Myeloproliferative Neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • | 2 Stanford Cancer Institute;
  • | 3 City of Hope National Medical Center;
  • | 4 The University of Texas MD Anderson Cancer Center;
  • | 5 Memorial Sloan Kettering Cancer Center;
  • | 6 Roswell Park Comprehensive Cancer Center;
  • | 7 Huntsman Cancer Institute at the University of Utah;
  • | 8 Fred & Pamela Buffett Cancer Center;
  • | 9 Abramson Cancer Center at the University of Pennsylvania;
  • | 10 Massachusetts General Hospital Cancer Center;
  • | 11 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • | 12 UC San Diego Moores Cancer Center;
  • | 13 UC Davis Comprehensive Cancer Center;
  • | 14 Moffitt Cancer Center;
  • | 15 UT Southwestern Simmons Comprehensive Cancer Center;
  • | 16 University of Colorado Cancer Center;
  • | 17 Vanderbilt-Ingram Cancer Center;
  • | 18 University of Wisconsin Carbone Cancer Center;
  • | 19 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • | 20 Mayo Clinic Cancer Center;
  • | 21 Yale Cancer Center/Smilow Cancer Hospital;
  • | 22 Duke Cancer Institute;
  • | 23 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • | 24 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • | 25 University of Michigan Rogel Cancer Center;
  • | 26 O'Neal Comprehensive Cancer Center at UAB;
  • | 27 Dana-Farber/Brigham and Women’s Cancer Center;
  • | 28 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • | 29 UCLA Jonsson Comprehensive Cancer Center; and
  • | 30 National Comprehensive Cancer Network.

The classic Philadelphia chromosome–negative myeloproliferative neoplasms (MPN) consist of myelofibrosis, polycythemia vera, and essential thrombocythemia and are a heterogeneous group of clonal blood disorders characterized by an overproduction of blood cells. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for MPN were developed as a result of meetings convened by a multidisciplinary panel with expertise in MPN, with the goal of providing recommendations for the management of MPN in adults. The Guidelines include recommendations for the diagnostic workup, risk stratification, treatment, and supportive care strategies for the management of myelofibrosis, polycythemia vera, and essential thrombocythemia. Assessment of symptoms at baseline and monitoring of symptom status during the course of treatment is recommended for all patients. This article focuses on the recommendations as outlined in the NCCN Guidelines for the diagnosis of MPN and the risk stratification, management, and supportive care relevant to MF.

Individual Disclosures for the NCCN Myeloproliferative Neoplasms Panel
Individual Disclosures for the NCCN Myeloproliferative Neoplasms Panel

  • 1.

    Mehta J, Wang H, Iqbal SU, et al. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma 2014; 55:595600.

  • 2.

    Srour SA, Devesa SS, Morton LM, et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12. Br J Haematol 2016; 174:382396.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Anderson LA, James G, Duncombe AS, et al. Myeloproliferative neoplasm patient symptom burden and quality of life: evidence of significant impairment compared to controls. Am J Hematol 2015; 90:864870.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mesa R, Miller CB, Thyne M, et al. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer 2016; 16:167.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Harrison CN, Koschmieder S, Foltz L, et al. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: results from the international MPN Landmark survey. Ann Hematol 2017; 96:16531665.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Geyer HL, Scherber RM, Dueck AC, et al. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014; 123:38033810.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Price GL, Davis KL, Karve S, et al. Survival patterns in United States (US) Medicare enrollees with non-CML myeloproliferative neoplasms (MPN). PLoS One 2014; 9:e90299.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tam CS, Nussenzveig RM, Popat U, et al. The natural history and treatment outcome of blast phase BCR-ABL- myeloproliferative neoplasms. Blood 2008; 112:16281637.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124:25072513; quiz 2615.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tefferi A. Myeloproliferative neoplasms: a decade of discoveries and treatment advances. Am J Hematol 2016; 91:5058.

  • 11.

    Stein BL, Gotlib J, Arcasoy M, et al. Historical views, conventional approaches, and evolving management strategies for myeloproliferative neoplasms. J Natl Compr Canc Netw 2015; 13:424434.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365:10541061.

  • 13.

    Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352:17791790.

  • 14.

    Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7:387397.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jamieson CH, Gotlib J, Durocher JA, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103:62246229.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356:459468.

