Management of Immunotherapy-Related Toxicities, Version 1.2022, NCCN Clinical Practice Guidelines in Oncology

Authors:
John A. Thompson Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;

Search for other papers by John A. Thompson in
Current site
Google Scholar
PubMed
Close
 MD
,
Bryan J. Schneider University of Michigan Rogel Cancer Center;

Search for other papers by Bryan J. Schneider in
Current site
Google Scholar
PubMed
Close
 MD
,
Julie Brahmer The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;

Search for other papers by Julie Brahmer in
Current site
Google Scholar
PubMed
Close
 MD
,
Amaka Achufusi University of Wisconsin Carbone Cancer Center;

Search for other papers by Amaka Achufusi in
Current site
Google Scholar
PubMed
Close
 MD
,
Philippe Armand Dana-Farber/Brigham and Women’s Cancer Center;

Search for other papers by Philippe Armand in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Meghan K. Berkenstock The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;

Search for other papers by Meghan K. Berkenstock in
Current site
Google Scholar
PubMed
Close
 MD
,
Shailender Bhatia Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;

Search for other papers by Shailender Bhatia in
Current site
Google Scholar
PubMed
Close
 MD
,
Lihua E. Budde City of Hope National Medical Center;

Search for other papers by Lihua E. Budde in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Saurin Chokshi St. Jude Children's Research Hospital/The University of Tennessee Health Science Center;

Search for other papers by Saurin Chokshi in
Current site
Google Scholar
PubMed
Close
 MD
,
Marianne Davies Yale Cancer Center/Smilow Cancer Hospital;

Search for other papers by Marianne Davies in
Current site
Google Scholar
PubMed
Close
 DNP, RN, AOCNP
,
Amro Elshoury Roswell Park Comprehensive Cancer Center;

Search for other papers by Amro Elshoury in
Current site
Google Scholar
PubMed
Close
 MD
,
Yaron Gesthalter UCSF Helen Diller Family Comprehensive Cancer Center;

Search for other papers by Yaron Gesthalter in
Current site
Google Scholar
PubMed
Close
 MD
,
Aparna Hegde O'Neal Comprehensive Cancer Center at UAB;

Search for other papers by Aparna Hegde in
Current site
Google Scholar
PubMed
Close
 MD
,
Michael Jain Moffitt Cancer Center;

Search for other papers by Michael Jain in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Benjamin H. Kaffenberger The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;

Search for other papers by Benjamin H. Kaffenberger in
Current site
Google Scholar
PubMed
Close
 MD
,
Melissa G. Lechner UCLA Jonsson Comprehensive Cancer Center;

Search for other papers by Melissa G. Lechner in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Tianhong Li UC Davis Comprehensive Cancer Center;

Search for other papers by Tianhong Li in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Alissa Marr Fred & Pamela Buffett Cancer Center;

Search for other papers by Alissa Marr in
Current site
Google Scholar
PubMed
Close
 MD
,
Suzanne McGettigan Abramson Cancer Center at the University of Pennsylvania;

Search for other papers by Suzanne McGettigan in
Current site
Google Scholar
PubMed
Close
 MSN, CRNP
,
Jordan McPherson Huntsman Cancer Institute at the University of Utah;

Search for other papers by Jordan McPherson in
Current site
Google Scholar
PubMed
Close
 PharmD, BCOP
,
Theresa Medina University of Colorado Cancer Center;

Search for other papers by Theresa Medina in
Current site
Google Scholar
PubMed
Close
 MD
,
Nisha A. Mohindra Robert H. Lurie Comprehensive Cancer Center of Northwestern University;

Search for other papers by Nisha A. Mohindra in
Current site
Google Scholar
PubMed
Close
 MD
,
Anthony J. Olszanski Fox Chase Cancer Center;

Search for other papers by Anthony J. Olszanski in
Current site
Google Scholar
PubMed
Close
 MD, RPh
,
Olalekan Oluwole Vanderbilt-Ingram Cancer Center;

Search for other papers by Olalekan Oluwole in
Current site
Google Scholar
PubMed
Close
 MD
,
Sandip P. Patel UC San Diego Moores Cancer Center;

Search for other papers by Sandip P. Patel in
Current site
Google Scholar
PubMed
Close
 MD
,
Pradnya Patil Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;

