Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology

Authors:
Patrick A. Brown The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;

Search for other papers by Patrick A. Brown in
Current site
Google Scholar
PubMed
Close
 MD
,
Bijal Shah Moffitt Cancer Center;

Search for other papers by Bijal Shah in
Current site
Google Scholar
PubMed
Close
 MD
,
Anjali Advani Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;

Search for other papers by Anjali Advani in
Current site
Google Scholar
PubMed
Close
 MD
,
Patricia Aoun City of Hope National Medical Center;

Search for other papers by Patricia Aoun in
Current site
Google Scholar
PubMed
Close
 MD, MPH
,
Michael W. Boyer Huntsman Cancer Institute at the University of Utah;

Search for other papers by Michael W. Boyer in
Current site
Google Scholar
PubMed
Close
 MD
,
Patrick W. Burke University of Michigan Rogel Cancer Center;

Search for other papers by Patrick W. Burke in
Current site
Google Scholar
PubMed
Close
 MD
,
Daniel J. DeAngelo Dana-Farber/Brigham and Women’s Cancer Center;

Search for other papers by Daniel J. DeAngelo in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Shira Dinner Robert H. Lurie Comprehensive Cancer Center of Northwestern University;

Search for other papers by Shira Dinner in
Current site
Google Scholar
PubMed
Close
 MD
,
Amir T. Fathi Massachusetts General Hospital Cancer Center;

Search for other papers by Amir T. Fathi in
Current site
Google Scholar
PubMed
Close
 MD
,
Jordan Gauthier Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;

Search for other papers by Jordan Gauthier in
Current site
Google Scholar
PubMed
Close
 MD, MSc
,
Nitin Jain The University of Texas MD Anderson Cancer Center;

Search for other papers by Nitin Jain in
Current site
Google Scholar
PubMed
Close
 MD
,
Suzanne Kirby Duke Cancer Institute;

Search for other papers by Suzanne Kirby in
Current site
Google Scholar
PubMed
Close
 MD
,
Michaela Liedtke Stanford Cancer Institute;

Search for other papers by Michaela Liedtke in
Current site
Google Scholar
PubMed
Close
 MD
,
Mark Litzow Mayo Clinic Cancer Center;

Search for other papers by Mark Litzow in
Current site
Google Scholar
PubMed
Close
 MD
,
Aaron Logan UCSF Helen Diller Family Comprehensive Cancer Center;

Search for other papers by Aaron Logan in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Selina Luger Abramson Cancer Center at the University of Pennsylvania;

Search for other papers by Selina Luger in
Current site
Google Scholar
PubMed
Close
 MD
,
Lori J. Maness Fred & Pamela Buffett Cancer Center;

Search for other papers by Lori J. Maness in
Current site
Google Scholar
PubMed
Close
 MD
,
Stephanie Massaro Yale Cancer Center/Smilow Cancer Hospital;

Search for other papers by Stephanie Massaro in
Current site
Google Scholar
PubMed
Close
 MD, MPH
,
Ryan J. Mattison University of Wisconsin Carbone Cancer Center;

Search for other papers by Ryan J. Mattison in
Current site
Google Scholar
PubMed
Close
 MD
,
William May UCLA Jonsson Comprehensive Cancer Center;

Search for other papers by William May in
Current site
Google Scholar
PubMed
Close
 MD
,
Olalekan Oluwole Vanderbilt-Ingram Cancer Center;

Search for other papers by Olalekan Oluwole in
Current site
Google Scholar
PubMed
Close
 MD
,
Jae Park Memorial Sloan Kettering Cancer Center;

Search for other papers by Jae Park in
Current site
Google Scholar
PubMed
Close
 MD
,
Amanda Przespolewski Roswell Park Comprehensive Cancer Center;

Search for other papers by Amanda Przespolewski in
Current site
Google Scholar
PubMed
Close
 DO
,
Sravanti Rangaraju O'Neal Comprehensive Cancer Center at UAB;

