:20112019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 2011;377:21032114.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949954.

  • 44.

    Ikenoue T, Hikiba Y, Kanai F, et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res 2003;63:81328137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855867.

  • 46.

    Bokemeyer C, Van Cutsem E, Rougier P, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:14661475.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:57055712.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 2009;27:59245930.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009;101:715721.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753762.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Seymour MT, Brown SR, Middleton G, et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 2013;14:749759.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015;51:587594.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Rowland A, Dias MM, Wiese MD, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer 2015;112:18881894.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Yaeger R, Kotani D, Mondaca S, et al. Response to anti-EGFR therapy in patients with BRAF non-V600-mutant metastatic colorectal cancer. Clin Cancer Res 2019;25:70897097.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Chen D, Huang JF, Liu K, et al. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS One 2014;9:e90607.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Price TJ, Hardingham JE, Lee CK, et al. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol 2011;29:26752682.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010;28:466474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Safaee Ardekani G, Jafarnejad SM, Tan L, et al. The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS One 2012;7:e47054.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Samowitz WS, Sweeney C, Herrick J, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005;65:60636069.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Saridaki Z, Papadatos-Pastos D, Tzardi M, et al. BRAF mutations, microsatellite instability status and cyclin D1 expression predict metastatic colorectal patients’ outcome. Br J Cancer 2010;102:17621768.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Xu Q, Xu AT, Zhu MM, et al. Predictive and prognostic roles of BRAF mutation in patients with metastatic colorectal cancer treated with anti-epidermal growth factor receptor monoclonal antibodies: a meta-analysis. J Dig Dis 2013;14:409416.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Sinicrope FA, Shi Q, Allegra CJ, et al. Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers: a secondary analysis of 2 randomized clinical trials. JAMA Oncol 2017;3:472480.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Clancy C, Burke JP, Kalady MF, et al. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis 2013;15:e711718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Santini D, Spoto C, Loupakis F, et al. High concordance of BRAF status between primary colorectal tumours and related metastatic sites: implications for clinical practice. Ann Oncol 2010;21:1565.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17:738746.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Sartore-Bianchi A, Amatu A, Porcu L, et al. HER2 positivity predicts unresponsiveness to EGFR-targeted treatment in metastatic colorectal cancer. Oncologist 2019;24:13951402.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Valtorta E, Martino C, Sartore-Bianchi A, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol 2015;28:14811491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Hainsworth JD, Meric-Bernstam F, Swanton C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018;36:536542.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Wu SW, Ma CC, Li WH. Does overexpression of HER-2 correlate with clinicopathological characteristics and prognosis in colorectal cancer? Evidence from a meta-analysis. Diagn Pathol 2015;10:144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Martin V, Landi L, Molinari F, et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br J Cancer 2013;108:668675.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Raghav K, Loree JM, Morris JS, et al. Validation of HER2 amplification as a predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. JCO Precis Oncol 2019;3:113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Koopman M, Kortman GA, Mekenkamp L, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 2009;100:266273.

  • 73.

    Lochhead P, Kuchiba A, Imamura Y, et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst 2013;105:11511156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 2014;20:53225330.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:24432454.

  • 76.

    Mur P, García-Mulero S, Del Valle J, et al. Role of POLE and POLD1 in familial cancer. Genet Med 2020;22:20892100.

  • 77.

    Mur P, Viana-Errasti J, García-Mulero S, et al. Recommendations for the classification of germline variants in the exonuclease domain of POLE and POLD1. Genome Med 2023;15:85.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Forgó E, Gomez AJ, Steiner D, et al. Morphological, immunophenotypical and molecular features of hypermutation in colorectal carcinomas with mutations in DNA polymerase ε (POLE). Histopathology 2020;76:366374.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2016;1:207216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Bourdais R, Rousseau B, Pujals A, et al. Polymerase proofreading domain mutations: new opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency. Crit Rev Oncol Hematol 2017;113:242248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Garmezy B, Gheeya J, Lin HY, et al. Clinical and molecular characterization of POLE mutations as predictive biomarkers of response to immune checkpoint inhibitors in advanced cancers. JCO Precis Oncol 2022;6:e2100267.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731739.

