The Microbiome Colorectal Cancer Puzzle: Initiator, Propagator, and Avenue for Treatment and Research

Authors: Reece J. Knippel PhD1 and Cynthia L. Sears MD1,2,3
View More View Less
  • 1 Division of Infectious Diseases,
  • | 2 Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
  • | 3 Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Restricted access

The human gut microbiome has an ever-increasing role in the instigation and progression of colorectal cancer (CRC). Recent investigations have focused on identifying the key causative bacterial species and the composition and structure of the microbiome as a whole that ultimately lead to tumorigenesis in the colon. Understanding the bacterial mechanisms that promote CRC provides a rich area for the development of new screening modalities and therapeutics that may improve patient outcomes. This article reviews the various mechanisms that bacteria in the gut use to induce and/or promote tumor formation, discusses the application of the microbiome in the prevention and therapy of CRC, and provides directions for future research endeavors aiming to develop a more complete understanding of this complex phenomenon.

Submitted November 3, 2020; final revision received May 6, 2021; accepted for publication May 19, 2021.

Disclosures: Dr. Knippel has disclosed having no financial interests, arrangements, affiliations, or commercial interests with the manufacturers of any products discussed in this article or their competitors. Dr. Sears has disclosed receiving grant support from Bristol Myers Squibb and Janssen.

Funding: Research reported in this publication was supported by the NIH under award number R01 CA196845, Bloomberg Philanthropies (C.L. Sears), and the Cancer Research UK’s Grand Challenge Initiative C10674/A27140 (C.L. Sears).

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Correspondence: Cynthia L. Sears, MD, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB2 Building, Suite 1M.05, Baltimore, MD 21231. Email: csears@jhmi.edu
  • 1.

    Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019;16:713732.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019;11:11.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019;16:690704.

  • 4.

    Golofast B, Vales K. The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 2020;108:712731.

  • 5.

    Tilg H, Adolph TE, Gerner RR, et al. The intestinal microbiota in colorectal cancer. Cancer Cell 2018;33:954964.

  • 6.

    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.

  • 7.

    Ternes D, Karta J, Tsenkova M, et al. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 2020; 28:401423.

  • 8.

    Brennan CA, Garrett WS. Fusobacterium nucleatum – symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019; 17:156166.

  • 9.

    Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14:195206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015;42:344355.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017;358:14431448.

  • 12.

    Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020;580:269273.

  • 13.

    Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006;313:848851.

  • 14.

    Bossuet-Greif N, Vignard J, Taieb F, et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. MBio 2018;9:e02393-17.

  • 15.

    Zhang Z, Aung KM, Uhlin BE, et al. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep 2018;8:17780.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338:120123.

  • 17.

    Wilson MR, Jiang Y, Villalta PW, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019;363:eaar7785.

  • 18.

    Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014;124:41664172.

  • 19.

    Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol 2017;10:421433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Chung L, Orberg ET, Geis AL, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 2018;23:421.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Allen J, Hao S, Sears CL, et al. Epigenetic changes induced by Bacteroides fragilis toxin. Infect Immun 2019;87:e00447-18.

  • 22.

    Maiuri AR, Peng M, Podicheti R, et al. Mismatch repair proteins initiate epigenetic alterations during inflammation-driven tumorigenesis. Cancer Res 2017;77:34673478.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhang Y, Weng Y, Gan H, et al. Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun 2018;506:907911.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wang X, Yang Y, Huycke MM. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut 2015;64:459468.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Purcell RV, Visnovska M, Biggs PJ, et al. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 2017;7:11590.

  • 26.

    Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017;152:14191433.e5.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Drewes JL, White JR, Dejea CM, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 2017;3:34.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kitamoto S, Nagao-Kitamoto H, Jiao Y, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 2020;182:447462.e14.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 2014;5:e00889-14.

  • 30.

    Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014;40:128139.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446450.

  • 32.

    Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569573.

  • 33.

    Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 2014;158:288299.

  • 34.

    Ridlon JM, Harris SC, Bhowmik S, et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016;7: 2239.

  • 35.

    Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 2014;146:15471553.

  • 36.

    Bernstein H, Bernstein C, Payne CM, et al. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol 2009;15:33293340.

  • 37.

    Bernstein C, Holubec H, Bhattacharyya AK, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 2011;85:863871.

  • 38.

    Domingue JC, Drewes JL, Merlo CA, et al. Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol 2020;13:413422.

  • 39.

    Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA 2014;111:1832118326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Dejea CM, Fathi P, Craig JM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018;359:592597.

  • 41.

    Tomkovich S, Dejea CM, Winglee K, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest 2019;129:16991712.

  • 42.

    Imperiale TF, Ransohoff DF, Itzkowitz SH. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 2014;370:12871297.

  • 43.

    Bjerrum A, Milter MC, Andersen O, et al. Risk stratification and detection of new colorectal neoplasms after colorectal cancer screening with faecal occult blood test: experiences from a Danish screening cohort. Eur J Gastroenterol Hepatol 2015;27:14331437.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Wallace BD, Roberts AB, Pollet RM, et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol 2015;22:12381249.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016;7:10391.

  • 46.

    Jimenez M, Langer R, Traverso G. Microbial therapeutics: new opportunities for drug delivery. J Exp Med 2019;216:10051009.

  • 47.

    Zhang J, Haines C, Watson AJM, et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study. Gut 2019;68:19711978.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Irrazabal T, Thakur BK, Kang M, et al. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer. Nat Commun 2020;11:1802.

  • 49.

    Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 2014;48:693702.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019;381:20432050.

  • 51.

    Stoffel EM, Murphy CC. Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology 2020;158:341353.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Ogden CL, Carroll MD, Lawman HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA 2016;315:22922299.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1053 1053 860
PDF Downloads 657 657 497
EPUB Downloads 0 0 0