Discussing Validation of the PREDICT Prognostication Tool in Patients With Breast Cancer

Author:
Paul D.P. Pharoah
Search for other papers by Paul D.P. Pharoah in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

Disclosures: Dr. Pharoah has disclosed receiving commercial licensing fees from Cambridge Enterprises.

Correspondence: Paul D.P. Pharoah, PhD, Department of Computational Biomedicine, Cedars-Sinai Medical Center, Pacific Design Center, 700 North San Vicente Boulevard, Suite 540, West Hollywood, CA 90069. Email: paul.pharoah@cshs.org
  • Collapse
  • Expand
  • 1.

    Early Breast Cancer Trialists Collaborative Group. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012;379(9814):432444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Stabellini N, Cao L, Towe CW, et al. Validation of the PREDICT prognostication tool in US breast cancer patients. J Natl Compr Canc Netw 2023;21:10111019.

  • 3.

    Candido Dos Reis FJ, Wishart GC, Dicks EM, et al. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation. Breast Cancer Res 2017;19:58.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wishart GC, Azzato EM, Greenberg DC, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res 2010;12:R1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wishart GC, Bajdik CD, Azzato EM, et al. A population-based validation of the prognostic model PREDICT for early breast cancer. Eur J Surg Oncol 2011;37:411417.

  • 6.

    Zaguirre K, Kai M, Kubo M, et al. Validity of the prognostication tool PREDICT version 2.2 in Japanese breast cancer patients. Cancer Med 2021;10:16051613.

  • 7.

    Wong HS, Subramaniam S, Alias Z, et al. The predictive accuracy of PREDICT: a personalized decision-making tool for Southeast Asian women with breast cancer. Medicine (Baltimore) 2015;94:e593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    de Glas NA, Bastiaannet E, Engels CC, et al. Validity of the online PREDICT tool in older patients with breast cancer: a population-based study. Br J Cancer 2016;114:395400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Engelhardt EG, van den Broek AJ, Linn SC, et al. Accuracy of the online prognostication tools PREDICT and Adjuvant! for early-stage breast cancer patients younger than 50 years. Eur J Cancer 2017;78:3744.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    van Maaren MC, van Steenbeek CD, Pharoah PDP, et al. Validation of the online prediction tool PREDICT v. 2.0 in the Dutch breast cancer population. Eur J Cancer 2017;86:364372.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Maishman T, Copson E, Stanton L, et al. An evaluation of the prognostic model PREDICT using the POSH cohort of women aged 40 years at breast cancer diagnosis. Br J Cancer 2015;112:983991.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gray E, Marti J, Brewster DH, et al. Independent validation of the PREDICT breast cancer prognosis prediction tool in 45,789 patients using Scottish Cancer Registry data. Br J Cancer 2018;119:808814.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Clift AK, Dodwell D, Lord S, et al. Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study. BMJ 2023;381:e073800.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chowdhury A, Pharoah PD, Rueda OM. Evaluation and comparison of different breast cancer prognosis scores based on gene expression data. Breast Cancer Res 2023;25:17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cardoso F, van’t Veer LJ, Bogaerts J, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 2016;375:717729.

  • 16.

    Sparano JA, Gray RJ, Makower DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 2018;379:111121.

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2228 2228 153
PDF Downloads 1345 1345 10
EPUB Downloads 0 0 0