NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2021

Featured Updates to the NCCN Guidelines

Authors:
Susan M. Swetter Stanford Cancer Institute;

Search for other papers by Susan M. Swetter in
Current site
Google Scholar
PubMed
Close
 MD
,
John A. Thompson Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;

Search for other papers by John A. Thompson in
Current site
Google Scholar
PubMed
Close
 MD
,
Mark R. Albertini University of Wisconsin Carbone Cancer Center;

Search for other papers by Mark R. Albertini in
Current site
Google Scholar
PubMed
Close
 MD
,
Christopher A. Barker Memorial Sloan Kettering Cancer Center;

Search for other papers by Christopher A. Barker in
Current site
Google Scholar
PubMed
Close
 MD
,
Joel Baumgartner UC San Diego Moores Cancer Center;

Search for other papers by Joel Baumgartner in
Current site
Google Scholar
PubMed
Close
 MD
,
Genevieve Boland Massachusetts General Hospital Cancer Center;

Search for other papers by Genevieve Boland in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Bartosz Chmielowski UCLA Jonsson Comprehensive Cancer Center;

Search for other papers by Bartosz Chmielowski in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Dominick DiMaio Fred & Pamela Buffett Cancer Center;

Search for other papers by Dominick DiMaio in
Current site
Google Scholar
PubMed
Close
 MD
,
Alison Durham University of Michigan Rogel Cancer Center;

Search for other papers by Alison Durham in
Current site
Google Scholar
PubMed
Close
 MD
,
Ryan C. Fields Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;

Search for other papers by Ryan C. Fields in
Current site
Google Scholar
PubMed
Close
 MD
,
Martin D. Fleming St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center;

Search for other papers by Martin D. Fleming in
Current site
Google Scholar
PubMed
Close
 MD
,
Anjela Galan Yale Cancer Center/Smilow Cancer Hospital;

Search for other papers by Anjela Galan in
Current site
Google Scholar
PubMed
Close
 MD
,
Brian Gastman Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;

Search for other papers by Brian Gastman in
Current site
Google Scholar
PubMed
Close
 MD
,
Kenneth Grossmann Huntsman Cancer Institute at the University of Utah;

Search for other papers by Kenneth Grossmann in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Samantha Guild AIM at Melanoma;

Search for other papers by Samantha Guild in
Current site
Google Scholar
PubMed
Close
,
Ashley Holder O'Neal Comprehensive Cancer Center at UAB;

Search for other papers by Ashley Holder in
Current site
Google Scholar
PubMed
Close
 MD
,
Douglas Johnson Vanderbilt-Ingram Cancer Center;

Search for other papers by Douglas Johnson in
Current site
Google Scholar
PubMed
Close
 MD
,
Richard W. Joseph Mayo Clinic Cancer Center;

Search for other papers by Richard W. Joseph in
Current site
Google Scholar
PubMed
Close
 MD
,
Giorgos Karakousis Abramson Cancer Center at the University of Pennsylvania;

Search for other papers by Giorgos Karakousis in
Current site
Google Scholar
PubMed
Close
 MD
,
Kari Kendra The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;

Search for other papers by Kari Kendra in
Current site
Google Scholar
PubMed
Close
 MD
,
Julie R. Lange The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;

Search for other papers by Julie R. Lange in
Current site
Google Scholar
PubMed
Close
 MD, ScM
,
Ryan Lanning University of Colorado Cancer Center;

Search for other papers by Ryan Lanning in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Kim Margolin City of Hope National Medical Center;

Search for other papers by Kim Margolin in
Current site
Google Scholar
PubMed
Close
 MD
,
Anthony J. Olszanski Fox Chase Cancer Center;

Search for other papers by Anthony J. Olszanski in
Current site
Google Scholar
PubMed
Close
 MD, RPh
,
Patrick A. Ott Dana-Farber/Brigham and Women's Cancer Center;

Search for other papers by Patrick A. Ott in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Merrick I. Ross The University of Texas MD Anderson Cancer Center;

Search for other papers by Merrick I. Ross in
Current site
Google Scholar
PubMed
Close
 MD
,
April K. Salama Duke Cancer Institute;

Search for other papers by April K. Salama in
Current site
Google Scholar
PubMed
Close
 MD
,
Rohit Sharma UT Southwestern Simmons Comprehensive Cancer Center;

Search for other papers by Rohit Sharma in
Current site
Google Scholar
PubMed
Close
 MD
,
Joseph Skitzki Roswell Park Comprehensive Cancer Center;

Search for other papers by Joseph Skitzki in
Current site
Google Scholar
PubMed
Close
 MD
,
Jeffrey Sosman Robert H. Lurie Comprehensive Cancer Center of Northwestern University;

Search for other papers by Jeffrey Sosman in
Current site
Google Scholar
PubMed
Close
 MD
,
Evan Wuthrick Moffitt Cancer Center; and

Search for other papers by Evan Wuthrick in
Current site
Google Scholar
PubMed
Close
 MD
,
Nicole R. McMillian National Comprehensive Cancer Network.