Search for other papers by Pradnya Patil in
Current site
Google Scholar
PubMed
Close
 MD
,
Sunil Reddy Stanford Cancer Institute;

Search for other papers by Sunil Reddy in
Current site
Google Scholar
PubMed
Close
 MD
,
Mabel Ryder Mayo Clinic Cancer Center;

Search for other papers by Mabel Ryder in
Current site
Google Scholar
PubMed
Close
 MD
,
Bianca Santomasso Memorial Sloan Kettering Cancer Center;

Search for other papers by Bianca Santomasso in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Scott Shofer Duke Cancer Institute;

Search for other papers by Scott Shofer in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jeffrey A. Sosman Robert H. Lurie Comprehensive Cancer Center of Northwestern University;

Search for other papers by Jeffrey A. Sosman in
Current site
Google Scholar
PubMed
Close
 MD
,
Yinghong Wang The University of Texas MD Anderson Cancer Center;

Search for other papers by Yinghong Wang in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Vlad G. Zaha UT Southwestern Simmons Comprehensive Cancer Center; and

Search for other papers by Vlad G. Zaha in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Megan Lyons National Comprehensive Cancer Network

Search for other papers by Megan Lyons in
Current site
Google Scholar
PubMed
Close
 MS
,
Mary Dwyer National Comprehensive Cancer Network

Search for other papers by Mary Dwyer in
Current site
Google Scholar
PubMed
Close
 MS
, and
Lisa Hang National Comprehensive Cancer Network

Search for other papers by Lisa Hang in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

The aim of the NCCN Guidelines for Management of Immunotherapy-Related Toxicities is to provide guidance on the management of immune-related adverse events resulting from cancer immunotherapy. The NCCN Management of Immunotherapy-Related Toxicities Panel is an interdisciplinary group of representatives from NCCN Member Institutions, consisting of medical and hematologic oncologists with expertise across a wide range of disease sites, and experts from the areas of dermatology, gastroenterology, endocrinology, neurooncology, nephrology, cardio-oncology, ophthalmology, pulmonary medicine, and oncology nursing. The content featured in this issue is an excerpt of the recommendations for managing toxicities related to CAR T-cell therapies and a review of existing evidence. For the full version of the NCCN Guidelines, including recommendations for managing toxicities related to immune checkpoint inhibitors, visit NCCN.org.

Individual Dislcosures for the NCCN Management of Immunotherapy-Related Toxicities Panel
Individual Dislcosures for the NCCN Management of Immunotherapy-Related Toxicities Panel

  • Collapse
  • Expand
  • 1.

    June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med 2018;379:6473.

  • 2.

    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989;86:1002410028.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013;3:388398.

  • 4.

    Feins S, Kong W, Williams EF, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol 2019;94(S1):S3S9.

  • 5.

    Maus MV, Levine BL. Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist 2016;21:608617.

  • 6.

    Prescribing Information. Axicabtagene ciloleucel suspension for intravenous infusion. Kite Pharma, Inc; 2022. Accessed January 28, 2022. Available at: https://www.fda.gov/media/108377/download

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Prescribing Information. Brexucabtagene autoleucel suspension for intravenous infusion. Kite Pharma, Inc; 2021. Accessed January 28, 2022. Available at: https://www.fda.gov/media/140409/download

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Prescribing Information. Idecabtagene vicleucel suspension for intravenous infusion. Celgene Corporation, a Bristol-Myers Squibb Company; 2021. Accessed January 28, 2022. Available at: https://www.fda.gov/media/147055/download

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Prescribing Information. Lisocabtagene maraleucel suspension for intravenous infusion. Juno Therapeutics Inc, a Bristol-Myers Company; 2021. Accessed January 28, 2022. Available at: https://www.fda.gov/media/145711/download

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Prescribing Information. Tisagenlecleucel suspension for intravenous infusion. Novartis Pharmaceuticals Corporation; 2021. Accessed January 28, 2022. Available at: https://www.fda.gov/media/107296/download

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomark Res 2017;5:22.

  • 12.

    Jayaraman J, Mellody MP, Hou AJ, et al. CAR-T design: elements and their synergistic function. EBioMedicine 2020;58:102931.

  • 13.

    Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 2018;11:141.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Guedan S, Calderon H, Posey AD, Jr., et al. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev 2018;12:145156.

  • 15.

    Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol 2021;18:715727.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13:227242.

  • 17.

    Clinicaltrials.gov. 2022. Accessed January 28, 2022. Available at: https://www.clinicaltrials.gov/

    • PubMed
    • Export Citation
  • 18.

    Stamenkovic I, Seed B. CD19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J Exp Med 1988;168:12051210.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tedder TF, Isaacs CM. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily. J Immunol 1989;143:712717.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012;1:36.

  • 21.

    Tedder TF. CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 2009;5:572577.

  • 22.

    Nadler LM, Anderson KC, Marti G, et al. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J Immunol 1983;131:244250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 1995;18: 385397.

  • 24.

    Robbins BA, Ellison DJ, Spinosa JC, et al. Diagnostic application of two-color flow cytometry in 161 cases of hairy cell leukemia. Blood 1993;82:12771287.

  • 25.

    Uckun FM, Jaszcz W, Ambrus JL, et al. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 1988;71:1329.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Thalhammer-Scherrer R, Mitterbauer G, Simonitsch I, et al. The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol 2002;117:380389.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Schwonzen M, Pohl C, Steinmetz T, et al. Immunophenotyping of low-grade B-cell lymphoma in blood and bone marrow: poor correlation between immunophenotype and cytological/histological classification. Br J Haematol 1993;83:232239.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Anderson KC, Bates MP, Slaughenhoupt BL, et al. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 1984;63:14241433.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Laâbi Y, Gras MP, Carbonnel F, et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. EMBO J 1992;11:38973904.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Laabi Y, Gras MP, Brouet JC, et al. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res 1994;22:11471154.

  • 31.

    Madry C, Laabi Y, Callebaut I, et al. The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int Immunol 1998;10:16931702.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Thompson JS, Schneider P, Kalled SL, et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 2000;192:129135.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    O’Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199:9198.

  • 34.

    Sanchez E, Li M, Kitto A, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol 2012;158:727738.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lee L, Bounds D, Paterson J, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol 2016;174:911922.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Seckinger A, Delgado JA, Moser S, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell 2017;31:396410.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004;103:689694.

  • 38.

    Friedman KM, Garrett TE, Evans JW, et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum Gene Ther 2018;29:585601.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Salem DA, Maric I, Yuan CM, et al. Quantification of B-cell maturation antigen, a target for novel chimeric antigen receptor T-cell therapy in myeloma. Leuk Res 2018;71:106111.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 2015;7:11871199.

  • 41.

    Legend Biotech Announces Extension of PDUFA Date for Cilta-Cel. 2021. Accessed January 19, 2022. Available at: https://investors.legendbiotech.com/news-releases/news-release-details/legend-biotech-announces-extension-pdufa-date-cilta-cel

    • PubMed
    • Export Citation
  • 42.

    American Cancer Society. CAR T-cell Therapy and Its Side Effects. 2021. Accessed January 4, 2022. Available at: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Levine BL, Miskin J, Wonnacott K, et al. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2016;4:92101.

  • 44.

    Boyiadzis MM, Dhodapkar MV, Brentjens RJ, et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 2018;6:137.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wang X, Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 2016;3:16015.

  • 46.

    Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015;33: 540549.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016;126:21232138.

  • 48.

    Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J Am Coll Cardiol 2019;74:30993108.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ghosh AK, Chen DH, Guha A, et al. CAR T cell therapy-related cardiovascular outcomes and management: systemic disease or direct cardiotoxicity? JACC CardioOncol 2020;2:97109.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med 2017;45:e124e131.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Burstein DS, Maude S, Grupp S, et al. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant 2018;24:15901595.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:25312544.

  • 53.

    Jacobson C, Chavez JC, Sehgal AR, et al. Primary analysis of Zuma-5: a phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). Blood 2020;136(Supplement 1):4041.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:13311342.

  • 55.

    Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021;398:491502.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020;396:839852.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019;380:4556.

  • 58.

    Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439448.

  • 59.

    Munshi NC, Anderson LD, Jr., Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021;384:705716.

  • 60.

    Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019;25:625638.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Varadarajan I, Kindwall-Keller TL, Lee DW. Management of cytokine release syndrome. In: Lee DW, Shah NN, eds. Chimeric Antigen Receptor T-Cell Therapies for Cancer. Elsevier; 2020: 4564.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Hay KA, Hanafi LA, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017;130:22952306.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016;6:664679.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 2017;7:14041419.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018;24:739748.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018;24:731738.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Taraseviciute A, Tkachev V, Ponce R, et al. Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates. Cancer Discov 2018;8:750763.

