NCCN Guidelines® Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 3.2022

Featured Updates to the NCCN Guidelines

View More View Less
  • 1 The University of Texas MD Anderson Cancer Center;
  • | 2 Dana-Farber/Brigham and Women's Cancer Center;
  • | 3 Massachusetts General Hospital Cancer Center;
  • | 4 UT Southwestern Simmons Comprehensive Cancer Center;
  • | 5 Yale Cancer Center/Smilow Cancer Hospital;
  • | 6 Fred & Pamela Buffett Cancer Center;
  • | 7 Duke Cancer Institute;
  • | 8 Mayo Clinic Cancer Center;
  • | 9 Stanford Cancer Institute;
  • | 10 O'Neal Comprehensive Cancer Center at UAB;
  • | 11 UCLA Jonsson Comprehensive Cancer Center;
  • | 12 University of Wisconsin Carbone Cancer Center;
  • | 13 Moffitt Cancer Center;
  • | 14 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • | 15 St. Jude Children's Research Hospital/The University of Tennessee Health Science Center;
  • | 16 Roswell Park Comprehensive Cancer Center;
  • | 17 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • | 18 UC Davis Comprehensive Cancer Center;
  • | 19 University of Colorado Cancer Center;
  • | 20 UCSF Helen Diller Family Comprehensive Cancer Center;
  • | 21 Fox Chase Cancer Center;
  • | 22 UC San Diego Moores Cancer Center;
  • | 23 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • | 24 Memorial Sloan Kettering Cancer Center;
  • | 25 Vanderbilt-Ingram Cancer Center;
  • | 26 Abramson Cancer Center at the University of Pennsylvania;
  • | 27 City of Hope National Medical Center;
  • | 28 Huntsman Cancer Institute at the University of Utah;
  • | 29 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • | 30 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • | 31 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • | 32 University of Michigan Rogel Cancer Center; and
  • | 33 National Comprehensive Cancer Network.

The treatment landscape of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) has significantly evolved in recent years. Targeted therapy with Bruton’s tyrosine kinase (BTK) inhibitors and BCL-2 inhibitors has emerged as an effective chemotherapy-free option for patients with previously untreated or relapsed/refractory CLL/SLL. Undetectable minimal residual disease after the end of treatment is emerging as an important predictor of progression-free and overall survival for patients treated with fixed-duration BCL-2 inhibitor-based treatment. These NCCN Guidelines Insights discuss the updates to the NCCN Guidelines for CLL/SLL specific to the use of chemotherapy-free treatment options for patients with treatment-naïve and relapsed/refractory disease.

  • 1.

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin 2022;72:733.

  • 2.

    Tsimberidou AM, Wen S, O’Brien S, et al. Assessment of chronic lymphocytic leukemia and small lymphocytic lymphoma by absolute lymphocyte counts in 2,126 patients: 20 years of experience at the University of Texas M.D. Anderson Cancer Center. J Clin Oncol 2007;25:46484656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Woyach JA, Ruppert AS, Rai K, et al. Impact of age on outcomes after initial therapy with chemotherapy and different chemoimmunotherapy regimens in patients with chronic lymphocytic leukemia: results of sequential cancer and leukemia group B studies. J Clin Oncol 2013;31:440447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Goede V, Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. Haematologica 2014;99:10951100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia [published online January 1, 2022]. Leukemia, doi: 10.1038/s41375-021-01485-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 2020;34:787798.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barr PM, Owen C, Robak T, et al. Up to seven years of follow-up in the RESONATE-2 study of first-line ibrutinib treatment of patients with chronic lymphocytic leukemia [abstract]. J Clin Oncol 2021;39(Suppl):Abstract 7523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med 2019;381:432443.

  • 9.

    Hillmen P, Pitchford A, Bloor A, et al. Ibrutinib plus rituximab is superior to FCR in previously untreated CLL: results of the phase III NCRI FLAIR trial [abstract]. Blood 2021;138(Suppl 1):642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Burger JA, Sivina M, Jain N, et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood 2019;133:10111019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Moreno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019;20:4356.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med 2018;379:25172528.

  • 13.

    Woyach JA, Ruppert AS, Heerema NA, et al. Long-term results of Alliance A041202 show continued advantage of ibrutinib-based regimens compared with bendamustine plus rituximab (BR) chemoimmunotherapy [abstract]. Blood 2021;138(Suppl 1):639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Tam CS, Giannopoulos K, Jurczak W, et al. SEQUOIA: results of a phase 3 randomized study of zanubrutinib versus bendamustine + rituximab (BR) in patients with treatment-naïve (TN) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) [abstract]. Blood 2021;138(Suppl 1):396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Al-Sawaf O, Zhang C, Tandon M, et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2020;21:11881200.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Al-Sawaf O, Zhang C, Lu T, et al. Minimal residual disease dynamics after venetoclax-obinutuzumab treatment: extended off-treatment follow-up from the randomized CLL14 study. J Clin Oncol 2021;39:40494060.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Eichhorst B, Niemann C, Kater AP, et al. A randomized phase III study of venetoclax-based time-limited combination treatments (RVe, GVe, GIVe) vs standard chemoimmunotherapy (CIT: FCR/BR) in frontline chronic lymphocytic leukemia (CLL) of Fit patients: first co-primary endpoint analysis of the international intergroup GAIA (CLL13) trial [abstract]. Blood 2021;138(Suppl 1):71.

