The Role of Immunotherapy in the Management of Soft Tissue Sarcomas: Current Landscape and Future Outlook

Authors:
Lauren B. Banks Memorial Sloan Kettering Cancer Center, New York, New York

Search for other papers by Lauren B. Banks in
Current site
Google Scholar
PubMed
Close
 MD, PhD
and
Sandra P. D’Angelo Memorial Sloan Kettering Cancer Center, New York, New York

Search for other papers by Sandra P. D’Angelo in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Soft tissue sarcomas (STS) are a subset of sarcoma, a rare group of heterogeneous malignancies of mesenchymal origin. Current standard of care involves surgical resection with systemic chemotherapy used to treat high-risk localized and metastatic disease. Though classically thought to be immunologically quiet tumors, STS interact with the immune system, undergoing immunoediting that alters tumor immunogenicity and the tumor microenvironment. Recent advances with immune checkpoint inhibition have led to clinical trials exploring the efficacy of immunotherapy in treating STS. Results from these trials point to histologic subtype–specific clinical activity of immune checkpoint blockade. In addition, combinatorial strategies adding immune checkpoint inhibition to local or systemic therapies for STS have further increased their efficacy. Targeted immunotherapies using engineered T-cell receptor–based approaches also show increasing promise as treatment options for some patients with STS. Adoptive transfer of autologous T cells targeting NY-ESO-1 and MAGE-A4 have high response rates in sarcomas expressing these antigens, although recurrence is often seen in responding patients. Future work must focus on identifying primary and acquired mechanisms of resistance to these therapies, and extend T-cell receptor discovery to other tumor-associated antigens.

Submitted January 28, 2022; final revision received April 29, 2020; accepted for publication May 2, 2022.

Disclosures: Dr. D’Angelo has disclosed receiving grant/research support from Amgen Inc., Bristol-Myers Squibb Company, Deciphera Pharmaceuticals, EMD Serono Inc., Incyte Corporation, Merck & Co., Inc., and Nektar Therapeutics; serving as a consultant and on an advisory board for Adaptimmune Therapeutics PLC, Amgen Inc., EMD Serono Inc., GlaxoSmithKline plc, Immune Design Corp., Immunocore, Incyte Corporation, Merck & Co., Inc., Nektar Therapeutics, Pfizer Inc., Rain Therapeutics, and Servier Laboratories; serving on a data safety monitoring board for Adaptimmune Therapeutics PLC, GlaxoSmithKline plc, Merck & Co., Inc., and Nektar Therapeutics; and receiving travel, accommodation, and expense funding from Adaptimmune Therapeutics PLC, EMD Serono Inc., and Nektar Therapeutics. Dr. Banks has disclosed that not receiving any financial consideration from any person or organization to support the preparation, analysis, results, or discussion of this article.

Funding: This work was supported in part by funding from the National Cancer Institute of the National Health Institutes under award number P50 CA217694.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Correspondence: Sandra P. D’Angelo, MD, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, 14th Floor, New York, NY 10065. Email: dangelos@mskcc.org
  • Collapse
  • Expand
  • 1.

    WHO Classification of Tumors Editorial Board. Soft Tissue and Bone Tumors: WHO Classification of Tumours, Vol. 3, 5th ed. Geneva, Switzerland: World Health Organization; 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    von Mehren M, Kane JM, Agulnik M, et al. NCCN Clinical Practice Guidelines in Oncology: Soft Tissue Sarcoma, Version 2.2022. Accessed January 26, 2022. To view the most recent version, visit NCCN.org

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gage MM, Nagarajan N, Ruck JM, et al. Sarcomas in the United States: recent trends and a call for improved staging. Oncotarget 2019;10:24622474.

  • 4.

    Ratan R, Patel SR. Chemotherapy for soft tissue sarcoma. Cancer 2016;122:29522960.

  • 5.

    Demetri GD, Chawla SP, von Mehren M, et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol 2009;27:41884196.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Schöffski P, Maki RG, Italiano A, et al. Randomized, open-label, multicenter, phase III study of eribulin versus dacarbazine in patients (pts) with leiomyosarcoma (LMS) and adipocytic sarcoma (ADI) [abstract]. J Clin Oncol 2015;33(Suppl):Abstract LBA10502.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013;369:134144.

  • 8.

    Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014;32:10201031.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011;331:15651570.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16: 151167.

  • 11.

    Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 2017;171:950965.e28.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Doyle LA, Nowak JA, Nathenson MJ, et al. Characteristics of mismatch repair deficiency in sarcomas. Mod Pathol 2019;32:977987.