Search for other papers by Nicole R. McMillian in
Current site
Google Scholar
PubMed
Close
 MS, CHES
, and
Anita M. Engh National Comprehensive Cancer Network.

Search for other papers by Anita M. Engh in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

Over the past few years, the NCCN Guidelines for Melanoma: Cutaneous have been expanded to include pathways for treatment of microscopic satellitosis (added in v2.2020), and the following Principles sections: Molecular Testing (added in v2.2019), Systemic Therapy Considerations (added in v2.2020), and Brain Metastases Management (added in v3.2020). The v1.2021 update included additional modifications of these sections and notable revisions to Principles of: Pathology, Surgical Margins for Wide Excision of Primary Melanoma, Sentinel Lymph Node Biopsy, Completion/Therapeutic Lymph Node Dissection, and Radiation Therapy. These NCCN Guidelines Insights discuss the important changes to pathology and surgery recommendations, as well as additions to systemic therapy options for patients with advanced disease.

Supplementary Materials

    • Supplemental Materials (PDF 128 KB)
  • Collapse
  • Expand
  • 1.

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin 2021;71:733.

  • 2.

    Luke JJ, Triozzi PL, McKenna KC, et al. Biology of advanced uveal melanoma and next steps for clinical therapeutics. Pigment Cell Melanoma Res 2015;28:135147.

  • 3.

    Shields CL, Kaliki S, Furuta M, et al. American Joint Committee on Cancer classification of uveal melanoma (anatomic stage) predicts prognosis in 7,731 patients: the 2013 Zimmerman lectyure. Ophthalmology 2015;122:11801186.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tacastacas JD, Bray J, Cohen YK, et al. Update on primary mucosal melanoma. J Am Acad Dermatol 2014;71:366375.

  • 5.

    Swetter SM, Tsao H, Bichakjian CK, et al. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol 2019;80:208250.

  • 6.

    Amin MB, Edge S, Greene F, et al, eds. AJCC Cancer Staging Manual, 8th ed. New York, NY: Springer International Publishing; 2017.

  • 7.

    Shon W, Frishberg DP, Gershenwald J, et al. Protocol for the examination of excision specimens from patients with melanoma of the skin, version 4.2.0.0. Accessed March 8, 2021. Available at: https://documents.cap.org/protocols/cp-skin-melanoma-excision-20-4200.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Scolyer R, Balamurgan T, Busam K, et al. Invasive melanoma, histopathology reporting guide, 2nd ed. Accessed March 8, 2021. Available at: http://www.iccr-cancer.org/datasets/published-datasets/skin/invasive-melanoma

    • PubMed
    • Export Citation
  • 9.

    Gershenwald JE, Scolyer RA, Hess KR, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017;67:472–492.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Harrist TJ, Rigel DS, Day CL Jr, et al. “Microscopic satellites” are more highly associated with regional lymph node metastases than is primary melanoma thickness. Cancer 1984;53:21832187.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kesmodel SB, Karakousis GC, Botbyl JD, et al. Mitotic rate as a predictor of sentinel lymph node positivity in patients with thin melanomas. Ann Surg Oncol 2005;12:449458.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wong SL, Brady MS, Busam KJ, et al. Results of sentinel lymph node biopsy in patients with thin melanoma. Ann Surg Oncol 2006;13:302309.

  • 13.

    Taylor RC, Patel A, Panageas KS, et al. Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol 2007;25:869875.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Yonick DV, Ballo RM, Kahn E, et al. Predictors of positive sentinel lymph node in thin melanoma. Am J Surg 2011;201:324327, discussion 327–328.

  • 15.

    Murali R, Haydu LE, Quinn MJ, et al. Sentinel lymph node biopsy in patients with thin primary cutaneous melanoma. Ann Surg 2012;255:128133.

  • 16.

    Azimi F, Scolyer RA, Rumcheva P, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 2012;30:26782683.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mozzillo N, Pennacchioli E, Gandini S, et al. Sentinel node biopsy in thin and thick melanoma. Ann Surg Oncol 2013;20:27802786.

  • 18.

    Venna SS, Thummala S, Nosrati M, et al. Analysis of sentinel lymph node positivity in patients with thin primary melanoma. J Am Acad Dermatol 2013;68:560567.