  • 83.

    Gatalica Z, Xiu J, Swensen J, et al. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32:147153.

  • 84.

    Okamura R, Boichard A, Kato S, et al. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK- Targeted Therapeutics. JCO Precis Oncol 2018;2018:PO.18.00183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Cocco E, Benhamida J, Middha S, et al. Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Res 2019;79:10471053.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J Natl Cancer Inst 2017;109:djx089.

  • 87.

    Drilon A, Hu ZI, Lai GGY, et al. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018;15:151167.

  • 88.

    Subbiah V, Wolf J, Konda B, et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol 2022;23:12611273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann Oncol 2018;29:13941401.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Fancello L, Gandini S, Pelicci PG, et al. Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J Immunother Cancer 2019;7:183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Prescribing information for pembrolizumab injection for intravenous use. 2024. Accessed March 22, 2024. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125514s160lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020;21:13531365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Duvivier HL, Rothe M, Mangat PK, et al. Pembrolizumab in patients with tumors with high tumor mutational burden: results from the targeted agent and profiling utilization registry study. J Clin Oncol 2023;41:51405150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Vaccaro GM, Rothe M, Mangat PK, et al. Nivolumab plus ipilimumab (N+I) in patients (pts) with colorectal cancer (CRC) with high tumor mutational burden (hTMB): results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study. J Clin Oncol 2022;40(Suppl):Abstract 107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Mattison LK, Soong R, Diasio RB. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics 2002;3:485492.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Amstutz U, Henricks LM, Offer SM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther 2018;103:210216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Lee AM, Shi Q, Pavey E, et al. DPYD variants as predictors of 5-fluorouracil toxicity in adjuvant colon cancer treatment (NCCTG N0147). J Natl Cancer Inst 2014;106:dju298.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Morel A, Boisdron-Celle M, Fey L, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2006;5:28952904.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Meulendijks D, Henricks LM, Sonke GS, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015;16:16391650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Terrazzino S, Cargnin S, Del Re M, et al. DPYD IVS14 + 1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine- related toxicity: a meta-analysis. Pharmacogenomics 2013;14:12551272.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Lunenburg CA, Henricks LM, Guchelaar HJ, et al. Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: ready for prime time. Eur J Cancer 2016;54:4048.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Deenen MJ, Cats A, Severens JL, et al. Reply to T. Magnes et al. J Clin Oncol 2016;34:24342435.

  • 103.

    Reizine NM, Danahey K, Truong TM, et al. Clinically actionable genotypes for anticancer prescribing among >1500 patients with pharmacogenomic testing. Cancer 2022;128:16491657.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD variants and treatment-related mortality in patients receiving fluoropyrimidine chemotherapy: a systematic review and meta-analysis. Oncologist 2021;26:10081016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Henricks LM, Lunenburg CA, de Man FM, et al. A cost analysis of upfront DPYD genotype-guided dose individualisation in fluoropyrimidine-based anticancer therapy. Eur J Cancer 2019;107:6067.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Henricks LM, Lunenburg CA, de Man FM, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol 2018;19:14591467.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Deenen MJ, Meulendijks D, Cats A, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol 2016;34:227234.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Clinical Pharmacogenetics Implementation Consortium. CPI guideline for fluoropyrimidines and DPYD. 2024. Accessed March 22, 2024. Available at: https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Haller DG, Cassidy J, Clarke SJ, et al. Potential regional differences for the tolerability profiles of fluoropyrimidines. J Clin Oncol 2008;26:21182123.

  • 110.