  • 13.

    Nakano K, Takahashi S. Translocation-related sarcomas. Int J Mol Sci 2018;19:3784.

  • 14.

    Shern JF, Chen L, Chmielecki J, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 2014;4:216231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    D’Angelo SP, Shoushtari AN, Agaram NP, et al. Prevalence of tumor- infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol 2015;46:357365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Yan L, Wang Z, Cui C, et al. Comprehensive immune characterization and T-cell receptor repertoire heterogeneity of retroperitoneal liposarcoma. Cancer Sci 2019;110:30383048.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wedekind MF, Haworth KB, Arnold M, et al. Immune profiles of desmoplastic small round cell tumor and synovial sarcoma suggest different immunotherapeutic susceptibility upfront compared to relapse specimens. Pediatr Blood Cancer 2018;65:e27313.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Zhang S, Kohli K, Black RG, et al. Systemic interferon-γ increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol Res 2019;7:12371243.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017;18: 14931501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Burgess MA, Bolejack V, Schuetze S, et al. Clinical activity of pembrolizumab (P) in undifferentiated pleomorphic sarcoma (UPS) and dedifferentiated/pleomorphic liposarcoma (LPS): final results of SARC028 expansion cohorts [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 11015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    D’Angelo SP, Mahoney MR, Van Tine BA, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 2018;19:416426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chen JL, Mahoney MR, George S, et al. A multicenter phase II study of nivolumab +/− ipilimumab for patients with metastatic sarcoma (Alliance A091401): results of expansion cohorts [abstract]. J Clin Oncol 2020;38 (Suppl):Abstract 11511.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wagner MJ, Othus M, Patel SP, et al. Multicenter phase II trial (SWOG S1609, cohort 51) of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: a substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART). J Immunother Cancer 2021;9:e002990.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Groisberg R, Hong DS, Behrang A, et al. Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials. J Immunother Cancer 2017;5:100.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Blay JY, Penel N, Ray-Coquard IL, et al. High clinical activity of pembrolizumab in chordoma, alveolar soft part sarcoma (ASPS) and other rare sarcoma histotypes: the French AcSé pembrolizumab study from Unicancer [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Naqash AR, O’Sullivan Coyne GH, Moore N, et al. Phase II study of atezolizumab in advanced alveolar soft part sarcoma (ASPS) [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11519.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Shi Y, Cai Q, Jiang Y, et al. Activity and safety of geptanolimab (GB226) for patients with unresectable, recurrent, or metastatic alveolar soft part sarcoma: a phase II, single-arm study. Clin Cancer Res 2020;26: 64456452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wilky BA, Trucco MM, Subhawong TK, et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. Lancet Oncol 2019;20:837848.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39:110.

  • 30.

    Kelly CM, Antonescu CR, Bowler T, et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab. JAMA Oncol 2020;6:402408.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lussier DM, Alspach E, Ward JP, et al. Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads. Proc Natl Acad Sci USA 2021;118:e2102611118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Creech O Jr, Krementz ET, Ryan RF, et al. Chemotherapy of cancer: regional perfusion utilizing an extracorporeal circuit. Ann Surg 1958;148:616632.

  • 33.

    Bartlett EK, D’Angelo SP, Kelly CM, et al. Case report: response to regional melphalan via limb infusion and systemic PD1 blockade in recurrent myxofibrosarcoma: a report of 2 cases. Front Oncol 2021;11:725484.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pollack SM, Redman MW, Baker KK, et al. Assessment of doxorubicin and pembrolizumab in patients with advanced anthracycline-naive sarcoma: a phase 1/2 nonrandomized clinical trial. JAMA Oncol 2020;6:17781782.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Livingston MB, Jagosky MH, Robinson MM, et al. Phase II study of pembrolizumab in combination with doxorubicin in metastatic and unresectable soft-tissue sarcoma. Clin Cancer Res 2021;27:64246431.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gordon EM, Chua-Alcala VS, Kim K, et al. SAINT: results of an expanded phase II study using safe amounts of ipilimumab (I), nivolumab (N), and trabectedin (T) as first-line treatment of advanced soft tissue sarcoma [NCT03138161] [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 11520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Martin-Broto J, Hindi N, Grignani G, et al. Nivolumab and sunitinib combination in advanced soft tissue sarcomas: a multicenter, single-arm, phase Ib/II trial. J Immunother Cancer 2020;8:e001561.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29:917924.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Robbins PF, Kassim SH, Tran TLN, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 2015;21:10191027.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    D’Angelo SP, Melchiori L, Merchant MS, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov 2018;8:944957.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ramachandran I, Lowther DE, Dryer-Minnerly R, et al. Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma. J Immunother Cancer 2019;7:276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    D’Angelo SP, Druta M, Demetri GD, et al. A pilot study of NY-ESO-11c259 T cells in subjects with advanced myxoid/round cell liposarcoma (NCT02992743) [abstract]. J Clin Oncol 2017;35(Suppl):Abstract TPS3097.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hong DS, Van Tine BA, Olszanski AJ, et al. Phase I dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors [abstract]. J Clin Oncol 2020;38(Suppl): Abstract 102.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    D’Angelo SP, Van Tine BA, Attia S, et al. SPEARHEAD-1: a phase 2 trial of afamitresgene autoleucel (formerly ADP-A2M4) in patients with advanced synovial sarcoma or myxoid/round cell liposarcoma [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11504.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013;36:133151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Lu YC, Parker LL, Lu T, et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol 2017;35:33223329.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Yarmarkovich M, Marshall QF, Warrington JM, et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 2021;599:477484.