Search for other papers by Sravanti Rangaraju in
Current site
Google Scholar
PubMed
Close
 MD
,
Jeffrey E. Rubnitz St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center;

Search for other papers by Jeffrey E. Rubnitz in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Geoffrey L. Uy Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;

Search for other papers by Geoffrey L. Uy in
Current site
Google Scholar
PubMed
Close
 MD
,
Madhuri Vusirikala UT Southwestern Simmons Comprehensive Cancer Center;

Search for other papers by Madhuri Vusirikala in
Current site
Google Scholar
PubMed
Close
 MD
,
Matthew Wieduwilt UC San Diego Moores Cancer Center; and

Search for other papers by Matthew Wieduwilt in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Beth Lynn National Comprehensive Cancer Network.

Search for other papers by Beth Lynn in
Current site
Google Scholar
PubMed
Close
 RN, BS, CMSRN
,
Ryan A. Berardi National Comprehensive Cancer Network.

Search for other papers by Ryan A. Berardi in
Current site
Google Scholar
PubMed
Close
 MSc
,
Deborah A. Freedman-Cass National Comprehensive Cancer Network.

Search for other papers by Deborah A. Freedman-Cass in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Mallory Campbell National Comprehensive Cancer Network.

Search for other papers by Mallory Campbell in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

The NCCN Guidelines for Acute Lymphoblastic Leukemia (ALL) focus on the classification of ALL subtypes based on immunophenotype and cytogenetic/molecular markers; risk assessment and stratification for risk-adapted therapy; treatment strategies for Philadelphia chromosome (Ph)-positive and Ph-negative ALL for both adolescent and young adult and adult patients; and supportive care considerations. Given the complexity of ALL treatment regimens and the required supportive care measures, the NCCN ALL Panel recommends that patients be treated at a specialized cancer center with expertise in the management of ALL This portion of the Guidelines focuses on the management of Ph-positive and Ph-negative ALL in adolescents and young adults, and management in relapsed settings.

Individual Disclosures for the NCCN Acute Lymphoblastic Leukemia Panel

T1

  • Collapse
  • Expand
  • 1.

    Jabbour EJ, Faderl S, Kantarjian HM. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2005;80:15171527.

  • 2.

    Howlader NNA, Krapcho M, Miller D, et al. SEER Cancer Statistics Review 1975-2018. Bethesda, MD: National Cancer Institute; 2021.

  • 3.

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin 2021;71:733.

  • 4.

    Esparza SD, Sakamoto KM. Topics in pediatric leukemia--acute lymphoblastic leukemia. MedGenMed 2005;7:23.

  • 5.

    Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol 2001;2:429436.

  • 6.

    Whitlock JA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol 2006;135:595602.

  • 7.

    Swaminathan M, Bannon SA, Routbort M, et al. Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb Mol Case Stud 2019;5: a003210.

  • 8.

    Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer 1994;70:969972.

  • 9.

    Shaw MP, Eden OB, Grace E, et al. Acute lymphoblastic leukemia and Klinefelter’s syndrome. Pediatr Hematol Oncol 1992;9:8185.

  • 10.

    Gürgey A, Kara A, Tuncer M, et al. Acute lymphoblastic leukemia associated with Klinefelter syndrome. Pediatr Hematol Oncol 1994;11:227229.

  • 11.

    Machatschek JN, Schrauder A, Helm F, et al. Acute lymphoblastic leukemia and Klinefelter syndrome in children: two cases and review of the literature. Pediatr Hematol Oncol 2004;21:621626.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Flatt T, Neville K, Lewing K, et al. Successful treatment of fanconi anemia and T-cell acute lymphoblastic leukemia. Case Rep Hematol 2012;2012:396395.

  • 13.

    Yetgin S, Tuncer M, Güler E, et al. Acute lymphoblastic leukemia in Fanconi’s anemia. Am J Hematol 1994;45:94.

  • 14.

    Strevens MJ, Lilleyman JS, Williams RB. Shwachman’s syndrome and acute lymphoblastic leukaemia. BMJ 1978;2:18.