  • 17.

    Pietra D, Li S, Brisci A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008; 111:16861689.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108:34723476.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3:e270.

  • 20.

    Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112:141149.

  • 21.

    Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369:23792390.

  • 22.

    Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369:23912405.

  • 23.

    Tefferi A, Lasho TL, Finke C, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia 2014; 28:15681570.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tefferi A, Lasho TL, Tischer A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood 2014; 124:24652466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2016; 30:431438.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nangalia J, Green TR. The evolving genomic landscape of myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2014; 2014:287296.

  • 27.

    Rampal R, Ahn J, Abdel-Wahab O, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA 2014; 111:E54015410.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014; 124:10621069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Guglielmelli P, Rotunno G, Fanelli T, et al. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J 2015; 5:e360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Guglielmelli P, Pancrazzi A, Bergamaschi G, et al. Anaemia characterises patients with myelofibrosis harbouring MplW515L/K mutation. Br J Haematol 2007; 137:244247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28:14721477.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 2016; 127:325332.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Guglielmelli P, Biamonte F, Score J, et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 2011; 118:52275234.

  • 34.

    Tefferi A, Jimma T, Sulai NH, et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia 2012; 26:475480.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27:18611869.

  • 36.

    Guglielmelli P, Lasho TL, Rotunno G, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 2014; 28:18041810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123:22202228.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tefferi A, Finke CM, Lasho TL, et al. U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions. Leukemia 2018; 32:22742278.

  • 39.

    Vallapureddy RR, Mudireddy M, Penna D, et al. Leukemic transformation among 1306 patients with primary myelofibrosis: risk factors and development of a predictive model. Blood Cancer J 2019; 9:12.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Santos FPS, Getta B, Masarova L, et al. Prognostic impact of RAS- pathway mutations in patients with myelofibrosis. Leukemia 2020; 34:799810.

  • 41.

    Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014; 28:14941500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Rotunno G, Pacilli A, Artusi V, et al. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: a study on 359 patients of the AGIMM group. Am J Hematol 2016; 91:681686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100:22922302.

  • 44.

    Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114:937951.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Barbui T, Thiele J, Vannucchi AM, et al. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J 2015; 5:e337.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. Lyon, France: International Agency for Research on Cancer; 2017.

    • Search Google Scholar
    • Export Citation
  • 47.

    Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemia: Integrating morphological, clinical, and genomic data [published online June 29, 2022]. Blood, doi:10.1182/blood.2022015850

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022; 36:17031719.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Mesa RA, Verstovsek S, Cervantes F, et al. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res 2007; 31:737740.

    • Search Google Scholar
    • Export Citation
  • 50.

    Barbui T, Thiele J, Passamonti F, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 2011; 29:31793184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Guglielmelli P, Pacilli A, Rotunno G, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood 2017; 129:32273236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Jeryczynski G, Thiele J, Gisslinger B, et al. Pre-fibrotic/early primary myelofibrosis vs. WHO-defined essential thrombocythemia: the impact of minor clinical diagnostic criteria on the outcome of the disease. Am J Hematol 2017; 92:885891.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Mudireddy M, Shah S, Lasho T, et al. Prefibrotic versus overtly fibrotic primary myelofibrosis: clinical, cytogenetic, molecular and prognostic comparisons. Br J Haematol 2018; 182:594597.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Barosi G, Mesa RA, Thiele J, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 2008; 22:437438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Delic S, Rose D, Kern W, et al. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera. Br J Haematol 2016; 175:419426.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Barbui T, Thiele J, Gisslinger H, et al. Masked polycythemia vera (mPV): results of an international study. Am J Hematol 2014; 89:5254.

  • 57.

    Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005; 90:11281132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    McMahon B, Stein BL. Thrombotic and bleeding complications in classical myeloproliferative neoplasms. Semin Thromb Hemost 2013; 39:101111.

  • 59.

    Kaifie A, Kirschner M, Wolf D, et al. Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol 2016; 9:18.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Federici AB, Rand JH, Bucciarelli P, et al. Acquired von Willebrand syndrome: data from an international registry. Thromb Haemost 2000; 84:345349.

  • 61.