  • 19.

    Han D, Zager JS, Shyr Y, et al. Clinicopathologic predictors of sentinel lymph node metastasis in thin melanoma. J Clin Oncol 2013;31:43874393.

  • 20.

    Bartlett EK, Gimotty PA, Sinnamon AJ, et al. Clark level risk stratifies patients with mitogenic thin melanomas for sentinel lymph node biopsy. Ann Surg Oncol 2014;21:643649.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Mahiques Santos L, Oliver Martinez V, Alegre de Miquel V. Sentinel lymph node status in melanoma: prognostic value in a tertiary hospital and correlation with mitotic activity. Actas Dermosifiliogr 2014;105:6068.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Maurichi A, Miceli R, Camerini T, et al. Prediction of survival in patients with thin melanoma: results from a multi-institution study. J Clin Oncol 2014;32:24792485.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bertolli E, de Macedo MP, Pinto CA, et al. Evaluation of melanoma features and their relationship with nodal disease: the importance of the pathological report. Tumori 2015;101:501505.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Baker JJ, Meyers MO, Deal AM, et al. Prognostic significance of tumor mitotic rate in T2 melanoma staged with sentinel lymphadenectomy. J Surg Oncol 2015;111:711715.

  • 25.

    Wat H, Senthilselvan A, Salopek TG. A retrospective, multicenter analysis of the predictive value of mitotic rate for sentinel lymph node (SLN) positivity in thin melanomas. J Am Acad Dermatol 2016;74:94101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mandalà M, Galli F, Cattaneo L, et al. Mitotic rate correlates with sentinel lymph node status and outcome in cutaneous melanoma greater than 1 millimeter in thickness: a multi-institutional study of 1524 cases. J Am Acad Dermatol 2017;76:264273.e2.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ribero S, Gualano MR, Osella-Abate S, et al. Association of histologic regression in primary melanoma with sentinel lymph node status: a systematic review and meta-analysis. JAMA Dermatol 2015;151:13011307.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Egger ME, Stevenson M, Bhutiani N, et al. Age and lymphovascular invasion accurately predict sentinel lymph node metastasis in T2 melanoma patients. Ann Surg Oncol 2019;26:39553961.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Oliveira Filho RS, Ferreira LM, Biasi LJ, et al. Vertical growth phase and positive sentinel node in thin melanoma. Braz J Med Biol Res 2003;36:347350.

  • 30.

    Sondak VK, Taylor JM, Sabel MS, et al. Mitotic rate and younger age are predictors of sentinel lymph node positivity: lessons learned from the generation of a probabilistic model. Ann Surg Oncol 2004;11:247258.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kruper LL, Spitz FR, Czerniecki BJ, et al. Predicting sentinel node status in AJCC stage I/II primary cutaneous melanoma. Cancer 2006;107:24362445.

  • 32.

    Ranieri JM, Wagner JD, Wenck S, et al. The prognostic importance of sentinel lymph node biopsy in thin melanoma. Ann Surg Oncol 2006;13:927932.

  • 33.

    Paek SC, Griffith KA, Johnson TM, et al. The impact of factors beyond Breslow depth on predicting sentinel lymph node positivity in melanoma. Cancer 2007;109:100108.

  • 34.

    Roach BA, Burton AL, Mays MP, et al. Does mitotic rate predict sentinel lymph node metastasis or survival in patients with intermediate and thick melanoma? Am J Surg 2010;200:759763, discussion 763–764.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Speijers MJ, Bastiaannet E, Sloot S, et al. Tumor mitotic rate added to the equation: melanoma prognostic factors changed?: a single-institution database study on the prognostic value of tumor mitotic rate for sentinel lymph node status and survival of cutaneous melanoma patients. Ann Surg Oncol 2015;22:29782987.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Namikawa K, Aung PP, Gershenwald JE, et al. Clinical impact of ulceration width, lymphovascular invasion, microscopic satellitosis, perineural invasion, and mitotic rate in patients undergoing sentinel lymph node biopsy for cutaneous melanoma: a retrospective observational study at a comprehensive cancer center. Cancer Med 2018;7:583593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tejera-Vaquerizo A, Ribero S, Puig S, et al. Survival analysis and sentinel lymph node status in thin cutaneous melanoma: a multicenter observational study. Cancer Med 2019;8:42354244.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Van Es SL, Colman M, Thompson JF, et al. Angiotropism is an independent predictor of local recurrence and in-transit metastasis in primary cutaneous melanoma. Am J Surg Pathol 2008;32:13961403.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wilmott J, Haydu L, Bagot M, et al. Angiotropism is an independent predictor of microscopic satellites in primary cutaneous melanoma. Histopathology 2012;61:889898.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Day CL Jr, Harrist TJ, Gorstein F, et al. Malignant melanoma. Prognostic significance of “microscopic satellites” in the reticular dermis and subcutaneous fat. Ann Surg 1981;194:108112.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Rao UN, Ibrahim J, Flaherty LE, et al. Implications of microscopic satellites of the primary and extracapsular lymph node spread in patients with high-risk melanoma: pathologic corollary of Eastern Cooperative Oncology Group Trial E1690. J Clin Oncol 2002;20:20532057.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Nagore E, Oliver V, Botella-Estrada R, et al. Prognostic factors in localized invasive cutaneous melanoma: high value of mitotic rate, vascular invasion and microscopic satellitosis. Melanoma Res 2005;15:169177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Shaikh L, Sagebiel RW, Ferreira CM, et al. The role of microsatellites as a prognostic factor in primary malignant melanoma. Arch Dermatol 2005;141:739742.