  • 15.

    Woods WG, Roloff JS, Lukens JN, et al. The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr 1981;99:425428.

  • 16.

    Passarge E. Bloom’s syndrome: the German experience. Ann Genet 1991;34:179197.

  • 17.

    Taylor AM, Metcalfe JA, Thick J, et al. Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87:423438.

  • 18.

    Ma H, Sun H, Sun X. Survival improvement by decade of patients aged 0-14 years with acute lymphoblastic leukemia: a SEER analysis. Sci Rep 2014;4:4227.

  • 19.

    Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood 2009;113:14081411.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer 2004;101:27882801.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pulte D, Jansen L, Gondos A, et al. Survival of adults with acute lymphoblastic leukemia in Germany and the United States. PLoS One 2014;9:e85554.

  • 22.

    Sive JI, Buck G, Fielding A, et al. Outcomes in older adults with acute lymphoblastic leukaemia (ALL): results from the international MRC UKALL XII/ECOG2993 trial. Br J Haematol 2012;157:463471.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Geyer MB, Hsu M, Devlin SM, et al. Overall survival among older US adults with ALL remains low despite modest improvement since 1980: SEER analysis. Blood 2017;129:18781881.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wermann WK, Viardot A, Kayser S, et al. Comorbidities are frequent in older patients with de novo acute lymphoblastic leukemia (ALL) and correlate with induction mortality: analysis of more than 1200 patients from GMALL data bases. Blood 2018;132(Supplement 1):660.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Stock W. Adolescents and young adults with acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2010;2010: 2129.

  • 26.

    Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 2017;130:20642072.

  • 27.

    Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:1824.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Schultz KR, Pullen DJ, Sather HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 2007;109:926935.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brown P, Pieters R, Biondi A. How I treat infant leukemia. Blood 2019;133:205214.

  • 30.

    Hunger SP, Loh ML, Whitlock JA, et al. Children’s Oncology Group’s 2013 blueprint for research: acute lymphoblastic leukemia. Pediatr Blood Cancer 2013;60:957963.

  • 31.

    Gadner H, Masera G, Schrappe M, et al. The Eighth International Childhood Acute Lymphoblastic Leukemia Workshop (‘Ponte di legno meeting’) report: Vienna, Austria, April 27-28, 2005. Leukemia 2006;20: 917.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood 2017;129:33523361.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996;87:28702877.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003;17:700706.

  • 35.

    Donadieu J, Auclerc MF, Baruchel A, et al. Prognostic study of continuous variables (white blood cell count, peripheral blast cell count, haemoglobin level, platelet count and age) in childhood acute lymphoblastic leukaemia. Analysis of a population of 1545 children treated by the French Acute Lymphoblastic Leukaemia Group (FRALLE). Br J Cancer 2000;83:16171622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Romana SP, Mauchauffé M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995;85:36623670.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia 2005;19:734740.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Seibel NL. Treatment of acute lymphoblastic leukemia in children and adolescents: peaks and pitfalls. Hematology (Am Soc Hematol Educ Program) 2008;2008:374380.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Boissel N, Auclerc M-F, Lhéritier V, et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol 2003;21:774780.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ramanujachar R, Richards S, Hann I, et al. Adolescents with acute lymphoblastic leukaemia: outcome on UK national paediatric (ALL97) and adult (UKALLXII/E2993) trials. Pediatr Blood Cancer 2007;48:254261.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Zhang MJ, Hoelzer D, Horowitz MM, et al. Long-term follow-up of adults with acute lymphoblastic leukemia in first remission treated with chemotherapy or bone marrow transplantation. Ann Intern Med 1995;123:428431.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Thomas X, Boiron JM, Huguet F, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 2004;22:40754086.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood 2008;111:18271833.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Vey N, Thomas X, Picard C, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2A-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia 2006;20:21552161.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Thiebaut A, Vernant JP, Degos L, et al. Adult acute lymphocytic leukemia study testing chemotherapy and autologous and allogeneic transplantation. A follow-up report of the French protocol LALA 87. Hematol Oncol Clin North Am 2000;14:13531366., x.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Nachman J. Clinical characteristics, biologic features and outcome for young adult patients with acute lymphoblastic leukaemia. Br J Haematol 2005;130:166173.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Aguiar RC, Sohal J, van Rhee F, et al. TEL-AML1 fusion in acute lymphoblastic leukaemia of adults. Br J Haematol 1996;95:673677.