    Knikman JE, Wilting TA, Lopez-Yurda M, et al. Survival of patients with cancer with DPYD variant alleles and dose-individualized fluoropyrimidine therapy—a matched-pair analysis. J Clin Oncol 2023;41:54115421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Prescribing information for uridine triacetate oral granules. 2019. Accessed March 22, 2024. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208169s003lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Ma WW, Saif MW, El-Rayes BF, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer 2017;123:345356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Ison G, Beaver JA, McGuinn WD Jr, et al. FDA approval: uridine triacetate for the treatment of patients following fluorouracil or capecitabine overdose or exhibiting early-onset severe toxicities following administration of these drugs. Clin Cancer Res 2016;22:45454549.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Prescribing information for bevacizumab injection, for intravenous use. 2022. Accessed March 22, 2024. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125085s340lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:23352342.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21:6065.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Kabbinavar FF, Schulz J, McCleod M, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 2005;23:36973705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Kabbinavar FF, Hambleton J, Mass RD, et al. Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 2005;23:37063712.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Saltz LB, Clarke S, Díaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:20132019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Petrelli F, Borgonovo K, Cabiddu M, et al. FOLFIRI-bevacizumab as first-line chemotherapy in 3500 patients with advanced colorectal cancer: a pooled analysis of 29 published trials. Clin Colorectal Cancer 2013;12:145151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Hurwitz HI, Bekaii-Saab TS, Bendell JC, et al. Safety and effectiveness of bevacizumab treatment for metastatic colorectal cancer: final results from the Avastin Registry - Investigation of Effectiveness and Safety (ARIES) observational cohort study. Clin Oncol (R Coll Radiol) 2014;26:323332.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Fourrier-Réglat A, Smith D, Rouyer M, et al. Survival outcomes of bevacizumab in first-line metastatic colorectal cancer in a real-life setting: results of the ETNA cohort. Target Oncol 2014;9:311319.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Botrel TE, Clark LG, Paladini L, et al. Efficacy and safety of bevacizumab plus chemotherapy compared to chemotherapy alone in previously untreated advanced or metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2016;16:677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Cao Y, Tan A, Gao F, et al. A meta-analysis of randomized controlled trials comparing chemotherapy plus bevacizumab with chemotherapy alone in metastatic colorectal cancer. Int J Colorectal Dis 2009;24:677685.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Hu W, Xu WS, Liao XF, et al. Bevacizumab in combination with first-line chemotherapy in patients with metastatic colorectal cancer: a meta- analysis. Minerva Chir 2015;70:451458.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Hurwitz HI, Tebbutt NC, Kabbinavar F, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013;18:10041012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Loupakis F, Bria E, Vaccaro V, et al. Magnitude of benefit of the addition of bevacizumab to first-line chemotherapy for metastatic colorectal cancer: meta-analysis of randomized clinical trials. J Exp Clin Cancer Res 2010;29:58.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Lv C, Wu S, Zheng D, et al. The efficacy of additional bevacizumab to cytotoxic chemotherapy regimens for the treatment of colorectal cancer: an updated meta-analysis for randomized trials. Cancer Biother Radiopharm 2013;28:501509.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Qu CY, Zheng Y, Zhou M, et al. Value of bevacizumab in treatment of colorectal cancer: a meta-analysis. World J Gastroenterol 2015;21:50725080.

  • 130.

    Welch S, Spithoff K, Rumble RB, et al. Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: a systematic review. Ann Oncol 2010;21:11521162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Zhang G, Zhou X, Lin C. Efficacy of chemotherapy plus bevacizumab as first-line therapy in patients with metastatic colorectal cancer: a meta-analysis and up-date. Int J Clin Exp Med 2015;8:14341445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Macedo LT, da Costa Lima AB, Sasse AD. Addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer: a systematic review and meta-analysis, with emphasis on chemotherapy subgroups. BMC Cancer 2012;12:89.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Meyerhardt JA, Li L, Sanoff HK, et al. Effectiveness of bevacizumab with first-line combination chemotherapy for Medicare patients with stage IV colorectal cancer. J Clin Oncol 2012;30:608615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Hartmann H, Müller J, Marschner N. Is there a difference in demography and clinical characteristics in patients treated with and without bevacizumab? J Clin Oncol 2012;30:33173318; author reply 3318.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Hurwitz HI, Lyman GH. Registries and randomized trials in assessing the effects of bevacizumab in colorectal cancer: is there a common theme? J Clin Oncol 2012;30:580581.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 2011;305:487494.