  • 68.

    Jacobson CA, Hunter BD, Redd R, et al. Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity. J Clin Oncol 2020;38:30953106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J Clin Oncol 2020;38: 31193128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015;385:517528.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 2017;35:30103020.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Prescribing Information. Tocilizumab injection, for intravenous or subcutaneous use. Genentech, Inc; 2021. Accessed January 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125472s044lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018;23: 943947.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188195.

  • 75.

    Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 2018;15:4762.

  • 76.

    Topp MS, van Meerten T, Houot R, et al. Earlier corticosteroid use for adverse event management in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol 2021;195: 388398.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Prescribing Information. Siltuximab for injection, for intravenous use. EUSA Pharma (UK), Ltd.; 2019. Accessed January 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125496s000lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Chen F, Teachey DT, Pequignot E, et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods 2016;434:18.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Frey NV, Levine BL, Lacey SF, et al. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. Blood 2014;124:22962296.

  • 80.

    Prescribing Information. Anakinra injection, for subcutaneous use. Swedish Orphan Biovitrum AB; 2020. Accessed January 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/103950s5189lbl.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Jatiani SS, Aleman A, Madduri D, et al. Myeloma CAR-T CRS management with IL-1R antagonist anakinra. Clin Lymphoma Myeloma Leuk 2020;20:632636.e1.

  • 82.

    Strati P, Ahmed S, Kebriaei P, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv 2020;4:31233127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25.

  • 84.

    Oluwole OFE, Munoz J, et al. Prophylactic corticosteroid use with axicabtagene ciloleucel (Axi-Cel) in patients (Pts) with relapsed/refractory large B-cell lymphoma (R/R LBCL): one-year follow-up of ZUMA-1 cohort 6 (C6) [abstract]. Presented at the American Society of Hematology Annual Meeting 2021. Abstract 2832.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Oluwole OO, Bouabdallah K, Muñoz J, et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol 2021;194:690700.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Maus MV, Alexander S, Bishop MR, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J Immunother Cancer 2020;8:e001511.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Pan J, Deng B, Ling Z, et al. Ruxolitinib mitigates steroid-refractory CRS during CAR T therapy. J Cell Mol Med 2021;25:10891099.

  • 88.

    Kenderian SS, Ruella M, Shestova O, et al. Ruxolitinib prevents cytokine release syndrome after Car T-cell therapy without impairing the anti-tumor effect in a xenograft model. Biol Blood Marrow Transplant 2017;23:S19S20.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Wei S, Gu R, Xu Y, et al. Adjuvant ruxolitinib therapy relieves steroid-refractory cytokine-release syndrome without impairing chimeric antigen receptor-modified T-cell function. Immunotherapy 2020;12:10471052.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Constantinescu C, Pasca S, Tat T, et al. Continuous renal replacement therapy in cytokine release syndrome following immunotherapy or cellular therapies? J Immunother Cancer 2020;8:e000742.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Liu Y, Chen X, Wang D, et al. Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-cell therapy. J Immunother 2018;41:406410.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Xiao X, He X, Li Q, et al. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report. Clin Cancer Res 2019;25:2934.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Roche. Roche statement on global supply constraints of Actemra/RoActemra: Roche; 2021. Available at: https://www.roche.com/dam/jcr:a42a1844-a83e-470d-bebb-9badc8344d89/en/20210816_Roche_statement_global_Actemra_supply.pdf.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018;8:958971.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Nellan A, McCully CML, Cruz Garcia R, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood 2018;132:662666.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Gardner RA, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 2019;134:21492158.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Gust J, Ceppi F, Turtle CJ. Neurotoxicities after CAR T-cell immunotherapy. In: Lee DW, Shah NN, eds. Chimeric Antigen Receptor T-Cell Therapies for Cancer. Elsevier; 2020: 83105.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood 2019;133:22122221.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021;398:314324.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Titov A, Petukhov A, Staliarova A, et al. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death Dis 2018;9:897.

  • 101.