  • 48.

    Secker-Walker LM, Craig JM, Hawkins JM, et al. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia 1991;5:196199.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147156.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Neumann M, Heesch S, Gökbuget N, et al. Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations. Blood Cancer J 2012;2:e55.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pieters R, Kaspers GJ, Klumper E, et al. Clinical relevance of in vitro drug resistance testing in childhood acute lymphoblastic leukemia: the state of the art. Med Pediatr Oncol 1994;22:299308.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Raetz EA, Devidas M, Carroll AJ, et al. Cytogenetic and early-response characteristics of adolescents and young adults with acute lymphoblastic leukemia (ALL): a Children’s Oncology Group (COG) study [abstract]. J Clin Oncol 2010;28(15_suppl): Abstract 9509.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bleyer A, Budd T, Montello M. Adolescents and young adults with cancer: the scope of the problem and criticality of clinical trials. Cancer 2006; 107(7, Suppl)16451655.

  • 54.

    Fern LA, Whelan JS. Recruitment of adolescents and young adults to cancer clinical trials--international comparisons, barriers, and implications. Semin Oncol 2010;37:e1e8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Schmiegelow K, Heyman M, Gustafsson G, et al. The degree of myelosuppression during maintenance therapy of adolescents with B-lineage intermediate risk acute lymphoblastic leukemia predicts risk of relapse. Leukemia 2010;24:715720.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Martin S, Ulrich C, Munsell M, et al. Delays in cancer diagnosis in underinsured young adults and older adolescents. Oncologist 2007;12:816824.

  • 57.

    Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 2011;29:532543.

  • 58.

    Gökbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2006;2006:133141.

  • 59.

    Hoelzer D, Thiel E, Löffler H, et al. Intensified therapy in acute lymphoblastic and acute undifferentiated leukemia in adults. Blood 1984;64:3847.

  • 60.

    Hoelzer D, Thiel E, Löffler H, et al. Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood 1988;71:123131.

  • 61.

    Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 2005;106:37603767.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Moorman AV, Harrison CJ, Buck GAN, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007;109:31893197.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Charrin C, Thomas X, Ffrench M, et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood 2004;104:24442451.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood 2008;111:25632572.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med 2004;350:15351548.

  • 66.

    Stock W, La M, Sanford B, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood 2008;112:16461654.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Aricò M, Schrappe M, Hunger SP, et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 2010;28:47554761.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 2009;27:51755181.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Schultz KR, Carroll A, Heerema NA, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 2014;28:14671471.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Slayton WB, Schultz KR, Kairalla JA, et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622. J Clin Oncol 2018;36:23062314.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Biondi A, Schrappe M, De Lorenzo P, et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012;13:936945.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Biondi A, Gandemer V, De Lorenzo P, et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol 2018;5:e641e652.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Hunger SP, Saha V, Devidas M, et al. CA180-372: an international collaborative phase 2 trial of dasatinib and chemotherapy in pediatric patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2017;130(Suppl_1):98.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Foà R, Bassan R, Vitale A, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med 2020;383:16131623.

  • 75.