    Lippi G, Franchini M, Salvagno GL, et al. Correlation between von Willebrand factor antigen, von Willebrand factor ristocetin cofactor activity and factor VIII activity in plasma. J Thromb Thrombolysis 2008; 26:150153.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Mesa RA, Schwager S, Radia D, et al. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009; 33:11991203.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Mesa RA, Kantarjian H, Tefferi A, et al. Evaluating the serial use of the Myelofibrosis Symptom Assessment Form for measuring symptomatic improvement: performance in 87 myelofibrosis patients on a JAK1 and JAK2 inhibitor (INCB018424) clinical trial. Cancer 2011; 117:48694877.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 2011; 118:401408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012; 30:40984103.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Mesa RA, Gotlib J, Gupta V, et al. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol 2013; 31:12851292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    ElNahass YH, Mahmoud HK, Mattar MM, et al. MPN10 score and survival of molecularly annotated myeloproliferative neoplasm patients. Leuk Lymphoma 2018; 59:844854.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Mesa RA, Niblack J, Wadleigh M, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international internet-based survey of 1179 MPD patients. Cancer 2007; 109:6876.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo- controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366:799807.

  • 70.

    Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015; 372:426435.

  • 71.

    Harrison CN, Mead AJ, Panchal A, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood 2017; 130:18891897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol 2015; 1:643651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Harrison CN, Schaap N, Vannucchi AM, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol 2017; 4:e317324.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol 2017; 4:e225236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol 2018; 4:652659.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113:28952901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115:17031708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011; 29:392397.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: Mutation-enhanced International Prognostic Score System for transplantation-age patients with primary myelofibrosis. J Clin Oncol 2018; 36:310318.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Tefferi A, Guglielmelli P, Nicolosi M, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia 2018; 32:16311642.

  • 81.

    Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ version 2.0: Mutation and Karyotype-enhanced International Prognostic Scoring System for primary myelofibrosis. J Clin Oncol 2018; 36:17691770.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 2017; 31:27262731.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Palandri F, Palumbo GA, Iurlo A, et al. Differences in presenting features, outcome and prognostic models in patients with primary myelofibrosis and post-polycythemia vera and/or post-essential thrombocythemia myelofibrosis treated with ruxolitinib. New perspective of the MYSEC-PM in a large multicenter study*. Semin Hematol 2018; 55:248255.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Patnaik MM, Caramazza D, Gangat N, et al. Age and platelet count are IPSS-independent prognostic factors in young patients with primary myelofibrosis and complement IPSS in predicting very long or very short survival. Eur J Haematol 2010; 84:105108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Tefferi A, Siragusa S, Hussein K, et al. Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis--prognostic relevance is independent of IPSS or karyotype. Am J Hematol 2010; 85:1417.

    • Search Google Scholar
    • Export Citation
  • 86.

    Hussein K, Pardanani AD, Van Dyke DL, et al. International Prognostic Scoring System-independent cytogenetic risk categorization in primary myelofibrosis. Blood 2010; 115:496499.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Caramazza D, Begna KH, Gangat N, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia 2011; 25:8288.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Kuykendall AT, Talati C, Padron E, et al. Genetically inspired prognostic scoring system (GIPSS) outperforms dynamic international prognostic scoring system (DIPSS) in myelofibrosis patients. Am J Hematol 2019; 94:8792.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Masarova L, Bose P, Daver N, et al. Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis. Leuk Res 2017; 59:110116.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Mora B, Giorgino T, Guglielmelli P, et al. Value of cytogenetic abnormalities in post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a study of the MYSEC project. Haematologica 2018; 103:e392394.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Ianotto JC, Boyer-Perrard F, Gyan E, et al. Efficacy and safety of pegylated-interferon α-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol 2013; 162:783791.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Ianotto JC, Chauveau A, Boyer-Perrard F, et al. Benefits and pitfalls of pegylated interferon-α2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study. Haematologica 2018; 103:438446.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Silver RT, Barel AC, Lascu E, et al. The effect of initial molecular profile on response to recombinant interferon-α (rIFNα) treatment in early myelofibrosis. Cancer 2017; 123:26802687.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Sørensen AL, Mikkelsen SU, Knudsen TA, et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica 2020; 105:22622272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Kiladjian JJ, Soret-Dulphy J, Resche-Rigon M, et al. Ruxopeg, a multi-center Bayesian phase 1/2 adaptive randomized trial of the combination of ruxolitinib and pegylated interferon alpha 2a in patients with myeloproliferative neoplasm (MPN)-associated myelofibrosis [abstract]. Blood 2018; 132(Suppl 1):Abstract 581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366:787798.