  • 44.

    León P, Daly JM, Synnestvedt M, et al. The prognostic implications of microscopic satellites in patients with clinical stage I melanoma. Arch Surg 1991;126:14611468.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Cordeiro E, Gervais MK, Shah PS, et al. Sentinel lymph node biopsy in thin cutaneous melanoma: a systematic review and meta-analysis. Ann Surg Oncol 2016;23:41784188.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Weide B, Faller C, Büttner P, et al. Prognostic factors of melanoma patients with satellite or in-transit metastasis at the time of stage III diagnosis. PLoS One 2013;8:e63137.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Bartlett EK, Gupta M, Datta J, et al. Prognosis of patients with melanoma and microsatellitosis undergoing sentinel lymph node biopsy. Ann Surg Oncol 2014;21:10161023.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Karakousis GC, Gimotty PA, Leong SP, et al. Microsatellitosis in patients with melanoma. Ann Surg Oncol 2019;26:3341.

  • 49.

    Read RL, Haydu L, Saw RP, et al. In-transit melanoma metastases: incidence, prognosis, and the role of lymphadenectomy. Ann Surg Oncol 2015;22:475481.

  • 50.

    Balch CM, Gershenwald JE, Soong SJ, et al. Multivariate analysis of prognostic factors among 2,313 patients with stage III melanoma: comparison of nodal micrometastases versus macrometastases. J Clin Oncol 2010;28:24522459.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med 2016;375:18451855.

  • 52.

    Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 2017;377:18241835.

  • 53.

    Eggermont AMM, Blank CU, Mandala M, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med 2018;378:17891801.

  • 54.

    Long GV, Hauschild A, Santinami M, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med 2017;377:18131823.

  • 55.

    Maio M, Lewis K, Demidov L, et al. Adjuvant vemurafenib in resected, BRAFV600 mutation-positive melanoma (BRIM8): a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol 2018;19:510520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009;27:61996206.

  • 57.

    Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 2001;19:36223634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Straume O, Akslen LA. Independent prognostic importance of vascular invasion in nodular melanomas. Cancer 1996;78:12111219.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Statius Muller MG, van Leeuwen PA, de Lange-De Klerk ES, et al. The sentinel lymph node status is an important factor for predicting clinical outcome in patients with stage I or II cutaneous melanoma. Cancer 2001;91:24012408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Kashani-Sabet M, Sagebiel RW, Ferreira CM, et al. Vascular involvement in the prognosis of primary cutaneous melanoma. Arch Dermatol 2001;137:11691173.

  • 61.

    Petersson F, Diwan AH, Ivan D, et al. Immunohistochemical detection of lymphovascular invasion with D2-40 in melanoma correlates with sentinel lymph node status, metastasis and survival. J Cutan Pathol 2009;36:11571163.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Barnhill RL, Katzen J, Spatz A, et al. The importance of mitotic rate as a prognostic factor for localized cutaneous melanoma. J Cutan Pathol 2005;32:268273.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Burton AL, Gilbert J, Farmer RW, et al. Regression does not predict nodal metastasis or survival in patients with cutaneous melanoma. Am Surg 2011;77:10091013.

  • 64.

    Massi D, Borgognoni L, Franchi A, et al. Thick cutaneous malignant melanoma: a reappraisal of prognostic factors. Melanoma Res 2000;10:153164.

  • 65.