    Assi R, Kantarjian H, Short NJ, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk 2017;17:897901.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Couturier MA, Thomas X, Raffoux E, et al. Blinatumomab + ponatinib for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia in adults. Leuk Lymphoma 2021;62:620629.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    King AC, Pappacena JJ, Tallman MS, et al. Blinatumomab administered concurrently with oral tyrosine kinase inhibitor therapy is a well-tolerated consolidation strategy and eradicates measurable residual disease in adults with Philadelphia chromosome positive acute lymphoblastic leukemia. Leuk Res 2019;79:2733.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Short N, Kantarjian HM, Konopleva M, et al. Combination of ponatinib and blinatumomab in Philadelphia chromosome-positive acute lymphoblastic leukemia: early results from a phase II study [Abstract]. J Clin Oncol 2021;39(Suppl_15): Abstract 7001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Thomas DA, O’Brien SM, Faderl S, et al. Long-term outcome after hyper-CVAD and imatinib (IM) for de novo or minimally treated Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL). J Clin Oncol 2010;28(15_suppl):6506.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Ravandi F, O’Brien S, Thomas D, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood 2010;116:20702077.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol 2015;16:15471555.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol 2018;5:e618e627.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    de Labarthe A, Rousselot P, Huguet-Rigal F, et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood 2007;109:14081413.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Tanguy-Schmidt A, Rousselot P, Chalandon Y, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant 2013;19:150155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol 2010;28:36443652.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Mizuta S, Matsuo K, Yagasaki F, et al. Pre-transplant imatinib-based therapy improves the outcome of allogeneic hematopoietic stem cell transplantation for BCR-ABL-positive acute lymphoblastic leukemia. Leukemia 2011;25:4147.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol 2006;24:460466.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Kim DY, Joo YD, Lim SN, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood 2015;126:746756.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Wieduwilt MJ, Yin J, Wetzler M, et al. A phase II study of dasatinib and dexamethasone as primary therapy followed by transplantation for adults with newly diagnosed Ph/BCR-ABL1-positive acute lymphoblastic leukemia (Ph+ ALL): final results of Alliance/CALGB Study 10701. Blood 2018;132(Supplement 1):309.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood 2007;109:944950.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Oriol A, Vives S, Hernández-Rivas JM, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica 2010;95:589596.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Tavernier E, Boiron JM, Huguet F, et al. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia 2007;21:19071914.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Thomas DA, Kantarjian H, Smith TL, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer 1999;86:12161230.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Ishida Y, Terasako K, Oshima K, et al. Dasatinib followed by second allogeneic hematopoietic stem cell transplantation for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia after the first transplantation. Int J Hematol 2010;92:542546.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Millot F, Cividin M, Brizard F, et al. Successful second allogeneic stem cell transplantation in second remission induced by dasatinib in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer 2009;52:891892.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Collins RH, Jr., Goldstein S, Giralt S, et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000;26:511516.

  • 97.

    Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995;86:20412050.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Keil F, Kalhs P, Haas OA, et al. Relapse of Philadelphia chromosome positive acute lymphoblastic leukaemia after marrow transplantation: sustained molecular remission after early and dose-escalating infusion of donor leucocytes. Br J Haematol 1997;97:161164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Matsue K, Tabayashi T, Yamada K, et al. Eradication of residual bcr-abl-positive clones by inducing graft-versus-host disease after allogeneic stem cell transplantation in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant 2002;29:6366.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Yazaki M, Andoh M, Ito T, et al. Successful prevention of hematological relapse for a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic bone marrow transplantation by donor leukocyte infusion. Bone Marrow Transplant 1997;19:393394.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Tiribelli M, Sperotto A, Candoni A, et al. Nilotinib and donor lymphocyte infusion in the treatment of Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) relapsing after allogeneic stem cell transplantation and resistant to imatinib. Leuk Res 2009;33:174177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Yoshimitsu M, Fujiwara H, Ozaki A, et al. Case of a patient with Philadelphia-chromosome-positive acute lymphoblastic leukemia relapsed after myeloablative allogeneic hematopoietic stem cell transplantation treated successfully with imatinib and sequential donor lymphocyte infusions. Int J Hematol 2008;88:331335.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002;99:34723475.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Hu Y, Liu Y, Pelletier S, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004;36:453461.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 2006;12:73747379.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Hofmann WK, Jones LC, Lemp NA, et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood 2002;99:18601862.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Jones D, Thomas D, Yin CC, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer 2008;113:985994.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Hofmann WK, Komor M, Wassmann B, et al. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood 2003;102:659661.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2007;110:727734.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Bujassoum S, Rifkind J, Lipton JH. Isolated central nervous system relapse in lymphoid blast crisis chronic myeloid leukemia and acute lymphoblastic leukemia in patients on imatinib therapy. Leuk Lymphoma 2004;45:401403.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Leis JF, Stepan DE, Curtin PT, et al. Central nervous system failure in patients with chronic myelogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571). Leuk Lymphoma 2004;45:695698.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Pfeifer H, Wassmann B, Hofmann WK, et al. Risk and prognosis of central nervous system leukemia in patients with Philadelphia chromosome-positive acute leukemias treated with imatinib mesylate. Clin Cancer Res 2003;9:46744681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Takayama N, Sato N, O’Brien SG, et al. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol 2002;119:106108.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Redaelli S, Piazza R, Rostagno R, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol 2009;27:469471.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004;305:399401.