  • 97.

    Davis KL, Côté I, Kaye JA, et al. Real-world assessment of clinical outcomes in patients with lower-risk myelofibrosis receiving treatment with ruxolitinib. Adv Hematol 2015; 2015:848473.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Mead AJ, Milojkovic D, Knapper S, et al. Response to ruxolitinib in patients with intermediate-1-, intermediate-2-, and high-risk myelofibrosis: results of the UK ROBUST trial. Br J Haematol 2015; 170:2939.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica 2016; 101:10651073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Palandri F, Tiribelli M, Benevolo G, et al. Efficacy and safety of ruxolitinib in intermediate-1 IPSS risk myelofibrosis patients: results from an independent study. Hematol Oncol 2018; 36:285290.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Al-Ali HK, Griesshammer M, Foltz L, et al. Primary analysis of JUMP, a phase 3b, expanded-access study evaluating the safety and efficacy of ruxolitinib in patients with myelofibrosis, including those with low platelet counts. Br J Haematol 2020; 189:888903.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Gupta V, Griesshammer M, Martino B, et al. Analysis of predictors of response to ruxolitinib in patients with myelofibrosis in the phase 3b expanded-access JUMP study. Leuk Lymphoma 2021; 62:918926.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Verstovsek S, Mesa RA, Gotlib J, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica 2015; 100:479488.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol 2017; 10:55.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013; 122:40474053.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia 2016; 30:17011707.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Verstovsek S, Mesa RA, Gotlib J, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol 2013; 161:508516.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Vannucchi AM, Kantarjian HM, Kiladjian JJ, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 2015; 100:11391145.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Verstovsek S, Kantarjian HM, Estrov Z, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood 2012; 120:12021209.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Guglielmelli P, Ghirardi A, Carobbio A, et al. Impact of ruxolitinib on survival of patients with myelofibrosis in the real world: update of the ERNEST Study. Blood Adv 2022; 6:373375.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Gupta V, Harrison C, Hexner EO, et al. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib in the COMFORT studies. Haematologica 2016; 101:e482484.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Cervantes F, Ross DM, Radinoff A, et al. Efficacy and safety of a novel dosing strategy for ruxolitinib in the treatment of patients with myelofibrosis and anemia: the REALISE phase 2 study. Leukemia 2021; 35:34553465.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Heine A, Brossart P, Wolf D. Ruxolitinib is a potent immunosuppressive compound: is it time for anti-infective prophylaxis? Blood 2013; 122:38433844.

  • 114.

    Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest 2013; 143:14781479.

  • 115.

    Tong LX, Jackson J, Kerstetter J, et al. Reactivation of herpes simplex virus infection in a patient undergoing ruxolitinib treatment. J Am Acad Dermatol 2014; 70:e5960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Shamil E, Cunningham D, Wong BL, et al. Ruxolitinib associated tuberculosis presenting as a neck lump. Case Rep Infect Dis 2015; 2015:284168.

  • 117.

    Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med 2013; 369:197198.

  • 118.

    Caocci G, Murgia F, Podda L, et al. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia 2014; 28:225227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Shen CH, Hwang CE, Chen YY, et al. Hepatitis B virus reactivation associated with ruxolitinib. Ann Hematol 2014; 93:10751076.

  • 120.