  • 48.

    Somaiah N, Block MS, Kim JW, et al. First-in-class, first-in-human study evaluating LV305, a dendritic-cell tropic lentiviral vector, in sarcoma and other solid tumors expressing NY-ESO-1. Clin Cancer Res 2019;25: 58085817.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Chawla SP, Van Tine BA, Pollack SM, et al. Phase II randomized study of CMB305 and atezolizumab compared with atezolizumab alone in soft- tissue sarcomas expressing NY-ESO-1. J Clin Oncol 2022;40:12911300.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Nowicki TS, Berent-Maoz B, Cheung-Lau G, et al. A pilot trial of the combination of transgenic NY-ESO-1-reactive adoptive cellular therapy with dendritic cell vaccination with or without ipilimumab. Clin Cancer Res 2019;25:20962108.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol Rev 2019;290:127147.

  • 52.

    Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med 2019;25:767775.

  • 53.

    Biernacki MA, Foster KA, Woodward KB, et al. CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J Clin Invest 2020;130:51275141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Matsuzaki A, Suminoe A, Hattori H, et al. Immunotherapy with autologous dendritic cells and tumor-specific synthetic peptides for synovial sarcoma. J Pediatr Hematol Oncol 2002;24:220223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Dagher R, Long LM, Read EJ, et al. Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. Med Pediatr Oncol 2002;38:158164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Kawaguchi S, Tsukahara T, Ida K, et al. SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci 2012;103:16251630.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Smrke A, Ostler A, Napolitano M, et al. 1526MO GEMMK: a phase I study of gemcitabine (gem) and pembrolizumab (pem) in patients (pts) with leiomyosarcoma (LMS) and undifferentiated pleomorphic sarcoma UPS) [abstract]. Ann Oncol 2021;32(Suppl 5):Abstract S1114.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Zer A, Icht O, Joseph L, et al. A phase II single-arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated classical Kaposi sarcoma (CKS) [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 11518.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Roland CL, Keung EZY, Lazar AJ, et al. Preliminary results of a phase II study of neoadjuvant checkpoint blockade for surgically resectable undifferentiated pleomorphic sarcoma (UPS) and dedifferentiated liposarcoma (DDLPS) [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 11505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    D’Angelo SP, Shoushtari AN, Keohan ML, et al. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: a phase Ib study of dasatinib plus ipilimumab. Clin Cancer Res 2017;23:29722980.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Nathenson M, Choy E, Carr ND, et al. Phase II study of eribulin and pembrolizumab in patients (pts) with metastatic soft tissue sarcomas (STS): report of LMS cohort [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 115559.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Ben-Ami E, Barysauskas CM, Solomon S, et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: results of a phase 2 study. Cancer 2017;123:32853290.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Singh AS, Hecht JR, Rosen L, et al. A randomized phase II study of nivolumab monotherapy or nivolumab combined with ipilimumab in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res 2022;28:8494.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Yang J, Dong L, Yang S, et al. Safety and clinical efficacy of toripalimab, a PD-1 mAb, in patients with advanced or recurrent malignancies in a phase I study. Eur J Cancer 2020;130:182192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Chawla NS, Kim T, Sherman T, et al. A phase 2 study of talimogene laherparepvec, nivolumab, and trabectedin (TNT) in advanced sarcoma [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Pink D, Andreou D, Flörcken A, et al. Efficacy and safety of nivolumab and trabectedin in pretreated patients with advanced soft tissue sarcomas (STS): preliminary results of a phase II trial of the German Interdisciplinary Sarcoma Group (GISG-15, NitraSarc) for the non-L sarcoma cohort [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11545.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Toulmonde M, Penel N, Adam J, et al. Combination of pembrolizumab and metronomic cyclophosphamide in patients with advanced sarcomas and GIST: a French Sarcoma Group phase II trial [abstract]. J Clin Oncol 2017;35(Suppl):Abstract 11053.