    Rice J, Nagle S, Randall J, et al. Chimeric antigen receptor T cell-related neurotoxicity: mechanisms, clinical presentation, and approach to treatment. Curr Treat Options Neurol 2019;21:40.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Rubin DB, Al Jarrah A, Li K, et al. Clinical predictors of neurotoxicity after chimeric antigen receptor T-cell therapy. JAMA Neurol 2020;77:15361542.

  • 103.

    Santomasso BD, Nastoupil LJ, Adkins S, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO Guideline. J Clin Oncol 2021;39:39783992.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Henter JI, Horne A, Aricó M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007;48:124131.

  • 105.

    Ramos-Casals M, Brito-Zerón P, López-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet 2014;383:15031516.

  • 106.

    Ceppi F, Summers C, Gardner RA, Hematologic and non-CRS toxicities. In: Lee DW, Shah NN, eds. Chimeric Antigen Receptor T-Cell Therapies for Cancer. Elsevier; 2020: 107112.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Sandler RD, Tattersall RS, Schoemans H, et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR-T cell therapy in adults; a review of the literature and a survey of practice within EBMT centres on behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP). Front Immunol 2020;11:524.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Teachey DT, Bishop MR, Maloney DG, et al. Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’. Nat Rev Clin Oncol 2018;15:218.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371: 15071517.

  • 110.

    Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015;7:303ra139.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Jordan MB, Allen CE, Weitzman S, et al. How I treat hemophagocytic lymphohistiocytosis. Blood 2011;118:40414052.

  • 112.

    Tamamyan GN, Kantarjian HM, Ning J, et al. Malignancy-associated hemophagocytic lymphohistiocytosis in adults: Relation to hemophagocytosis, characteristics, and outcomes. Cancer 2016;122:28572866.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol 2020;38:19381950.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Major A, Collins J, Craney C, et al. Management of hemophagocytic lymphohistiocytosis (HLH) associated with chimeric antigen receptor T-cell (CAR-T) therapy using anti-cytokine therapy: an illustrative case and review of the literature. Leuk Lymphoma 2021;62: 17651769.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Schram AM, Berliner N. How I treat hemophagocytic lymphohistiocytosis in the adult patient. Blood 2015;125:29082914.

  • 116.

    NCI Dictionary of Cancer Terms. Accessed January 19, 2022. Available at: https://www.cancer.gov/publications/dictionaries/cancer-terms

    • PubMed
    • Export Citation
  • 117.

    Doan A, Pulsipher MA. Hypogammaglobulinemia due to CAR T-cell therapy. Pediatr Blood Cancer 2018;65:65.

  • 118.

    Garcia-Lloret M, McGhee S, Chatila TA. Immunoglobulin replacement therapy in children. Immunol Allergy Clin North Am 2008;28:833849., ix.

  • 119.

    Jain T, Knezevic A, Pennisi M, et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv 2020;4:37763787.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Fried S, Avigdor A, Bielorai B, et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant 2019;54: 16431650.

  • 121.

    Logue JM, Zucchetti E, Bachmeier CA, et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica 2021;106:978986.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Nahas GR, Komanduri KV, Pereira D, et al. Incidence and risk factors associated with a syndrome of persistent cytopenias after CAR-T cell therapy (PCTT). Leuk Lymphoma 2020;61:940943.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Schaefer A, Saygin C, Maakaron J, et al. Cytopenias after chimeric antigen receptor T-cells (CAR-T) infusion; patterns and outcomes. Biol Blood Marrow Transplant 2019;25:S171.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Hill JA, Li D, Hay KA, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 2018;131:121130.

  • 125.

    Park JH, Romero FA, Taur Y, et al. Cytokine release syndrome grade as a predictive marker for infections in patients with relapsed or refractory B-cell acute lymphoblastic leukemia treated with chimeric antigen receptor T cells. Clin Infect Dis 2018;67:533540.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Gill S, Brudno JN. CAR T-cell therapy in hematologic malignancies: clinical role, toxicity, and unanswered questions. Am Soc Clin Oncol Educ Book 2021;41:120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol 2019;20:3142.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Cappell KM, Sherry RM, Yang JC, et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J Clin Oncol 2020;38:38053815.

  • 129.

    Hill JA, Seo SK. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 2020;136:925935.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28613 12481 1096
PDF Downloads 26019 12068 1245
EPUB Downloads 0 0 0