    Blechman AB, Cabell CE, Weinberger CH, et al. Aggressive skin cancers occurring in patients treated with the janus kinase inhibitor ruxolitinib. J Drugs Dermatol 2017; 16:508511.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Palandri F, Derenzini E, Ottaviani E, et al. Association of essential thrombocythemia and non-Hodgkin lymphoma: a single-centre experience. Leuk Lymphoma 2009; 50:481484.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Vannucchi AM, Masala G, Antonioli E, et al. Increased risk of lymphoid neoplasms in patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Epidemiol Biomarkers Prev 2009; 18:20682073.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Rumi E, Passamonti F, Elena C, et al. Increased risk of lymphoid neoplasm in patients with myeloproliferative neoplasm: a study of 1,915 patients. Haematologica 2011; 96:454458.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Masarova L, Newberry KJ, Pierce SA, et al. Association of lymphoid malignancies and Philadelphia-chromosome negative myeloproliferative neoplasms: clinical characteristics, therapy and outcome. Leuk Res 2015; 39:822827.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Porpaczy E, Tripolt S, Hoelbl-Kovacic A, et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018; 132:694706.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Pemmaraju N, Kantarjian H, Nastoupil L, et al. Characteristics of patients with myeloproliferative neoplasms with lymphoma, with or without JAK inhibitor therapy. Blood 2019; 133:23482351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Rumi E, Zibellini S, Boveri E, et al. Ruxolitinib treatment and risk of B-cell lymphomas in myeloproliferative neoplasms. Am J Hematol 2019; 94:E185188.

  • 128.

    Barbui T, Ghirardi A, Masciulli A, et al. Second cancer in Philadelphia negative myeloproliferative neoplasms (MPN-K). A nested case-control study. Leukemia 2019; 33:19962005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Polverelli N, Elli EM, Abruzzese E, et al. Second primary malignancy in myelofibrosis patients treated with ruxolitinib. Br J Haematol 2021; 193:356368.

  • 130.

    Guglielmelli P, Biamonte F, Rotunno G, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood 2014; 123:21572160.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Pacilli A, Rotunno G, Mannarelli C, et al. Mutation landscape in patients with myelofibrosis receiving ruxolitinib or hydroxyurea. Blood Cancer J 2018; 8:122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Patel KP, Newberry KJ, Luthra R, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood 2015; 126:790797.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Harrison C, Kiladjian JJ, Verstovsek S, et al. Abstract S203: overall and progression-free survival in patients treated with fedratinib as first-line myelofibrosis (MF) therapy and after prior ruxolitinib (RUX): results from the JAKARTA and JAKARTA2 trials. Presented at EHA 2021 Virtual Congress; June 9–17, 2021; Virtual.

    • Search Google Scholar
    • Export Citation
  • 134.

    Harrison CN, Schaap N, Vannucchi AM, et al. Safety and efficacy of fedratinib, a selective oral inhibitor of Janus kinase-2 (JAK2), in patients with myelofibrosis and low pretreatment platelet counts. Br J Haematol 2022; 198:317327.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: an updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure. Am J Hematol 2020; 95:594603.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Tremblay D, Cavalli L, Sy O, et al. The effect of fedratinib, a selective inhibitor of janus kinase 2, on weight and metabolic parameters in patients with intermediate- or high-risk myelofibrosis. Clin Lymphoma Myeloma Leuk 2022; 22:e463466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137.

    Vainchenker W, Leroy E, Gilles L, et al. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000 Res 2018;7:82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Tefferi A. JAK inhibitors for myeloproliferative neoplasms: clarifying facts from myths. Blood 2012; 119:27212730.

  • 139.

    Gupta V, Yacoub A, Verstovsek S, et al. Safety and tolerability of fedratinib (FEDR), an oral inhibitor of janus knase 2 (JAK2), in patients with intermediate- or high-risk myelofibrosis (MF) previously treated with ruxolitinib (RUX): Results from the phase 3b FREEDOM trial [abstract]. Blood 2021; 138(Suppl 1):389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Harrison CN, Mesa RA, Jamieson C, et al. Case series of potential Wernicke’s encephalopathy in patients treated with fedratinib [abstract]. Blood 2017; 130(Suppl 1):4197.

    • Search Google Scholar
    • Export Citation
  • 141.

    National Organization for Rare Disorders. Wernicke-Korsakoff syndrome. Accessed on June 6, 2022. Available at: https://rarediseases.org/rare-diseases/wernicke-korsakoff-syndrome/

    • Search Google Scholar
    • Export Citation
  • 142.