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Luo Z, Liu X, Zhang X, et al. 67P sintilimab, doxorubicin, and ifosfamide (AI) as first-line treatment in patients with advanced soft tissue sarcoma: a single-arm phase II trial [abstract]. Ann Oncol 2021;32(Suppl 7):Abstract S1401.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Rosenbaum E, Movva S, Kelly CM, et al. A phase 1b study of avelumab plus DCC-3014, a potent and selective inhibitor of colony stimulating factor 1 receptor (CSF1R), in patients with advanced high-grade sarcoma [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11549.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Kim HS, Cho HJ, Yum KH, et al. Durvalumab and pazopanib in patients with advanced soft tissue sarcoma: a single-center, single-arm, phase 2 trial [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 11551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Ayodele O, Wang BX, Pfister TD, et al. A phase II, open-label, randomized trial of durvalumab (D) with olaparib (O) or cediranib (C) in patients (pts) with leiomyosarcoma (LMS) [abstract]. J Clin Oncol 2021;39 (Suppl):Abstract 11522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Tolcher AW, Reeves JA, McKean M, et al. Preliminary results of a phase II study of alrizomadlin (APG-115), a novel, small-molecule MDM2 inhibitor, in combination with pembrolizumab in patients (pts) with unresectable or metastatic melanoma or advanced solid tumors that have failed immuno-oncologic (I-O) drugs [abstract]. J Clin Oncol 2021;39(Suppl): Abstract 2506.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Kelly CM, Chi P, Dickson MA, et al. A phase II study of epacadostat and pembrolizumab in patients with advanced sarcoma [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 11049.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Jungbluth AA, Antonescu CR, Busam KJ, et al. Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int J Cancer 2001;94:252256.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Iura K, Kohashi K, Ishii T, et al. MAGEA4 expression in bone and soft tissue tumors: its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1. Virchows Arch 2017;471: 383392.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Hemminger JA, Iwenofu OH. NY-ESO-1 is a sensitive and specific immunohistochemical marker for myxoid and round cell liposarcomas among related mesenchymal myxoid neoplasms. Mod Pathol 2013;26: 12041210.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Pollack SM, Jungbluth AA, Hoch BL, et al. NY-ESO-1 is a ubiquitous immunotherapeutic target antigen for patients with myxoid/round cell liposarcoma. Cancer 2012;118:45644570.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Kakimoto T, Matsumine A, Kageyama S, et al. Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol Lett 2019;17:39373943.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Ayyoub M, Taub RN, Keohan ML, et al. The frequent expression of cancer/testis antigens provides opportunities for immunotherapeutic targeting of sarcoma. Cancer Immun 2004;4:7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Conley AP, Wang WL, Livingston JA, et al. MAGE-A3 is a clinically relevant target in undifferentiated pleomorphic sarcoma/myxofibrosarcoma. Cancers (Basel) 2019;11:677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Shurell E, Vergara-Lluri ME, Li Y, et al. Comprehensive adipocytic and neurogenic tissue microarray analysis of NY-ESO-1 expression - a promising immunotherapy target in malignant peripheral nerve sheath tumor and liposarcoma. Oncotarget 2016;7:7286072867.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Iura K, Maekawa A, Kohashi K, et al. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 2017;61:130139.

  • 83.

    Hemminger JA, Toland AE, Scharschmidt TJ, et al. Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod Pathol 2014;27:12381245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Luk SJ, van der Steen DM, Hagedoorn RS, et al. PRAME and HLA class I expression patterns make synovial sarcoma a suitable target for PRAME specific T-cell receptor gene therapy. Oncoimmunology 2018;7:e1507600.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Skubitz KM, Pambuccian S, Manivel JC, et al. Identification of heterogeneity among soft tissue sarcomas by gene expression profiles from different tumors. J Transl Med 2008;6:23.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4829 916 179
PDF Downloads 3183 567 38
EPUB Downloads 0 0 0