    Storr SJ, Safuan S, Mitra A, et al. Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Mod Pathol 2012;25:493504.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Balch CM, Thompson JF, Gershenwald JE, et al. Age as a predictor of sentinel node metastasis among patients with localized melanoma: an inverse correlation of melanoma mortality and incidence of sentinel node metastasis among young and old patients. Ann Surg Oncol 2014;21:10751081.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Aung PP, Nagarajan P, Prieto VG. Regression in primary cutaneous melanoma: etiopathogenesis and clinical significance. Lab Invest 2017;97:657668.

  • 68.

    El Sharouni MA, Aivazian K, Witkamp AJ, et al. Association of histologic regression with a favorable outcome in patients with stage 1 and stage 2 cutaneous melanoma. JAMA Dermatol 2021;157:166173.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Chen JY, Hruby G, Scolyer RA, et al. Desmoplastic neurotropic melanoma: a clinicopathologic analysis of 128 cases. Cancer 2008;113:27702778.

  • 70.

    Guadagnolo BA, Prieto V, Weber R, et al. The role of adjuvant radiotherapy in the local management of desmoplastic melanoma. Cancer 2014;120:13611368.

  • 71.

    Rubinstein JC, Han G, Jackson L, et al. Regression in thin melanoma is associated with nodal recurrence after a negative sentinel node biopsy. Cancer Med 2016;5:28322840.

  • 72.

    Eriksson H, Frohm-Nilsson M, Järås J, et al. Prognostic factors in localized invasive primary cutaneous malignant melanoma: results of a large population-based study. Br J Dermatol 2015;172:175186.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Massi D, Franchi A, Borgognoni L, et al. Thin cutaneous malignant melanomas (< or =1.5 mm): identification of risk factors indicative of progression. Cancer 1999;85:10671076.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Tas F, Erturk K. Presence of histological regression as a prognostic factor in cutaneous melanoma patients. Melanoma Res 2016;26:492496.

  • 75.

    Gimotty PA, Van Belle P, Elder DE, et al. Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma. J Clin Oncol 2005;23:80488056.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 2014;9:239271.

  • 77.

    Elder DE, Massi D, Scolyer RA, et al, eds. WHO Classification of Tumours, 4th ed. Vol. 11. Lyon, France: IARC; 2018.

  • 78.

    Balch CM, Murad TM, Soong SJ, et al. A multifactorial analysis of melanoma: prognostic histopathological features comparing Clark’s and Breslow’s staging methods. Ann Surg 1978;188:732742.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Kuchelmeister C, Schaumburg-Lever G, Garbe C. Acral cutaneous melanoma in caucasians: clinical features, histopathology and prognosis in 112 patients. Br J Dermatol 2000;143:275280.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Nowecki ZI, Rutkowski P, Nasierowska-Guttmejer A, et al. Survival analysis and clinicopathological factors associated with false-negative sentinel lymph node biopsy findings in patients with cutaneous melanoma. Ann Surg Oncol 2006;13:16551663

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Sassen S, Shaw HM, Colman MH, et al. The complex relationships between sentinel node positivity, patient age, and primary tumor desmoplasia: analysis of 2303 melanoma patients treated at a single center. Ann Surg Oncol 2008;15:630637.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Leiter U, Buettner PG, Eigentler TK, et al. Prognostic factors of thin cutaneous melanoma: an analysis of the central malignant melanoma registry of the german dermatological society. J Clin Oncol 2004;22:36603667.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Pasquali S, Haydu LE, Scolyer RA, et al. The importance of adequate primary tumor excision margins and sentinel node biopsy in achieving optimal locoregional control for patients with thick primary melanomas. Ann Surg 2013;258:152157.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Lyth J, Hansson J, Ingvar C, et al. Prognostic subclassifications of T1 cutaneous melanomas based on ulceration, tumour thickness and Clark’s level of invasion: results of a population-based study from the Swedish Melanoma Register. Br J Dermatol 2013;168:779786.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Lamboo LG, Haydu LE, Scolyer RA, et al. The optimum excision margin and regional node management for primary cutaneous T3 melanomas (2-4 mm in Thickness): a retrospective study of 1587 patients treated at a single center. Ann Surg 2014;260:10951102.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Luen S, Wong SW, Mar V, et al. Primary tumor thickness is a prognostic factor in stage IV melanoma: a retrospective study of primary tumor characteristics. Am J Clin Oncol 2018;41:9094.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    MacKenzie Ross AD, Haydu LE, Quinn MJ, et al. The association between excision margins and local recurrence in 11,290 thin (T1) primary cutaneous melanomas: a case-control study. Ann Surg Oncol 2016;23:10821089.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Hazan C, Dusza SW, Delgado R, et al. Staged excision for lentigo maligna and lentigo maligna melanoma: a retrospective analysis of 117 cases. J Am Acad Dermatol 2008;58:142148.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Felton S, Taylor RS, Srivastava D. Excision margins for melanoma in situ on the head and neck. Dermatol Surg 2016;42:327334.