  • 137.

    Hurwitz HI, Saltz LB, Van Cutsem E, et al. Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J Clin Oncol 2011;29:17571764.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Dai F, Shu L, Bian Y, et al. Safety of bevacizumab in treating metastatic colorectal cancer: a systematic review and meta-analysis of all randomized clinical trials. Clin Drug Investig 2013;33:779788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Hochster HS, Hart LL, Ramanathan RK, et al. Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE Study. J Clin Oncol 2008;26:35233529.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Scappaticci FA, Fehrenbacher L, Cartwright T, et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 2005;91:173180.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Cannistra SA, Matulonis UA, Penson RT, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007;25:51805186.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Gruenberger B, Tamandl D, Schueller J, et al. Bevacizumab, capecitabine, and oxaliplatin as neoadjuvant therapy for patients with potentially curable metastatic colorectal cancer. J Clin Oncol 2008;26:18301835.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Reddy SK, Morse MA, Hurwitz HI, et al. Addition of bevacizumab to irinotecan- and oxaliplatin-based preoperative chemotherapy regimens does not increase morbidity after resection of colorectal liver metastases. J Am Coll Surg 2008;206:96106.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Miles D, Harbeck N, Escudier B, et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J Clin Oncol 2011;29:8388.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Miles DW. Reply to P. Potemski. J Clin Oncol 2011;29:e386.

  • 146.

    Potemski P. Is the postprogression survival time really not shortened in the bevacizumab-containing arms of phase III clinical trials? J Clin Oncol 2011;29:e384385; author reply e386.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Allegra CJ, Yothers G, O’Connell MJ, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 2011;29:1116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Prescribing information for cetuximab injection, for intravenous use. 2021. Accessed March 22, 2024. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Carrato A, Abad A, Massuti B, et al. First-line panitumumab plus FOLFOX4 or FOLFIRI in colorectal cancer with multiple or unresectable liver metastases: a randomised, phase II trial (PLANET-TTD). Eur J Cancer 2017;81:191202.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Pietrantonio F, Cremolini C, Petrelli F, et al. First-line anti-EGFR monoclonal antibodies in panRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2015;96:156166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Helbling D, Borner M. Successful challenge with the fully human EGFR antibody panitumumab following an infusion reaction with the chimeric EGFR antibody cetuximab. Ann Oncol 2007;18:963964.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Heun J, Holen K. Treatment with panitumumab after a severe infusion reaction to cetuximab in a patient with metastatic colorectal cancer: a case report. Clin Colorectal Cancer 2007;6:529531.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Resch G, Schaberl-Moser R, Kier P, et al. Infusion reactions to the chimeric EGFR inhibitor cetuximab--change to the fully human anti-EGFR monoclonal antibody panitumumab is safe. Ann Oncol 2011;22:486487.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007;357:20402048.

  • 155.

    Petrelli F, Borgonovo K, Barni S. The predictive role of skin rash with cetuximab and panitumumab in colorectal cancer patients: a systematic review and meta-analysis of published trials. Target Oncol 2013;8:173181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Stintzing S, Kapaun C, Laubender RP, et al. Prognostic value of cetuximab-related skin toxicity in metastatic colorectal cancer patients and its correlation with parameters of the epidermal growth factor receptor signal transduction pathway: results from a randomized trial of the GERMAN AIO CRC Study Group. Int J Cancer 2013;132:236245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Van Cutsem E, Tejpar S, Vanbeckevoort D, et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. J Clin Oncol 2012;30:28612868.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Burtness B, Anadkat M, Basti S, et al. NCCN Task Force Report: management of dermatologic and other toxicities associated with EGFR inhibition in patients with cancer. J Natl Compr Canc Netw 2009;7(Suppl 1):S521; quiz S22–24.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Petrelli F, Cabiddu M, Borgonovo K, et al. Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta- analysis of randomized clinical trials. Ann Oncol 2012;23:16721679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Zhang D, Ye J, Xu T, et al. Treatment related severe and fatal adverse events with cetuximab in colorectal cancer patients: a meta-analysis. J Chemother 2013;25:170175.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009;27:672680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009;360:563572.

