Determining PARP Inhibition as a Treatment Strategy in Melanoma Based on Homologous Recombination Deficiency–Related Loss of Heterozygosity

Authors:
Alice Zhou Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri

Search for other papers by Alice Zhou in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Omar Butt Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri

Search for other papers by Omar Butt in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Michael Ansstas Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri

Search for other papers by Michael Ansstas in
Current site
Google Scholar
PubMed
Close
 MD
,
Elizabeth Mauer Tempus Laboratories Inc., Chicago, Illinois

Search for other papers by Elizabeth Mauer in
Current site
Google Scholar
PubMed
Close
 MA
,
Karam Khaddour Division of Hematology and Oncology, University of Illinois Chicago, Chicago, Illinois

Search for other papers by Karam Khaddour in
Current site
Google Scholar
PubMed
Close
 MD
, and
George Ansstas Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri

Search for other papers by George Ansstas in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

There is a lack of effective treatments for immunotherapy-refectory melanoma. Although PARP inhibitors (PARPi) are an effective treatment strategy in cancers with homologous recombination deficiency (HRD), determining HRD status is challenging in melanoma. Here, we chart the longitudinal relationship between PARPi response and HRD scores derived from genome-wide loss of heterozygosity (LOH) in 4 patients with metastatic melanoma. When next examining 933 melanoma cases, using an updated threshold, we observed HRD-related LOH (HRD-LOH) in nearly one-third of all cases compared with <10% using traditional gene panels. Taken together, HRD-LOH in refractory melanoma is both a common occurrence and a potential biomarker for response to PARPi.

Submitted August 10, 2022; final revision received December 5, 2022; accepted for publication December 5, 2022.

Disclosures: The authors have disclosed that they have not received any financial considerations from any person or organization to support the preparation, analysis, results, or discussion of this article.

Correspondence: George Ansstas, MD, Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110. Email: gansstas@wustl.edu

Supplementary Materials

    • Supplemental Materials (PDF 511 KB)
  • Collapse
  • Expand
  • 1.

    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2019;381:15351546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012;367:107114.

  • 3.

    Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol 2017;18:863873.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ascierto PA, McArthur GA, Dréno B, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol 2016;17:12481260.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Grossmann KF, Margolin K. Long-term survival as a treatment benchmark in melanoma: latest results and clinical implications. Ther Adv Med Oncol 2015;7:181191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pilié PG, Gay CM, Byers LA, et al. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res 2019;25:37593771.

  • 7.

    Heeke AL, Pishvaian MJ, Lynce F, et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol 2018;2:PO.17.00286.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kim H, Ahn S, Kim H, et al. The prevalence of homologous recombination deficiency (HRD) in various solid tumors and the role of HRD as a single biomarker to immune checkpoint inhibitors. J Cancer Res Clin Oncol 2022;148:24272435.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Plummer R, Lorigan P, Steven N, et al. A phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 2013;71:11911199.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chan WY, Brown LJ, Reid L, et al. PARP inhibitors in melanoma—an expanding therapeutic option? Cancers (Basel) 2021;13:4520.

  • 11.

    Lau B, Menzies AM, Joshua AM. Ongoing partial response at 6 months to olaparib for metastatic melanoma with somatic PALB2 mutation after failure of immunotherapy: a case report. Ann Oncol 2021;32:280282.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kiel PJ, Radovich M, Schneider BP, Logan TF. Sustained exceptional response to poly (ADP-ribose) polymerase inhibition plus temozolomide in metastatic melanoma with DNA repair deficiency. JCO Precis Oncol 2018;2:17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Abkevich V, Timms KM, Hennessy BT, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 2012;107:17761782.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Birkbak NJ, Wang ZC, Kim JY, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2012;2:366375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Popova T, Manié E, Rieunier G, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 2012;72:54545462.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 2016;375:21542164.

  • 17.

    Takaya H, Nakai H, Takamatsu S, et al. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep 2020;10:2757.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Khaddour K, Ansstas M, Visconti J, et al. Mutation clearance and complete radiologic resolution of immunotherapy relapsed metastatic melanoma after treatment with nivolumab and olaparib in a patient with homologous recombinant deficiency: any role for PARP inhibitors and checkpoint blockade? Ann Oncol 2021;32:279280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Khaddour K, Ansstas M, Ansstas G. Clinical outcomes and longitudinal circulating tumor DNA changes after treatment with nivolumab and olaparib in immunotherapy relapsed melanoma with detected homologous recombination deficiency. Cold Spring Harb Mol Case Stud 2021;7:a006129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Leibowitz BD, Dougherty BV, Bell JSK, et al. Validation of genomic and transcriptomic models of homologous recombination deficiency in a real-world pan-cancer cohort. BMC Cancer 2022;22:587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bell JSK, Venkat A, Parsons J, et al. An integrative molecular framework to predict homologous recombination deficiency. J Clin Oncol 2020;38(Suppl):Abstract e15664.

  • 22.

    Tempus. Genetic profiling. Accessed October 29, 2022. Available at: https://www.tempus.com/oncology/genomic-profiling/

  • 23.

    Beaubier N, Tell R, Lau D, et al. Clinical validation of the tempus xT next-generation targeted oncology sequencing assay. Oncotarget 2019;10:23842396.

  • 24.

    Beaubier N, Bontrager M, Huether R, et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat Biotechnol 2019;37:13511360.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fernandes LE, Epstein CG, Bobe AM, et al. Real-world evidence of diagnostic testing and treatment patterns in US patients with breast cancer with implications for treatment biomarkers from RNA sequencing data. Clin Breast Cancer 2021;21:e340361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kim KB, Soroceanu L, de Semir D, et al. Prevalence of homologous recombination pathway gene mutations in melanoma: rationale for a new targeted therapeutic approach. J Invest Dermatol 2021;141:20282036.e2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    van Wijk LM, Nilas AB, Vrieling H, et al. RAD51 as a functional biomarker for homologous recombination deficiency in cancer: a promising addition to the HRD toolbox? Expert Rev Mol Diagn 2022;22:185199.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Makino E, Fröhlich LM, Sinnberg T, et al. Targeting Rad51 as a strategy for the treatment of melanoma cells resistant to MAPK pathway inhibition. Cell Death Dis 2020;11:581.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Moschetta M, George A, Kaye SB, et al. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol 2016;27:14491455.

  • 30.

    Sahnane N, Carnevali I, Formenti G, et al. BRCA methylation testing identifies a subset of ovarian carcinomas without germline variants that can benefit from PARP inhibitor. Int J Mol Sci 2020;21:9708.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Smeby J, Kryeziu K, Berg KCG, et al. Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine 2020;59:102923.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chabanon RM, Muirhead G, Krastev DB, et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J Clin Invest 2019;129:12111228.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nolan E, Savas P, Policheni AN, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med 2017;9:eaal4922.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Connor AA, Denroche RE, Jang GH, et al. Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol 2017;3:774783.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:21892199.

  • 36.

    Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res 2017;23:37113720.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Teo MY, Seier K, Ostrovnaya I, et al. Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J Clin Oncol 2018;36:16851694.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Drew Y, Penson RT, O’Malley DM, et al. Phase II study of olaparib plus durvalumab and bevacizumab (MEDIOLA): initial results in patients with non-germline BRCA-mutated platinum sensitive relapsed ovarian cancer. Ann Oncol 2020;31(Suppl 4):S551589. Abstract 814MO.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Vikas P, Borcherding N, Chennamadhavuni A, et al. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol 2020;10:570.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics