The Future of Parallel Tumor and Germline Genetic Testing: Is There a Role for All Patients With Cancer?

Authors:
Ying L. LiuClinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

Search for other papers by Ying L. Liu in
Current site
Google Scholar
PubMed
Close
 MD, MPH
and
Zsofia K. StadlerClinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

Search for other papers by Zsofia K. Stadler in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Under the traditional paradigm of genetic testing in cancer, the role of germline testing was to assess for the inherited risk of cancer, whereas the role of tumor testing was to determine therapeutic selection. Parallel tumor-normal genetic testing uses simultaneous genetic testing of the tumor and normal tissue to identify mutations and allows their classification as either germline or somatic. The increasing adoption of parallel testing has revealed a greater number of germline findings in patients who otherwise would not have met clinical criteria for testing. This result has widespread implications for the screening and further testing of at-risk relatives and for gene discovery. It has also revealed the importance of germline testing in therapeutic actionability. Herein, we describe the pros and cons of tumor-only versus parallel tumor-normal testing and summarize the data on the prevalence of incidental actionable germline findings. Because germline testing in patients with cancer continues to expand, it is imperative that systems be in place for the proper interpretation, dissemination, and counseling for patients and at-risk relatives. We also review new therapeutic approvals with germline indications and highlight the increasing importance of germline testing in selecting therapies. Because recommendations for universal genetic testing are increasing in multiple cancer types and the number of approved therapies with germline indications is also increasing, a gradual transition toward parallel tumor-normal genetic testing in all patients with cancer is foreseeable.

Submitted September 13, 2020; final revision received December 28, 2020; accepted for publication April 9, 2021.

Disclosures: Dr. Liu has disclosed receiving grant/research support from AstraZeneca and GlaxoSmithKline/Tesaro. Dr. Stadler has disclosed having an immediate family member who serves as a consultant in ophthalmology for Alcon, Adverum Biotechnologies, Allergan, Genentech/Roche, Novartis, Neurogene, Gyroscope Therapeutics, Optos, Regeneron, and RegenexBio.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Funding: This work was supported by funding from the NIH (MSKCC is supported by the NCI under Core Grant P30 CA008748).

Correspondence: Zsofia K. Stadler, MD, Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, 10th Floor, New York, NY 10065. Email: stadlerz@mskcc.org
  • Collapse
  • Expand
  • 1.

    Offit K. Decade in review—genomics: a decade of discovery in cancer genomics. Nat Rev Clin Oncol 2014;11:632634.

  • 2.

    Robson ME, Bradbury AR, Arun B, et al. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 2015;33:36603667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stadler ZK, Schrader KA, Vijai J, et al. Cancer genomics and inherited risk. J Clin Oncol 2014;32:687698.

  • 4.

    Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 2007;25:13291333.

  • 5.

    Samadder NJ, Riegert-Johnson D, Boardman L, et al.Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome. JAMA Oncol 2021;7:230–237.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23:703713.

  • 7.

    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793795.

  • 8.

    Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. Cell 2017;168:584599.

  • 9.

    Flaherty KT, Gray RJ, Chen AP, et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J Clin Oncol 2020;38:38833894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Mandelker D, Ceyhan-Birsoy O. Evolving significance of tumor-normal sequencing in cancer care. Trends Cancer 2020;6:3139.

  • 11.

    Trottier AM, Cavalcante de Andrade Silva M, Li Z, et al. Somatic mutation panels: time to clear their names. Cancer Genet 2019;235:8492.

  • 12.

    Mandelker D. Toward concurrent testing for somatic and germline variants in cancer patients. Clin Cancer Res 2016;22:39873988.

  • 13.

    Mandelker D, Zhang L. The emerging significance of secondary germline testing in cancer genomics. J Pathol 2018;244:610615.

  • 14.

    Giri VN, Yurgelun MB, Robson ME. The role of genetic counseling in familial and sporadic cancer: considerations, challenges, and collaboration. Ann Intern Med 2017;167:884885.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Robson ME, Storm CD, Weitzel J, et al. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 2010;28:893901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Sun JX, He Y, Sanford E, et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLOS Comput Biol 2018;14:e1005965.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lincoln SE, Nussbaum RL, Kurian AW, et al. Yield and utility of germline testing following tumor sequencing in patients with cancer. JAMA Netw Open 2020;3:e2019452.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vlessis K, Purington N, Chun N, et al. Germline testing for patients with BRCA1/2 mutations on somatic tumor testing. JNCI Cancer Spectr 2019;4:pkz095.

  • 19.

    Li MM, Chao E, Esplin ED, et al. Points to consider for reporting of germline variation in patients undergoing tumor testing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020;22:11421148.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Daly MB, Pal T, Berry MP, et al. NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian and Pancreatic. Version 2. 2021. Accessed May 12, 2021. To view the most recent version, visit NCCN.org

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Raymond VM, Gray SW, Roychowdhury S, et al. Germline findings in tumor-only sequencing: points to consider for clinicians and laboratories. J Natl Cancer Inst 2015;108:djv351.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mandelker D, Donoghue M, Talukdar S, et al. Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol 2019;30:12211231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Klek S, Heald B, Milinovich A, et al.Genetic counseling and germline testing in the era of tumor sequencing: a cohort study. JNCI Cancer Spectr 2020;4:pkaa018.

  • 24.

    Walsh MF, Ritter DI, Kesserwan C, et al. Integrating somatic variant data and biomarkers for germline variant classification in cancer predisposition genes. Hum Mutat 2018;39:15421552.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lowstuter K, Espenschied CR, Sturgeon D, et al.Unexpected CDH1 mutations identified on multigene panels pose clinical management challenges. JCO Precis Oncol 2017;1:112.

    • Search Google Scholar
    • Export Citation
  • 26.

    Vos EL, Salo-Mullen EE, Tang LH, et al. Indications for total gastrectomy in CDH1 mutation carriers and outcomes of risk-reducing minimally invasive and open gastrectomies. JAMA Surg 2020;155:10501057.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bombard Y, Robson M, Offit K. Revealing the incidentalome when targeting the tumor genome. JAMA 2013;310:795796.

  • 28.

    Schrader KA, Cheng DT, Joseph V, et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol 2016;2:104111.

  • 29.

    Mandelker D, Zhang L, Kemel Y, et al. Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA 2017;318:825835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Meric-Bernstam F, Brusco L, Daniels M, et al. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann Oncol 2016;27:795800.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Seifert BA, O’Daniel JM, Amin K, et al. Germline analysis from tumor-germline sequencing dyads to identify clinically actionable secondary findings. Clin Cancer Res 2016;22:40874094.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Huang KL, Mashl RJ, Wu Y, et al. Pathogenic germline variants in 10,389 adult cancers. Cell 2018;173:355370.e14.

  • 33.

    Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017;2017:PO.17.00029.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Carlo MI, Mukherjee S, Mandelker D, et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol 2018;4:12281235.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Carlo MI, Ravichandran V, Srinavasan P, et al. Cancer susceptibility mutations in patients with urothelial malignancies. J Clin Oncol 2020;38:406414.

  • 36.

    Whitworth J, Smith PS, Martin JE, et al. Comprehensive cancer-predisposition gene testing in an adult multiple primary tumor series shows a broad range of deleterious variants and atypical tumor phenotypes. Am J Hum Genet 2018;103:318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Cadoo K, Mukherjee S, Khurram A, et al. Characterization of patients with multiple primary tumors [abstract]. J Clin Oncol 2020;38(Suppl): Abstract 1502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Raj N, Shah R, Stadler Z, et al.Real-time genomic characterization of metastatic pancreatic neuroendocrine tumors has prognostic implications and identifies potential germline actionability. JCO Precis Oncol;2018:PO.17.00267.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol 2019;37:286295.

  • 40.

    Lowery MA, Wong W, Jordan EJ, et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 2018;110:10671074.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Salo-Mullen EE, O’Reilly EM, Kelsen DP, et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer 2015;121:43824388.

  • 42.

    Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 2019;381:317327.

  • 43.

    Jonsson P, Bandlamudi C, Cheng ML, et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature 2019;571:576579.

  • 44.

    Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease—clones picking up speed. Nat Rev Genet 2017;18:128142.

  • 45.

    Ptashkin RN, Mandelker DL, Coombs CC, et al. Prevalence of clonal hematopoiesis mutations in tumor-only clinical genomic profiling of solid tumors. JAMA Oncol 2018;4:15891593.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Lee J, Gubernick LR, Brodsky AL, et al. Missed opportunities: genetic counseling and testing among an ethnically diverse cohort of women with endometrial cancer. Gynecol Oncol 2018;151:153158.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Swisher EM, Rayes N, Bowen D, et al.Results from MAGENTA: a national randomized four-arm noninferiority trial evaluating pre- and post-test genetic counseling during online testing for breast and ovarian cancer genetic risk [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 1506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Erlich Y, Narayanan A. Routes for breaching and protecting genetic privacy. Nat Rev Genet 2014;15:409421.

  • 49.

    Smith JD, Birkeland AC, Goldman EB, et al. Immortal life of the common rule: ethics, consent, and the future of cancer research. J Clin Oncol 2017;35:18791883.

  • 50.

    Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012;366:21712179.

  • 51.

    Wells SA Jr, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30:134141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Wirth LJ, Sherman E, Robinson B, et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med 2020;383:825835.

  • 53.

    Bissler JJ, Kingswood JC, Radzikowska E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2013;381:817824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Dombi E, Baldwin A, Marcus LJ, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med 2016;375:25502560.

  • 55.

    Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363:18011811.

  • 56.

    Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409413.

  • 57.

    Domchek SM, Mardis E, Carlisle JW, et al. Integrating genetic and genomic testing into oncology practice. Am Soc Clin Oncol Educ Book 2020;40:e259263.

  • 58.

    Moore K, Colombo N, Scambia G, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018;379:24952505.

  • 59.

    Swisher EM, Lin KK, Oza AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 2017;18:7587.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Ray-Coquard IL, Pautier P, Pignata S, et al. Phase III PAOLA-1/ENGOT-ov25 trial: olaparib plus bevacizumab (bev) as maintenance therapy in patients (pts) with newly diagnosed, advanced ovarian cancer (OC) treated with platinum-based chemotherapy (PCh) plus bev [abstract]. Ann Oncol 2019;30(Suppl 5):v851934. Abstract LBA2_PR.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Moore KN, Secord AA, Geller MA, et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2019;20:636648.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    González-Martín A, Pothuri B, Vergote I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019;381:23912402.

  • 63.

    Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 2018;379:753763.

  • 64.

    Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017;377:523533.

  • 65.

    Abida W, Patnaik A, Campbell D, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38:37633772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382:20912102.

  • 67.

    Domchek SM, Aghajanian C, Shapira-Frommer R, et al. Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol Oncol 2016;140:199203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Thavaneswaran S, Rath E, Tucker K, et al. Therapeutic implications of germline genetic findings in cancer. Nat Rev Clin Oncol 2019;16:386396.

  • 69.

    Stadler ZK, Maio A, Chakravarty D, et al. Therapeutic implications of germline testing in patients with advanced cancers [published online June 16, 2021]. J Clin Oncol, doi: 10.1200/JCO.20.03661.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Tung NM, Boughey JC, Pierce LJ, et al. Management of hereditary breast cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology guideline. J Clin Oncol 2020;38:20802106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Litton JK, Scoggins ME, Hess KR, et al.Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol 2020;38:388394.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Stjepanovic N, Stockley TL, Bedard PL, et al. Additional germline findings from a tumor profiling program. BMC Med Genomics 2018;11:65.

  • 73.

    Offit K, Tkachuk KA, Stadler ZK, et al. Cascading after peridiagnostic cancer genetic testing: an alternative to population-based screening. J Clin Oncol 2020;38:13981408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5796 1908 51
PDF Downloads 3355 1384 44
EPUB Downloads 0 0 0