NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022

Featured Updates to the NCCN Guidelines

Authors:
Craig Horbinski Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Search for other papers by Craig Horbinski in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Louis Burt Nabors O’Neal Comprehensive Cancer Center at UAB

Search for other papers by Louis Burt Nabors in
Current site
Google Scholar
PubMed
Close
 MD
,
Jana Portnow City of Hope National Medical Center

Search for other papers by Jana Portnow in
Current site
Google Scholar
PubMed
Close
 MD
,
Joachim Baehring Yale Cancer Center/Smilow Cancer Hospital

Search for other papers by Joachim Baehring in
Current site
Google Scholar
PubMed
Close
 MD
,
Ankush Bhatia University of Wisconsin Carbone Cancer Center

Search for other papers by Ankush Bhatia in
Current site
Google Scholar
PubMed
Close
 MD
,
Orin Bloch UC Davis Comprehensive Cancer Center

Search for other papers by Orin Bloch in
Current site
Google Scholar
PubMed
Close
 MD
,
Steven Brem Abramson Cancer Center at the University of Pennsylvania

Search for other papers by Steven Brem in
Current site
Google Scholar
PubMed
Close
 MD
,
Nicholas Butowski UCSF Helen Diller Family Comprehensive Cancer Center

Search for other papers by Nicholas Butowski in
Current site
Google Scholar
PubMed
Close
 MD
,
Donald M. Cannon Huntsman Cancer Institute at the University of Utah

Search for other papers by Donald M. Cannon in
Current site
Google Scholar
PubMed
Close
 MD
,
Samuel Chao Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute

Search for other papers by Samuel Chao in
Current site
Google Scholar
PubMed
Close
 MD
,
Milan G. Chheda Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Search for other papers by Milan G. Chheda in
Current site
Google Scholar
PubMed
Close
 MD
,
Andrew J. Fabiano Roswell Park Comprehensive Cancer Center

Search for other papers by Andrew J. Fabiano in
Current site
Google Scholar
PubMed
Close
 MD
,
Peter Forsyth Moffitt Cancer Center

Search for other papers by Peter Forsyth in
Current site
Google Scholar
PubMed
Close
 MD
,
Pierre Gigilio The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Search for other papers by Pierre Gigilio in
Current site
Google Scholar
PubMed
Close
 MD
,
Jona Hattangadi-Gluth UC San Diego Moores Cancer Center

Search for other papers by Jona Hattangadi-Gluth in
Current site
Google Scholar
PubMed
Close
 MD
,
Matthias Holdhoff The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Search for other papers by Matthias Holdhoff in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Larry Junck University of Michigan Rogel Cancer Center

Search for other papers by Larry Junck in
Current site
Google Scholar
PubMed
Close
 MD
,
Thomas Kaley Memorial Sloan Kettering Cancer Center

Search for other papers by Thomas Kaley in
Current site
Google Scholar
PubMed
Close
 MD
,
Ryan Merrell Vanderbilt-Ingram Cancer Center

Search for other papers by Ryan Merrell in
Current site
Google Scholar
PubMed
Close
 MD
,
Maciej M. Mrugala Mayo Clinic Cancer Center

Search for other papers by Maciej M. Mrugala in
Current site
Google Scholar
PubMed
Close
 MD, PhD, MPH
,
Seema Nagpal Stanford Cancer Institute

Search for other papers by Seema Nagpal in
Current site
Google Scholar
PubMed
Close
 MD
,
Lucien A. Nedzi St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center

Search for other papers by Lucien A. Nedzi in
Current site
Google Scholar
PubMed
Close
 MD
,
Kathryn Nevel Indiana University Melvin and Bren Simon Comprehensive Cancer Center

Search for other papers by Kathryn Nevel in
Current site
Google Scholar
PubMed
Close
 MD
,
Phioanh L. Nghiemphu UCLA Jonsson Comprehensive Cancer Center

Search for other papers by Phioanh L. Nghiemphu in
Current site
Google Scholar
PubMed
Close
 MD
,
Ian Parney Mayo Clinic Cancer Center

Search for other papers by Ian Parney in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Toral R. Patel UT Southwestern Simmons Comprehensive Cancer Center

Search for other papers by Toral R. Patel in
Current site
Google Scholar
PubMed
Close
 MD
,
Katherine Peters Duke Cancer Institute