    • Search Google Scholar
    • Export Citation
  • 18.

    Ahn IE, Farooqui MZH, Tian X, et al. Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood 2018;131:23572366.

  • 19.

    Tam CS, Robak T, Ghia P, et al. Zanubrutinib monotherapy for patients with treatment naïve chronic lymphocytic leukemia and 17p deletion. Haematologica 2020;106:23542363.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ghia P, Pluta A, Wach M, et al. ASCEND: phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2020;38:28492861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Jurczak W, Pluta A, Wach M, et al. Three-year follow-up of the Ascend trial: acalabrutinib vs rituximab plus idelalisib or bendamustine in relapsed/refractory chronic lymphocytic leukemia [abstract]. Blood 2021;138(Suppl 1):393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol 2019;94:13531363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 2018;378:11071120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kater AP, Seymour JF, Hillmen P, et al. Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: post-treatment follow-up of the MURANO phase III study. J Clin Oncol 2019;37:269277.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kater AP, Kipps TJ, Eichhorst B, et al. Five-year analysis of Murano study demonstrates enduring undetectable minimal residual disease (uMRD) in a subset of relapsed/refractory chronic lymphocytic leukemia (R/R CLL) patients (Pts) following fixed-duration venetoclax-rituximab (VenR) therapy (Tx) [abstract]. Blood 2020;136(Suppl 1):1921.

    • Search Google Scholar
    • Export Citation
  • 26.

    O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol 2016;17:14091418.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol 2021;39:34413452.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J Clin Oncol 2018;36:19731980.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tam CS, Trotman J, Opat S, et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood 2019;134:851859.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Xu W, Yang S, Zhou K, et al. Treatment of relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma with the BTK inhibitor zanubrutinib: phase 2, single-arm, multicenter study. J Hematol Oncol 2020;13:48.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hillmen P, Eichhorst B, Brown JR, et al. First interim analysis of ALPINE study: results of a phase 3 randomized study of zanubrutinib vs ibrutinib in patients with relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma [abstract]. Presented at the 2021 European Hematology Association Virtual Congress; June 9–17, 2021. Abstract LB1900.

    • Search Google Scholar
    • Export Citation
  • 32.

    Sharman JP, Coutre SE, Furman RR, et al. Final results of a randomized, phase III study of rituximab with or without idelalisib followed by open-label idelalisib in patients with relapsed chronic lymphocytic leukemia. J Clin Oncol 2019;37:13911402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood 2018;132:24462455.

  • 34.

    Davids MS, Kuss BJ, Hillmen P, et al. Efficacy and safety of duvelisib following disease progression on ofatumumab in patients with relapsed/refractory CLL or SLL in the DUO crossover extension study. Clin Cancer Res 2020;26:20962103.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Flinn IW, Miller CB, Ardeshna KM, et al. DYNAMO: a phase II study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma. J Clin Oncol 2019;37:912922.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kater AP, Wu JQ, Kipps T, et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol 2020;38:40424054.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014;123:33903397.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gopal AK, Davies AJ, Flinn IW, et al. Idelalisib monotherapy and durable responses in patients with relapsed or refractory small lymphocytic lymphoma (SLL) [abstract]. Blood 2015;126:2743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Logan AC, Gao H, Wang C, et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Natl Acad Sci USA 2011;108:2119421199.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia 2016;30:929936.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Aw A, Kim HT, Fernandes SM, et al. Minimal residual disease detected by immunoglobulin sequencing predicts CLL relapse more effectively than flow cytometry. Leuk Lymphoma 2018;59:19861989.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Thompson PA, Srivastava J, Peterson C, et al. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood 2019;134:19511959.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Rawstron AC, Böttcher S, Letestu R, et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 2013;27:142149.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Raponi S, Della Starza I, De Propris MS, et al. Minimal residual disease monitoring in chronic lymphocytic leukaemia patients. A comparative analysis of flow cytometry and ASO IgH RQ-PCR. Br J Haematol 2014;166:360368.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Rawstron AC, Kreuzer KA, Soosapilla A, et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: an European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytometry B Clin Cytom 2018;94:121128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wierda WG, Rawstron A, Cymbalista F, et al. Measurable residual disease in chronic lymphocytic leukemia: expert review and consensus recommendations. Leukemia 2021;35:30593072.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib plus venetoclax for first-line treatment of chronic lymphocytic leukemia: primary analysis results from the minimal residual disease cohort of the randomized phase II CAPTIVATE study. J Clin Oncol 2021;39:38533865.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ghia P, Allan JN, Siddiqi T, et al. First-line treatment with ibrutinib (Ibr) plus venetoclax (Ven) for chronic lymphocytic leukemia (CLL): 2-year post-randomization disease-free survival (DFS) results from the minimal residual disease (MRD) cohort of the phase 2 CAPTIVATE study [abstract]. Blood 2021;138(Suppl 1):68.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Munir T, Moreno C, Owen C, et al. First prospective data on minimal residual disease (MRD) outcomes after fixed-duration ibrutinib plus venetoclax (Ibr+Ven) versus chlorambucil plus obinutuzumab (Clb+O) for first-line treatment of CLL in elderly or unfit patients: the Glow study [abstract]. Blood 2021;138(Suppl 1):70.