  • 90.

    Busam KJ, Mujumdar U, Hummer AJ, et al. Cutaneous desmoplastic melanoma: reappraisal of morphologic heterogeneity and prognostic factors. Am J Surg Pathol 2004;28:15181525.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Hawkins WG, Busam KJ, Ben-Porat L, et al. Desmoplastic melanoma: a pathologically and clinically distinct form of cutaneous melanoma. Ann Surg Oncol 2005;12:207213.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Han D, Han G, Zhao X, et al. Clinicopathologic predictors of survival in patients with desmoplastic melanoma. PLoS One 2015;10:e0119716.

  • 93.

    Pawlik TM, Ross MI, Prieto VG, et al. Assessment of the role of sentinel lymph node biopsy for primary cutaneous desmoplastic melanoma. Cancer 2006;106:900906.

  • 94.

    Murali R, Shaw HM, Lai K, et al. Prognostic factors in cutaneous desmoplastic melanoma: a study of 252 patients. Cancer 2010;116:41304138.

  • 95.

    Broer PN, Walker ME, Goldberg C, et al. Desmoplastic melanoma: a 12-year experience with sentinel lymph node biopsy. Eur J Surg Oncol 2013;39:681685.

  • 96.

    Han D, Zager JS, Yu D, et al. Desmoplastic melanoma: is there a role for sentinel lymph node biopsy? Ann Surg Oncol 2013;20:23452351.

  • 97.

    Mohebati A, Ganly I, Busam KJ, et al. The role of sentinel lymph node biopsy in the management of head and neck desmoplastic melanoma. Ann Surg Oncol 2012;19:43074313.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Gyorki DE, Busam K, Panageas K, et al. Sentinel lymph node biopsy for patients with cutaneous desmoplastic melanoma. Ann Surg Oncol 2003;10:403407.

  • 99.

    Smith VA, Lentsch EJ. Sentinel node biopsy in head and neck desmoplastic melanoma: an analysis of 244 cases. Laryngoscope 2012;122:116120.

  • 100.

    Livestro DP, Muzikansky A, Kaine EM, et al. Biology of desmoplastic melanoma: a case-control comparison with other melanomas. J Clin Oncol 2005;23:67396746.

  • 101.

    Eppsteiner RW, Swick BL, Milhem MM, et al. Sentinel node biopsy for head and neck desmoplastic melanoma: not a given. Otolaryngol Head Neck Surg 2012;147:271274.

  • 102.

    Weissinger SE, Keil P, Silvers DN, et al. A diagnostic algorithm to distinguish desmoplastic from spindle cell melanoma. Mod Pathol 2014;27:524534.

  • 103.

    Lin MJ, Mar V, McLean C, et al. Diagnostic accuracy of malignant melanoma according to subtype. Australas J Dermatol 2014;55:3542.

  • 104.

    Jaimes N, Chen L, Dusza SW, et al. Clinical and dermoscopic characteristics of desmoplastic melanomas. JAMA Dermatol 2013;149:413421.

  • 105.

    Muzumdar S, Argraves M, Kristjansson A, et al. A quantitative comparison between SOX10 and MART-1 immunostaining to detect melanocytic hyperplasia in chronically sun-damaged skin. J Cutan Pathol 2018;45:263268.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Buonaccorsi JN, Prieto VG, Torres-Cabala C, et al. Diagnostic utility and comparative immunohistochemical analysis of MITF-1 and SOX10 to distinguish melanoma in situ and actinic keratosis: a clinicopathological and immunohistochemical study of 70 cases. Am J Dermatopathol 2014;36:124130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Connolly KL, Nehal KS, Busam KJ. Lentigo maligna and lentigo maligna melanoma: contemporary issues in diagnosis and management. Melanoma Manag 2015;2:171178.

  • 108.

    Lobl MB, Santos C, Clarey D, et al. Treatments and associated outcomes of acral lentiginous melanoma: a review. J Am Acad Dermatol 2020;83:230234.

  • 109.