  • 116.

    Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006;354:25312541.

  • 117.

    Verstovsek S, Golemovic M, Kantarjian H, et al. AMN107, a novel aminopyrimidine inhibitor of p190 Bcr-Abl activation and of in vitro proliferation of Philadelphia-positive acute lymphoblastic leukemia cells. Cancer 2005;104:12301236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006;354:25422551.

  • 119.

    Lilly MB, Ottmann OG, Shah NP, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: results from a phase 3 study. Am J Hematol 2010;85:164170.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Ottmann OG, Larson RA, Kantarjian HM, et al. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome--positive acute lymphoblastic leukemia. Leukemia 2013;27:14111413.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol 2014;89:282287.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Cortes JE, Kantarjian HM, Brümmendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 2011;118:45674576.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Khoury HJ, Cortes JE, Kantarjian HM, et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood 2012;119:34033412.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Gambacorti-Passerini C, Kantarjian HM, Kim DW, et al. Long-term efficacy and safety of bosutinib in patients with advanced leukemia following resistance/intolerance to imatinib and other tyrosine kinase inhibitors. Am J Hematol 2015;90:755768.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Kantarjian HM, Cortes JE, Kim DW, et al. Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors. Blood 2014;123:13091318.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 2012;367:20752088.

  • 127.

    Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013;369:17831796.

  • 128.

    Soverini S, Colarossi S, Gnani A, et al. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 2007;92:401404.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Soverini S, Martinelli G, Colarossi S, et al. Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to dasatinib in Philadelphia chromosome-positive leukemia. J Clin Oncol 2006;24:e51e52.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011;118:12081215.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Martinelli G, Boissel N, Chevallier P, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol 2017;35:17951802.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Kantarjian H, Thomas D, Jorgensen J, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012;13:403411.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016;375:740753.

  • 134.

    Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:15091518.

  • 135.

    Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003;3:3545.

  • 136.