    • Search Google Scholar
    • Export Citation
  • 50.

    Awan FT, Schuh A, Brown JR, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv 2019;3:15531562.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Shadman M, Sharman JP, Levy MY, et al. Phase 2 study of zanubrutinib in patients with relapsed/refractory B-cell malignancies intolerant to ibrutinib/acalabrutinib [abstract]. Blood 2020;136(Suppl 1):5152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Rogers KA, Thompson PA, Allan JN, et al. Phase II study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica 2021;106:23642373.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016;374:311322.

  • 54.

    Jones JA, Mato AR, Wierda WG, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 2018;19:6575.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Davids M, Jones J, Eradat H, et al. Modified venetoclax dose ramp-up in select high-risk patients with chronic lymphocytic leukemia (CLL) with progression after B-cell receptor pathway inhibitors (BCRi) [abstract]. Clin Lymphoma Myeloma Leuk 2017;17(Suppl 2):Abstract S302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Koenig KL, Huang Y, Dotson EK, et al. Safety of venetoclax rapid dose escalation in CLL patients previously treated with B-cell receptor signaling antagonists. Blood Adv 2020;4:48604863.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Woyach JA, Ruppert AS, Guinn D, et al. BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol 2017;35:14371443.

  • 58.

    Woyach JA, Huang Y, Rogers K, et al. Resistance to acalabrutinib in CLL is mediated primarily by BTK mutations [abstract]. Blood 2019;134(Suppl 1):Abstract 504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Ahn IE, Underbayev C, Albitar A, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017;129:14691479.

  • 60.

    Coutre S, Choi M, Furman RR, et al. Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood 2018;131:17041711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Eyre TA, Kirkwood AA, Gohill S, et al. Efficacy of venetoclax monotherapy in patients with relapsed chronic lymphocytic leukaemia in the post-BCR inhibitor setting: a UK wide analysis. Br J Haematol 2019;185:656669.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Innocenti I, Morelli F, Autore F, et al. Venetoclax in CLL patients who progress after B-cell receptor inhibitor treatment: a retrospective multi-centre Italian experience. Br J Haematol 2019;187:e811.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Roberts AW, Ma S, Kipps TJ, et al. Efficacy of venetoclax in relapsed chronic lymphocytic leukemia is influenced by disease and response variables. Blood 2019;134:111122.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Mato AR, Hill BT, Lamanna N, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol 2017;28:10501056.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Wierda WG, Byrd JC, Davids MS, et al. Venetoclax for chronic lymphocytic leukaemia patients who progress after more than one B-cell receptor pathway inhibitor. Br J Haematol 2019;185:961966.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Blombery P, Anderson MA, Gong JN, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov 2019;9:342353.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Tausch E, Close W, Dolnik A, et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica 2019;104:e434437.

  • 68.

    Brown JR, Davids MS, Chang JE, et al. Outcomes of ibrutinib (Ibr) therapy in Ibr-naïve patients (pts) with chronic lymphocytic leukemia (CLL) progressing after venetoclax (Ven) [abstract]. Blood 2019;134(Suppl 1):4320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Lin VS, Lew TE, Handunnetti SM, et al. BTK inhibitor therapy is effective in patients with CLL resistant to venetoclax. Blood 2020;135:22662270.

  • 70.

    Mato AR, Roeker LE, Jacobs R, et al. Assessment of the efficacy of therapies following venetoclax discontinuation in CLL reveals BTK inhibition as an effective strategy. Clin Cancer Res 2020;26: 35893596.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Harrup RA, Owen C, D’Rozario J, et al. Efficacy of subsequent novel targeted therapies, including repeated venetoclax-rituximab (VenR), in patients (Pts) with relapsed/refractory chronic lymphocytic leukemia (R/R CLL) previously treated with fixed-duration Venr in the Murano study [abstract]. Blood 2020;136(Suppl 1):4445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Thompson MC, Allan JN, Sail K, et al. Venetoclax re-treatment of chronic lymphocytic leukemia (CLL) patients after a previous venetoclax-based regimen [abstract]. Blood 2020;136(Suppl 1):3941.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1046 1046 1046
PDF Downloads 890 890 890
EPUB Downloads 0 0 0