    Huilgol SC, Selva D, Chen C, et al. Surgical margins for lentigo maligna and lentigo maligna melanoma: the technique of mapped serial excision. Arch Dermatol 2004;140:10871092.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Bosbous MW, Dzwierzynski WW, Neuburg M. Staged excision of lentigo maligna and lentigo maligna melanoma: a 10-year experience. Plast Reconstr Surg 2009;124:19471955.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Abdelmalek M, Loosemore MP, Hurt MA, et al. Geometric staged excision for the treatment of lentigo maligna and lentigo maligna melanoma: a long-term experience with literature review. Arch Dermatol 2012;148:599604.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Hilari H, Llorca D, Traves V, et al. Conventional surgery compared with slow Mohs micrographic surgery in the treatment of lentigo maligna: a retrospective study of 62 cases. Actas Dermosifiliogr 2012;103:614623.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Guitera P, Moloney FJ, Menzies SW, et al. Improving management and patient care in lentigo maligna by mapping with in vivo confocal microscopy. JAMA Dermatol 2013;149:692698.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Akhtar S, Bhat W, Magdum A, et al. Surgical excision margins for melanoma in situ. J Plast Reconstr Aesthet Surg 2014;67:320323.

  • 115.

    Wilson JB, Walling HW, Scupham RK, et al. Staged excision for lentigo maligna and lentigo maligna melanoma: analysis of surgical margins and long-term recurrence in 68 cases from a single practice. J Clin Aesthet Dermatol 2016;9:2530.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Yélamos O, Cordova M, Blank N, et al. Correlation of handheld reflectance confocal microscopy with radial video mosaicing for margin mapping of lentigo maligna and lentigo maligna melanoma. JAMA Dermatol 2017;153:12781284.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Shin TM, Etzkorn JR, Sobanko JF, et al. Clinical factors associated with subclinical spread of in situ melanoma. J Am Acad Dermatol 2017;76:707713.

  • 118.

    Kunishige JH, Doan L, Brodland DG, et al. Comparison of surgical margins for lentigo maligna versus melanoma in situ. J Am Acad Dermatol 2019;81:204212.

  • 119.

    Moyer JS, Rudy S, Boonstra PS, et al. Efficacy of staged excision with permanent section margin control for cutaneous head and neck melanoma. JAMA Dermatol 2017;153:282288.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Etzkorn JR, Sobanko JF, Elenitsas R, et al. Low recurrence rates for in situ and invasive melanomas using Mohs micrographic surgery with melanoma antigen recognized by T cells 1 (MART-1) immunostaining: tissue processing methodology to optimize pathologic staging and margin assessment. J Am Acad Dermatol 2015;72:840850.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Nosrati A, Berliner JG, Goel S, et al. Outcomes of melanoma in situ treated with Mohs micrographic surgery compared with wide local excision. JAMA Dermatol 2017;153:436441.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Kunishige JH, Brodland DG, Zitelli JA. Surgical margins for melanoma in situ. J Am Acad Dermatol 2012;66:438444.

  • 123.

    Albertini JG, Elston DM, Libow LF, et al. Mohs micrographic surgery for melanoma: a case series, a comparative study of immunostains, an informative case report, and a unique mapping technique. Dermatol Surg 2002;28:656665.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Möller MG, Pappas-Politis E, Zager JS, et al. Surgical management of melanoma-in-situ using a staged marginal and central excision technique. Ann Surg Oncol 2009;16:15261536.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Valentín-Nogueras SM, Brodland DG, Zitelli JA, et al. Mohs micrographic surgery using MART-1 immunostain in the treatment of invasive melanoma and melanoma in situ. Dermatol Surg 2016;42:733744.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Bub JL, Berg D, Slee A, et al. Management of lentigo maligna and lentigo maligna melanoma with staged excision: a 5-year follow-up. Arch Dermatol 2004;140:552558.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Temple CL, Arlette JP. Mohs micrographic surgery in the treatment of lentigo maligna and melanoma. J Surg Oncol 2006;94:287292.

  • 128.

    Bhardwaj SS, Tope WD, Lee PK. Mohs micrographic surgery for lentigo maligna and lentigo maligna melanoma using Mel-5 immunostaining: University of Minnesota experience. Dermatol Surg 2006;32:690696, discussion 696–697.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Bene NI, Healy C, Coldiron BM. Mohs micrographic surgery is accurate 95.1% of the time for melanoma in situ: a prospective study of 167 cases. Dermatol Surg 2008;34:660664.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Hou JL, Reed KB, Knudson RM, et al. Five-year outcomes of wide excision and Mohs micrographic surgery for primary lentigo maligna in an academic practice cohort. Dermatol Surg 2015;41:211218.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    de Vries K, Greveling K, Prens LM, et al. Recurrence rate of lentigo maligna after micrographically controlled staged surgical excision. Br J Dermatol 2016;174:588593.

  • 132.