Search for other papers by Katherine Peters in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Vinay K. Puduvalli The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Search for other papers by Vinay K. Puduvalli in
Current site
Google Scholar
PubMed
Close
 MD
,
Jason Rockhill Fred Hutchinson Cancer Center

Search for other papers by Jason Rockhill in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Chad Rusthoven University of Colorado Cancer Center

Search for other papers by Chad Rusthoven in
Current site
Google Scholar
PubMed
Close
 MD
,
Nicole Shonka Fred and Pamela Buffet Cancer Center

Search for other papers by Nicole Shonka in
Current site
Google Scholar
PubMed
Close
 MD
,
Lode J. Swinnen The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Search for other papers by Lode J. Swinnen in
Current site
Google Scholar
PubMed
Close
 MBChB
,
Stephanie Weiss Fox Chase Cancer Center

Search for other papers by Stephanie Weiss in
Current site
Google Scholar
PubMed
Close
 MD
,
Patrick Yung Wen Dana-Farber Cancer Institute

Search for other papers by Patrick Yung Wen in
Current site
Google Scholar
PubMed
Close
 MD
,
Nicole E. Willmarth American Brain Tumor Association

Search for other papers by Nicole E. Willmarth in
Current site
Google Scholar
PubMed
Close
 PhD
,
Mary Anne Bergman National Comprehensive Cancer Network

Search for other papers by Mary Anne Bergman in
Current site
Google Scholar
PubMed
Close
, and
Susan Darlow National Comprehensive Cancer Network

Search for other papers by Susan Darlow in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2–3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2–4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non–AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel’s most recent recommendations regarding molecular profiling of gliomas.

  • Collapse
  • Expand
  • 1.

    Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:12311251.

  • 2.

    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016;131:803820.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765773.

  • 4.

    Houillier C, Wang X, Kaloshi G, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 2010;75:15601566.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brat DJ, Verhaak RG, Aldape KD, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015;372:24812498.

  • 6.

    Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015;372:24992508.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022;128:4758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wiestler B, Capper D, Sill M, et al. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 2014;128:561571.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Weller M, Weber RG, Willscher E, et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 2015;129:679693.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nitta M, Muragaki Y, Maruyama T, et al. Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection. Neurosurg Focus 2015;38:E7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Baumert BG, Hegi ME, van den Bent MJ, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 2016;17:15211532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009;27:41504154.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sahm F, Reuss D, Koelsche C, et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 2014;128:551559.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pai T, Epari S, Desai S, et al. Histological spectrum of oligodendroglial tumors: only a subset shows 1p/19q codeletion. Neurol India 2017;65:113120.

  • 15.

    Neumann JE, Dorostkar MM, Korshunov A, et al. Distinct histomorphology in molecular subgroups of glioblastomas in young patients. J Neuropathol Exp Neurol 2016;75:408414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dubbink HJ, Atmodimedjo PN, Kros JM, et al. Molecular classification of anaplastic oligodendroglioma using next-generation sequencing: a report of the prospective randomized EORTC Brain Tumor Group 26951 phase III trial. Neuro Oncol 2016;18:388400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Labussière M, Idbaih A, Wang XW, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 2010;74:18861890.

  • 18.

    Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 2013;125:621636.

  • 19.

    Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 2020;139:603608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 2018;136:805810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jiao Y, Killela PJ, Reitman ZJ, et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012;3:709722.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Leeper HE, Caron AA, Decker PA, et al. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 2015;6:3029530305.

  • 23.

    Reuss DE, Sahm F, Schrimpf D, et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 2015;129:133146.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Arita H, Narita Y, Fukushima S, et al. Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 2013;126:267276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 2013;110:60216026.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Appay R, Dehais C, Maurage CA, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol 2019;21:15191528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cimino PJ, Holland EC. Targeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomas. Neuro Oncol 2019;21:819821.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Reis GF, Pekmezci M, Hansen HM, et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization grades II-III) astrocytomas. J Neuropathol Exp Neurol 2015;74:442452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Yang RR, Shi ZF, Zhang ZY, et al. IDH mutant lower grade (WHO grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations. Brain Pathol 2020;30:541553.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Meyronet D, Esteban-Mader M, Bonnet C, et al. Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 2017;19:11271134.

  • 31.

    Kristensen BW, Priesterbach-Ackley LP, Petersen JK, et al. Molecular pathology of tumors of the central nervous system. Ann Oncol 2019;30:12651278.

  • 32.