    de Bont JM, Holt B, Dekker AW, et al. Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs adult protocols in the Netherlands. Leukemia 2004;18:20322035.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Hallböök H, Gustafsson G, Smedmyr B, et al. Treatment outcome in young adults and children >10 years of age with acute lymphoblastic leukemia in Sweden: a comparison between a pediatric protocol and an adult protocol. Cancer 2006;107:15511561.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Ribera JM, Oriol A, Bethencourt C, et al. Comparison of intensive chemotherapy, allogeneic or autologous stem cell transplantation as post-remission treatment for adult patients with high-risk acute lymphoblastic leukemia. Results of the PETHEMA ALL-93 trial. Haematologica 2005;90:13461356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Cornelissen JJ, van der Holt B, Verhoef GE, et al. Myeloablative allogeneic versus autologous stem cell transplantation in adult patients with acute lymphoblastic leukemia in first remission: a prospective sibling donor versus no-donor comparison. Blood 2009;113:13751382.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Marks DI, Pérez WS, He W, et al. Unrelated donor transplants in adults with Philadelphia-negative acute lymphoblastic leukemia in first complete remission. Blood 2008;112:426434.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Marks DI, Wang T, Pérez WS, et al. The outcome of full-intensity and reduced-intensity conditioning matched sibling or unrelated donor transplantation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first and second complete remission. Blood 2010;116:366374.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Ram R, Gafter-Gvili A, Vidal L, et al. Management of adult patients with acute lymphoblastic leukemia in first complete remission: systematic review and meta-analysis. Cancer 2010;116:34473457.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Yanada M, Matsuo K, Suzuki T, et al. Allogeneic hematopoietic stem cell transplantation as part of postremission therapy improves survival for adult patients with high-risk acute lymphoblastic leukemia: a metaanalysis. Cancer 2006;106:26572663.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Barry E, DeAngelo DJ, Neuberg D, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J Clin Oncol 2007;25:813819.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Seibel NL, Steinherz PG, Sather HN, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 2008;111:25482555.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Nachman JB, La MK, Hunger SP, et al. Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment: a report from the children’s oncology group. J Clin Oncol 2009;27:51895194.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group Study AALL0232. J Clin Oncol 2016;34:23802388.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Ribera JM, Oriol A, Sanz MA, et al. Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Español de Tratamiento en Hematología pediatric-based protocol ALL-96. J Clin Oncol 2008;26:18431849.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    DeAngelo DJ, Dahlberg S, Silverman LB, et al. A multicenter phase II study using a dose intensified pediatric regimen in adults with untreated acute lymphoblastic leukemia [abstract]. Blood 2007;110: Abstract 587.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    DeAngelo DJ, Stevenson KE, Dahlberg SE, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia 2015;29:526534.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    DeAngelo DJ, Stevenson K, Neuberg DS, et al. A multicenter phase II study using a dose intensified pegylated-asparaginase pediatric regimen in adults with untreated acute lymphoblastic leukemia: a DFCI ALL Consortium Trial. Blood 2015;126:8080.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol 2009;27:911918; erratum in: J Clin Oncol 2009;27:2574.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Maury S, Chevret S, Thomas X, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 2016;375:10441053.

  • 154.

    Douer D, Aldoss I, Lunning MA, et al. Pharmacokinetics-based integration of multiple doses of intravenous pegaspargase in a pediatric regimen for adults with newly diagnosed acute lymphoblastic leukemia. J Clin Oncol 2014;32:905911.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Geyer MB, Ritchie EK, Rao AV, et al. Pediatric-inspired chemotherapy incorporating pegaspargase is safe and results in high rates of minimal residual disease negativity in adults up to age 60 with Philadelphia chromosome-negative acute lymphoblastic leukemia. Haematologica 2020;106:20862094.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood 2019;133:15481559.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Winter SS, Dunsmore KP, Devidas M, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer 2015;62:11761183.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Dunsmore KP, Winter S, Devidas M, et al. COG AALL0434: a randomized trial testing nelarabine in newly diagnosed t-cell malignancy. J Clin Oncol 2018;36(15_suppl):1050010500.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 Methotrexate Randomization. J Clin Oncol 2018;36:29262934.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Jain P, Kantarjian H, Ravandi F, et al. The combination of hyper-CVAD plus nelarabine as frontline therapy in adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma: MD Anderson Cancer Center experience. Leukemia 2014;28:973975.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Abaza Y, Kantarjian HM, Faderl S, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol 2018;93:9199.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    O’Brien S, Thomas DA, Ravandi F, et al. Results of the hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimen in elderly patients with acute lymphocytic leukemia. Cancer 2008;113:20972101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Maury S, Huguet F, Leguay T, et al. Adverse prognostic significance of CD20 expression in adults with Philadelphia chromosome-negative B-cell precursor acute lymphoblastic leukemia. Haematologica 2010;95:324328.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Thomas DA, O’Brien S, Jorgensen JL, et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood 2009;113:63306337.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Thomas DA, O’Brien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol 2010;28:38803889.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Thomas D, O’Brien S, Faderl S, et al. Anthracycline dose intensification in adult acute lymphoblastic leukemia: lack of benefit in the context of the fractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimen. Cancer 2010;116:45804589.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Linker C, Damon L, Ries C, et al. Intensified and shortened cyclical chemotherapy for adult acute lymphoblastic leukemia. J Clin Oncol 2002;20:24642471.