  • 163.

    Brulé SY, Jonker DJ, Karapetis CS, et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 2015;51:14051414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Moretto R, Cremolini C, Rossini D, et al. Location of primary tumor and benefit from anti-epidermal growth factor receptor monoclonal antibodies in patients with RAS and BRAF wild-type metastatic colorectal cancer. Oncologist 2016;21:988994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Loupakis F, Yang D, Yau L, et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst 2015;107:dju427.

  • 166.

    Chen KH, Shao YY, Chen HM, et al. Primary tumor site is a useful predictor of cetuximab efficacy in the third-line or salvage treatment of KRAS wild-type (exon 2 non-mutant) metastatic colorectal cancer: a nationwide cohort study. BMC Cancer 2016;16:327.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Warschkow R, Sulz MC, Marti L, et al. Better survival in right-sided versus left-sided stage I - III colon cancer patients. BMC Cancer 2016;16:554.

  • 168.

    Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1º) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 2016;34(Suppl):Abstract 3504.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Yahagi M, Okabayashi K, Hasegawa H, et al. The worse prognosis of right-sided compared with left-sided colon cancers: a systematic review and meta-analysis. J Gastrointest Surg 2016;20:648655.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Wang F, Bai L, Liu TS, et al. Right-sided colon cancer and left-sided colorectal cancers respond differently to cetuximab. Chin J Cancer 2015;34:384393.

  • 171.

    Arnold D, Lueza B, Douillard JY, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017;28:17131729.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1°) tumor location on overall survival (OS) and progression free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of all RAS wt patients on CALGB/SWOG 80405 (Alliance) [abstract]. ESMO Congress 2016;34:35043504.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 2018;33:125136.e3.

  • 174.