    Schreck KC, Ranjan S, Skorupan N, et al. Incidence and clinicopathologic features of H3 K27M mutations in adults with radiographically-determined midline gliomas. J Neurooncol 2019;143:8793.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Louis DN, Giannini C, Capper D, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 2018;135:639642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Buczkowicz P, Hoeman C, Rakopoulos P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 2014;46:451456.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ryall S, Krishnatry R, Arnoldo A, et al. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 2016;4:93.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ebrahimi A, Skardelly M, Schuhmann MU, et al. High frequency of H3 K27M mutations in adult midline gliomas. J Cancer Res Clin Oncol 2019;145:839850.

  • 37.

    Mackay A, Burford A, Carvalho D, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 2017;32:520537.e5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sturm D, Witt H, Hovestadt V, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012;22:425437.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Jiang H, Cui Y, Wang J, et al. Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 World Health Organization classification of tumors of the central nervous system. Oncotarget 2017;8:2035420361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wick W, Roth P, Hartmann C, et al. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 2016;18:15291537.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Cairncross JG, Wang M, Jenkins RB, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014;32:783790.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Everhard S, Kaloshi G, Crinière E, et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol 2006;60:740743.

  • 43.

    Gorovets D, Kannan K, Shen R, et al. IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res 2012;18:24902501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Wahl M, Phillips JJ, Molinaro AM, et al. Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neuro Oncol 2017;19:242251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Arita H, Yamasaki K, Matsushita Y, et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 2016;4:79.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Pekmezci M, Rice T, Molinaro AM, et al. Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol 2017;133:10011016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Möllemann M, Wolter M, Felsberg J, et al. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 2005;113:379385.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:9971003.

  • 49.

    Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 2004;10:18711874.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Bell EH, Zhang P, Fisher BJ, et al. Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the NRG Oncology/RTOG 0424 trial. JAMA Oncol 2018;4:14051409.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Malmström A, Grønberg BH, Marosi C, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 2012;13:916926.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Wick W, Platten M, Meisner C, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 2012;13:707715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012;124:439447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Korshunov A, Capper D, Reuss D, et al. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 2016;131:137146.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Horbinski C. To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 2013;72:27.

  • 56.

    Hawkins C, Walker E, Mohamed N, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 2011;17:47904798.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Horbinski C, Nikiforova MN, Hagenkord JM, et al. Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 2012;14:777789.

  • 58.

    Penman CL, Faulkner C, Lowis SP, et al. Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol 2015;5:54.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, et al. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 2013;37:685698.

  • 60.

    Horbinski C, Hamilton RL, Nikiforov Y, et al. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 2010;119:641649.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Mistry M, Zhukova N, Merico D, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 2015;33:10151022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:25072516.

  • 63.

    McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open- label study. Lancet Oncol 2014;15:323332.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Kaley T, Touat M, Subbiah V, et al. BRAF inhibition in BRAFV600-mutant gliomas: results from the VE-BASKET Study. J Clin Oncol 2018;36:34773484.

  • 65.

    Chang S, Zhang P, Cairncross JG, et al. Phase III randomized study of radiation and temozolomide versus radiation and nitrosourea therapy for anaplastic astrocytoma: results of NRG Oncology RTOG 9813. Neuro Oncol 2017;19:252258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Clark KH, Villano JL, Nikiforova MN, et al. 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol 2013;39:706717.

  • 67.

    Alnahhas I, Rayi A, Thomas D, et al. False-positive 1p/19q testing results in gliomas: clinical and research consequences. Am J Clin Oncol 2020;43:802805.

  • 68.

    Ball MK, Kollmeyer TM, Praska CE, et al. Frequency of false-positive FISH 1p/19q codeletion in adult diffuse astrocytic gliomas. Neurooncol Adv 2020;2:vdaa109.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Olar A, Wani KM, Alfaro-Munoz KD, et al. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 2015;129:585596.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Bechet D, Gielen GG, Korshunov A, et al. Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 2014;128:733741.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Hegi ME, Genbrugge E, Gorlia T, et al. MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: a pooled analysis of four clinical trials. Clin Cancer Res 2019;25:18091816.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Vlassenbroeck I, Califice S, Diserens AC, et al. Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J Mol Diagn 2008;10:332337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Quillien V, Lavenu A, Karayan-Tapon L, et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer 2012;118:42014211.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14400 7390 474
PDF Downloads 14122 6936 458
EPUB Downloads 0 0 0