  • 168.

    Topp MS, Kufer P, Gökbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:24932498.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Topp MS, Gökbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012;120:51855187.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Gökbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018;131:15221531.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017;376:836847.

  • 172.

    Topp MS, Gökbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015;16:5766.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Topp MS, Gökbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32:41344140.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Nguyen K, Devidas M, Cheng SC, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia 2008;22:21422150.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med 1998;339:605615.

  • 176.

    Pui CH, Pei D, Sandlund JT, et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371382.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Berg SL, Blaney SM, Devidas M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 2005;23:33763382.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Einsiedel HG, von Stackelberg A, Hartmann R, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Münster Group 87. J Clin Oncol 2005;23:79427950.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010;28:23392347.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Malempati S, Gaynon PS, Sather H, et al. Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children’s Oncology Group study CCG-1952. J Clin Oncol 2007;25:58005807.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood 2009;113:44894496.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Hahn T, Wall D, Camitta B, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in adults: an evidence-based review. Biol Blood Marrow Transplant 2006;12:130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Eapen M, Raetz E, Zhang MJ, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 2006;107:49614967.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol 2010;28:37303738.

  • 185.

    Cassaday RD, Alan Potts D, Jr., Stevenson PA, et al. Evaluation of allogeneic transplantation in first or later minimal residual disease - negative remission following adult-inspired therapy for acute lymphoblastic leukemia. Leuk Lymphoma 2016;57:21092118.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Topp MS, Goekbuget N, Zugmaier G, et al. Anti-CD19 BiTE blinatumomab induces high complete remission rate in adult patients with relapsed B-precursor ALL: Updated results of an ongoing phase II trial [abstract]. Blood 2011;118: Abstract 252.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Topp MS, Goekbuget N, Stein AS, et al. Confirmatory open-label, single-arm, multicenter phase 2 study of the BiTE antibody blinatumomab in patients (pts) with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL) [abstract]. J Clin Oncol 2014;32(15_suppl): Abstract 7005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    U.S. Food and Drug Administration. Prescribing information. Blincyto® (blinatumomab) injection. 2014. Accessed September 29, 2016. Available at:

  • 189.

    Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol 2018;4:230234.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Jabbour E, Sasaki K, Ravandi F, et al. Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia in first salvage. Cancer 2018;124:40444055.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177ra38.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012;119:27092720.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Hollyman D, Stefanski J, Przybylowski M, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32:169180.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25.

  • 195.

    Gökbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood 2012;120:20322041.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 196.

    O’Brien S, Schiller G, Lister J, et al. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol 2013;31:676683.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378:449459.

  • 198.

    Shah NN, Lee DW, Yates B, et al. Long-Term Follow-Up of CD19-CAR T-Cell therapy in children and young adults with B-ALL. J Clin Oncol 2021;39:16501659.

  • 199.

    Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021;S0140-6736(21)01222-8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Grupp SA, Frey NV, Aplenc R, et al. T Cells engineered with a chimeric antigen receptor (CAR) targeting CD19 (CTL019) produce significant in vivo proliferation, complete responses and long-term persistence without GVHD in children and adults with relapsed, refractory ALL [abstract]. Blood 2013;122: Abstract 67.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439448.

  • 202.

    Pasquini MC, Hu ZH, Curran K, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv 2020;4:54145424.

    • Crossref
    • PubMed