    Láng I, Köhne CH, Folprecht G, et al. Quality of life analysis in patients with KRAS wild-type metastatic colorectal cancer treated first-line with cetuximab plus irinotecan, fluorouracil and leucovorin. Eur J Cancer 2013;49:439448.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Van Cutsem E, Lenz HJ, Köhne CH, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015;33:692700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 2010;28:47064713.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Mitchell EP, Piperdi B, Lacouture ME, et al. The efficacy and safety of panitumumab administered concomitantly with FOLFIRI or Irinotecan in second-line therapy for metastatic colorectal cancer: the secondary analysis from STEPP (Skin Toxicity Evaluation Protocol With Panitumumab) by KRAS status. Clin Colorectal Cancer 2011;10:333339.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Peeters M, Price TJ, Cervantes A, et al. Final results from a randomized phase 3 study of FOLFIRI +/- panitumumab for second-line treatment of metastatic colorectal cancer. Ann Oncol 2014;25:107116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Bokemeyer C, Bondarenko I, Hartmann JT, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 2011;22:15351546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Tveit KM, Guren T, Glimelius B, et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 2012;30:17551762.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Venook AP, Niedzwiecki D, Lenz HJ, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA 2017;317:23922401.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Qin S, Li J, Wang L, et al. Efficacy and tolerability of first-line cetuximab plus leucovorin, fluorouracil, and oxaliplatin (FOLFOX-4) versus FOLFOX-4 in patients with RAS wild-type metastatic colorectal cancer: the open-label, randomized, phase III TAILOR trial. J Clin Oncol 2018;36:30313039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:46974705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Köhne CH, Hofheinz R, Mineur L, et al. First-line panitumumab plus irinotecan/5-fluorouracil/leucovorin treatment in patients with metastatic colorectal cancer. J Cancer Res Clin Oncol 2012;138:6572.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Cremolini C, Rossini D, Lonardi S, et al. Modified FOLFOXIRI plus panitumumab (mFOLFOXIRI/PAN) versus mFOLFOX6/PAN as initial treatment of patients with unresectable RAS and BRAF wild-type metastatic colorectal cancer (mCRC): results of the phase III randomized TRIPLETE study by GONO. J Clin Oncol 2022;40(Suppl):Abstract LBA3505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Iwamoto S, Maeda H, Hazama S, et al. Efficacy of capeox plus cetuximab treatment as a first-line therapy for patients with extended RAS/BRAF/PIK3CA wild-type advanced or metastatic colorectal cancer. J Cancer 2018;9:40924098.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Modest DP, Stintzing S, von Weikersthal LF, et al. Impact of subsequent therapies on outcome of the FIRE-3/AIO KRK0306 trial: first-line therapy with FOLFIRI plus cetuximab or bevacizumab in patients with KRAS wild-type tumors in metastatic colorectal cancer. J Clin Oncol 2015;33:37183726.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    O’Neil BH, Venook AP. Trying to understand differing results of FIRE-3 and 80405: does the first treatment matter more than others? J Clin Oncol 2015;33:36863688.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br J Cancer 2021;124:587594.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Watanabe J, Muro K, Shitara K, et al. Panitumumab vs bevacizumab added to standard first-line chemotherapy and overall survival among patients with RAS wild-type, left-sided metastatic colorectal cancer: a randomized clinical trial. JAMA 2023;329:12711282.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 2014;32:22402247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Rivera F, Karthaus M, Hecht JR, et al. Final analysis of the randomised PEAK trial: overall survival and tumour responses during first-line treatment with mFOLFOX6 plus either panitumumab or bevacizumab in patients with metastatic colorectal carcinoma. Int J Colorectal Dis 2017;32:11791190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Wolpin BM, Bass AJ. Managing advanced colorectal cancer: have we reached the PEAK with current therapies? J Clin Oncol 2014;32:22002202.

  • 194.

    Riesco-Martínez MC, Berry SR, Ko YJ, et al. Cost-effectiveness analysis of different sequences of the use of epidermal growth factor receptor inhibitors for wild-type KRAS unresectable metastatic colorectal cancer. J Oncol Pract 2016;12:e710723.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Graham CN, Christodoulopoulou A, Knox HN, et al. A within-trial cost-effectiveness analysis of panitumumab compared with bevacizumab in the first-line treatment of patients with wild-type RAS metastatic colorectal cancer in the US. J Med Econ 2018;21:10751083.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 196.

    Shankaran V, Ortendahl JD, Purdum AG, et al. Cost-effectiveness of cetuximab as first-line treatment for metastatic colorectal cancer in the United States. Am J Clin Oncol 2018;41:6572.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 2020;383:22072218.

  • 198.

    Diaz LA Jr, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol 2022;23:659670.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 199.

    Andre T, Amonkar M, Norquist JM, et al. Health-related quality of life in patients with microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer treated with first-line pembrolizumab versus chemotherapy (KEYNOTE-177): an open-label, randomised, phase 3 trial. Lancet Oncol 2021;22:665677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol 2022;40:161170.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    Overman MJ, Lenz HJ, Andre T, et al. Nivolumab (NIVO) ± ipilimumab (IPI) in patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): five-year follow-up from CheckMate 142. J Clin Oncol 2022;40(Suppl):Abstract 3510.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 202.

    Andre T, Elez E, Cutsem EV, et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment of microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): first results of the CheckMate 8HW study. J Clin Oncol 2024;42(Suppl):Abstract LBA768.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:25092520.

  • 204.

    Sul J, Blumenthal GM, Jiang X, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016;21:643650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 205.

    Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:11821191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 206.

    Overman MJ, Lonardi S, Wong KY, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018;36:773779.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Lewis C. Programmed death-1 inhibition in cancer with a focus on non-small cell lung cancer: rationale, nursing implications, and patient management strategies. Clin J Oncol Nurs 2016;20:319326.