    Gerds AT, Savona MR, Scott BL, et al. Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv 2020; 4:58255835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    McLornan D, Szydlo R, Koster L, et al. Myeloablative and reduced- intensity conditioned allogeneic hematopoietic stem cell transplantation in myelofibrosis: a retrospective study by the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2019; 25:21672171.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Snyder DS, Palmer J, Stein AS, et al. Allogeneic hematopoietic cell transplantation following reduced intensity conditioning for treatment of myelofibrosis. Biol Blood Marrow Transplant 2006; 12:11611168.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Kröger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2009; 114:52645270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Patriarca F, Bacigalupo A, Sperotto A, et al. Outcome of allogeneic stem cell transplantation following reduced-intensity conditioninig regimen in patients with idiopathic myelofibrosis: the g.I.T.m.o. Experience. Mediterr J Hematol Infect Dis 2010; 2:e2010010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Snyder DS, Palmer J, Gaal K, et al. Improved outcomes using tacrolimus/sirolimus for graft-versus-host disease prophylaxis with a reduced-intensity conditioning regimen for allogeneic hematopoietic cell transplant as treatment of myelofibrosis. Biol Blood Marrow Transplant 2010; 16:281286.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Gupta V, Malone AK, Hari PN, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2014; 20:8997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149.

    Lussana F, Rambaldi A, Finazzi MC, et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica 2014; 99:916921.

    • Search Google Scholar
    • Export Citation
  • 150.

    Rondelli D, Goldberg JD, Isola L, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood 2014; 124:11831191.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Robin M, Porcher R, Wolschke C, et al. Outcome after transplantation according to reduced-intensity conditioning regimen in patients undergoing transplantation for myelofibrosis. Biol Blood Marrow Transplant 2016; 22:12061211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Jain T, Kunze KL, Temkit M, et al. Comparison of reduced intensity conditioning regimens used in patients undergoing hematopoietic stem cell transplantation for myelofibrosis. Bone Marrow Transplant 2019; 54:204211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Rezvani AR, McCune JS, Storer BE, et al. Cyclophosphamide followed by intravenous targeted busulfan for allogeneic hematopoietic cell transplantation: pharmacokinetics and clinical outcomes. Biol Blood Marrow Transplant 2013; 19:10331039.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Salit RB, Scott BL, Stevens EA, et al. Pre-hematopoietic cell transplant Ruxolitinib in patients with primary and secondary myelofibrosis. Bone Marrow Transplant 2020; 55:7076.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Deeg HJ, Bredeson C, Farnia S, et al. Hematopoietic cell transplantation as curative therapy for patients with myelofibrosis: long-term success in all age groups. Biol Blood Marrow Transplant 2015; 21:18831887.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Ballen KK, Shrestha S, Sobocinski KA, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010; 16:358367.

  • 157.

    Robin M, de Wreede LC, Wolschke C, et al. Long-term outcome after allogeneic hematopoietic cell transplantation for myelofibrosis. Haematologica 2019; 104:17821788.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Hernández-Boluda JC, Pereira A, Kröger N, et al. Determinants of survival in myelofibrosis patients undergoing allogeneic hematopoietic cell transplantation. Leukemia 2021; 35:215224.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Kunte S, Rybicki L, Viswabandya A, et al. Allogeneic blood or marrow transplantation with haploidentical donor and post-transplantation cyclophosphamide in patients with myelofibrosis: a multicenter study. Leukemia 2022; 36:856864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Jain T, Tsai HL, DeZern AE, et al. Post-transplantation cyclophosphamide-based graft- versus-host disease prophylaxis with nonmyeloablative conditioning for blood or marrow transplantation for myelofibrosis. Transplant Cell Ther 2022; 28:259.e1e11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161.

    Polverelli N, Mauff K, Kröger N, et al. Impact of spleen size and splenectomy on outcomes of allogeneic hematopoietic cell transplantation for myelofibrosis: a retrospective analysis by the chronic malignancies working party on behalf of European Society for Blood and Marrow Transplantation (EBMT). Am J Hematol 2021; 96:6979.

    • Search Google Scholar
    • Export Citation
  • 162.

    Scott BL, Gooley TA, Sorror ML, et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood 2012; 119:26572664.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Alchalby H, Yunus DR, Zabelina T, et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol 2012; 157:7585.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Kröger N, Giorgino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood 2015; 125:33473350; quiz 3364.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Gowin K, Ballen K, Ahn KW, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv 2020; 4:19651973.

  • 166.

    Hernández-Boluda JC, Pereira A, Correa JG, et al. Prognostic risk models for transplant decision-making in myelofibrosis. Ann Hematol 2018; 97:813820.

  • 167.

    Gagelmann N, Ditschkowski M, Bogdanov R, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood 2019; 133:22332242.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Hernández-Boluda JC, Pereira A, Alvarez-Larran A, et al. Predicting survival after allogeneic hematopoietic cell transplantation in myelofibrosis: performance of the myelofibrosis transplant scoring system (MTSS) and development of a new prognostic model. Biol Blood Marrow Transplant 2020; 26:22372244.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Panagiota V, Thol F, Markus B, et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Leukemia 2014; 28:15521555.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Kröger N, Panagiota V, Badbaran A, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2017; 23:10951101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Tamari R, Rapaport F, Zhang N, et al. Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis. Biol Blood Marrow Transplant 2019; 25:11421151.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Ali H, Aldoss I, Yang D, et al. MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv 2019; 3:8395.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Mannina D, Gagelmann N, Badbaran A, et al. Allogeneic stem cell transplantation in patients with myelofibrosis harboring the MPL mutation. Eur J Haematol 2019;103:552557.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Stevens EA, Jenkins IC, Beppu LW, et al. Targeted sequencing improves DIPSS-Plus prognostic scoring in myelofibrosis patients undergoing allogeneic transplantation. Biol Blood Marrow Transplant 2020; 26:13711374.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Martínez-Trillos A, Gaya A, Maffioli M, et al. Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: results in 40 patients. Ann Hematol 2010; 89:12331237.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Kröger NM, Deeg JH, Olavarria E, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia 2015; 29:21262133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 177.

    Chhabra S, Narra RK, Wu R, et al. Fludarabine/busulfan conditioning-based allogeneic hematopoietic cell transplantation for myelofibrosis: role of ruxolitinib in improving survival outcomes. Biol Blood Marrow Transplant 2020; 26:893901.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Shanavas M, Popat U, Michaelis LC, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis with prior exposure to janus kinase 1/2 inhibitors. Biol Blood Marrow Transplant 2016; 22:432440.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Gupta V, Kosiorek HE, Mead A, et al. Ruxolitinib therapy followed by reduced-intensity conditioning for hematopoietic cell transplantation for myelofibrosis: Myeloproliferative Disorders Research Consortium 114 study. Biol Blood Marrow Transplant 2019; 25:256264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 180.

    Hernández-Boluda JC, Correa JG, Alvarez-Larrán A, et al. Clinical characteristics, prognosis and treatment of myelofibrosis patients with severe thrombocytopenia. Br J Haematol 2018; 181:397400.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Scotch AH, Kosiorek H, Scherber R, et al. Symptom burden profile in myelofibrosis patients with thrombocytopenia: lessons and unmet needs. Leuk Res 2017; 63:3440.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Talpaz M, Paquette R, Afrin L, et al. Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol 2013; 6:81.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Vannucchi AM, Te Boekhorst PAW, Harrison CN, et al. EXPAND, a dose-finding study of ruxolitinib in patients with myelofibrosis and low platelet counts: 48-week follow-up analysis. Haematologica 2019; 104:947954.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Mesa RA, Cortes J. Optimizing management of ruxolitinib in patients with myelofibrosis: the need for individualized dosing. J Hematol Oncol 2013; 6:79.

  • 185.

    JAKAFI [prescribing information]. Wilmington, DE: Incyte Corporation; 2021.

  • 186.

    Tefferi A, Barosi G, Mesa RA, et al. International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood 2006; 108:14971503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 187.

    Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood 2013; 122:13951398.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 2011; 86:11881191.

  • 189.

    Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood 2017; 130:11251131.

  • 190.

    Mascarenhas J, Mehra M, He J, et al. Patient characteristics and outcomes after ruxolitinib discontinuation in patients with myelofibrosis. J Med Econ 2020; 23:721727.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Pardanani A, Gotlib JR, Jamieson C, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011; 29:789796.

  • 192.

    Deininger M, Radich J, Burn TC, et al. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood 2015; 126:15511554.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Alchalby H, Badbaran A, Zabelina T, et al. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood 2010; 116:35723581.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Lange T, Edelmann A, Siebolts U, et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica 2013; 98:722728.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Tefferi A, Lasho TL, Jimma T, et al. One thousand patients with primary myelofibrosis: the mayo clinic experience. Mayo Clin Proc 2012; 87:2533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 196.

    Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood 2019; 133:790794.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    U.S Food & Drug Administration. FDA approves luspatercept-aamt for anemia in adults with MDS. Accessed on June 6, 2022. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-luspatercept-aamt-anemia-adults-mds

    • Search Google Scholar
    • Export Citation
  • 198.

    Cervantes F, Alvarez-Larrán A, Hernández-Boluda JC, et al. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol 2004; 127:399403.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 199.

    Cervantes F, Alvarez-Larrán A, Hernández-Boluda JC, et al. Darbepoetin-alpha for the anaemia of myelofibrosis with myeloid metaplasia. Br J Haematol 2006; 134:184186.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Tsiara SN, Chaidos A, Bourantas LK, et al. Recombinant human erythropoietin for the treatment of anaemia in patients with chronic idiopathic myelofibrosis. Acta Haematol 2007; 117:156161.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    Cervantes F, Isola IM, Alvarez-Larrán A, et al. Danazol therapy for the anemia of myelofibrosis: assessment of efficacy with current criteria of response and long-term results. Ann Hematol 2015; 94:17911796.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 202.

    Mesa RA, Gerds AT, Vannucchi A, et al. MOMENTUM: Phase 3 randomized study of momelotinib (MMB) versus danazol (DAN) in symptomatic and anemic myelofibrosis (MF) patients previously treated with a JAK inhibitor [abstract]. J Clin Oncol 2022; 40(Suppl):Abstract 7002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 203.

    Barosi G, Elliott M, Canepa L, et al. Thalidomide in myelofibrosis with myeloid metaplasia: a pooled-analysis of individual patient data from five studies. Leuk Lymphoma 2002; 43:23012307.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 204.

    Elliott MA, Mesa RA, Li CY, et al. Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol 2002; 117:288296.

  • 205.

    Merup M, Kutti J, Birgergård G, et al. Negligible clinical effects of thalidomide in patients with myelofibrosis with myeloid metaplasia. Med Oncol 2002; 19:7986.

  • 206.

    Marchetti M, Barosi G, Balestri F, et al. Low-dose thalidomide ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a phase II trial. J Clin Oncol 2004; 22:424431.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Strupp C, Germing U, Scherer A, et al. Thalidomide for the treatment of idiopathic myelofibrosis. Eur J Haematol 2004; 72:5257.

  • 208.

    Thomas DA, Giles FJ, Albitar M, et al. Thalidomide therapy for myelofibrosis with myeloid metaplasia. Cancer 2006; 106:19741984.

  • 209.

    Abgrall JF, Guibaud I, Bastie JN, et al. Thalidomide versus placebo in myeloid metaplasia with myelofibrosis: a prospective, randomized, double-blind, multicenter study. Haematologica 2006; 91:10271032.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 210.

    Mesa RA, Steensma DP, Pardanani A, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 2003; 101:25342541.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 211.

    Tefferi A, Cortes J, Verstovsek S, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 2006; 108:11581164.

  • 212.

    Quintás-Cardama A, Kantarjian HM, Manshouri T, et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol 2009; 27:47604766.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 213.

    Mesa RA, Yao X, Cripe LD, et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood 2010; 116:44364438.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    Chihara D, Masarova L, Newberry KJ, et al. Long-term results of a phase II trial of lenalidomide plus prednisone therapy for patients with myelofibrosis. Leuk Res 2016; 48:15.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 215.

    Santana-Davila R, Tefferi A, Holtan SG, et al. Primary myelofibrosis is the most frequent myeloproliferative neoplasm associated with del(5q): clinicopathologic comparison of del(5q)-positive and -negative cases. Leuk Res 2008; 32:19271930.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 216.

    Jabbour E, Thomas D, Kantarjian H, et al. Comparison of thalidomide and lenalidomide as therapy for myelofibrosis. Blood 2011; 118:899902.

  • 217.

    Schlenk RF, Stegelmann F, Reiter A, et al. Pomalidomide in myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2017; 31:889895.

  • 218.

    Tefferi A, Al-Ali HK