    Cheraghlou S, Christensen SR, Agogo GO, et al. Comparison of survival after Mohs micrographic surgery vs wide margin excision for early-stage invasive melanoma. JAMA Dermatol 2019;155:12521259.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Hanson J, Demer A, Liszewski W, et al. Improved overall survival of melanoma of the head and neck treated with Mohs micrographic surgery versus wide local excision. J Am Acad Dermatol 2020;82:149155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Koskivuo I, Giordano S, Veräjänkorva E, et al. One-cm versus 2-cm excision margins for patients with intermediate thickness melanoma: a matched-pair analysis. Dermatol Surg 2015;41:11301136.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Hunger RE, Angermeier S, Seyed Jafari SM, et al. A retrospective study of 1- versus 2-cm excision margins for cutaneous malignant melanomas thicker than 2 mm. J Am Acad Dermatol 2015;72:10541059.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Rawlani R, Rawlani V, Qureshi HA, et al. Reducing margins of wide local excision in head and neck melanoma for function and cosmesis: 5-year local recurrence-free survival. J Surg Oncol 2015;111:795799.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Doepker MP, Thompson ZJ, Fisher KJ, et al. Is a wider margin (2 cm vs. 1 cm) for a 1.01-2.0 mm melanoma necessary? Ann Surg Oncol 2016;23:23362342.

  • 138.

    Haydu LE, Stollman JT, Scolyer RA, et al. Minimum safe pathologic excision margins for primary cutaneous melanomas (1-2 mm in thickness): analysis of 2131 patients treated at a single center. Ann Surg Oncol 2016;23:10711081.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Mangold AR, Skinner R, Dueck AC, et al. Risk factors predicting positive margins at primary wide local excision of cutaneous melanoma. Dermatol Surg 2016;42:646652.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Miller CJ, Shin TM, Sobanko JF, et al. Risk factors for positive or equivocal margins after wide local excision of 1345 cutaneous melanomas. J Am Acad Dermatol 2017;77:333340.e1.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Friedman EB, Dodds TJ, Lo S, et al. Correlation between surgical and histologic margins in melanoma wide excision specimens. Ann Surg Oncol 2019;26:2532.

  • 142.

    Etzkorn JR, Sobanko JF, Shin TM, et al. Correlation between appropriate use criteria and the frequency of subclinical spread or reconstruction with a flap or graft for melanomas treated with mohs surgery with melanoma antigen recognized by T cells 1 immunostaining. Dermatol Surg 2016;42:471476.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Bricca GM, Brodland DG, Ren D, et al. Cutaneous head and neck melanoma treated with Mohs micrographic surgery. J Am Acad Dermatol 2005;52:92100.

  • 144.

    Chin-Lenn L, Murynka T, McKinnon JG, et al. Comparison of outcomes for malignant melanoma of the face treated using Mohs micrographic surgery and wide local excision. Dermatol Surg 2013;39:16371645.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Shin TM, Shaikh WR, Etzkorn JR, et al. Clinical and pathologic factors associated with subclinical spread of invasive melanoma. J Am Acad Dermatol 2017;76:714721.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Zitelli JA, Brown C, Hanusa BH. Mohs micrographic surgery for the treatment of primary cutaneous melanoma. J Am Acad Dermatol 1997;37:236245.

  • 147.

    Bienert TN, Trotter MJ, Arlette JP. Treatment of cutaneous melanoma of the face by Mohs micrographic surgery. J Cutan Med Surg 2003;7:2530.

  • 148.

    Faries MB, Thompson JF, Cochran AJ, et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med 2017;376:22112222.

  • 149.

    Leiter U, Stadler R, Mauch C, et al. Final analysis of DeCOG-SLT trial: no survival benefit for complete lymph node dissection in patients with melanoma with positive sentinel node. J Clin Oncol 2019;37:30003008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Johnson TM, Sondak VK, Bichakjian CK, et al. The role of sentinel lymph node biopsy for melanoma: evidence assessment. J Am Acad Dermatol 2006;54:1927.

  • 151.

    Grossman D, Okwundu N, Bartlett EK, et al. Prognostic gene expression profiling in cutaneous melanoma: identifying the knowledge gaps and assessing the clinical benefit. JAMA Dermatol 2020;156:10041011.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Marchetti MA, Coit DG, Dusza SW, et al. Performance of gene expression profile tests for prognosis in patients with localized cutaneous melanoma: a systematic review and meta-analysis. JAMA Dermatol 2020;156:953962.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Marchetti MA, Bartlett EK, Dusza SW, et al. Use of a prognostic gene expression profile test for T1 cutaneous melanoma: will it help or harm patients? J Am Acad Dermatol 2019;80:e161e162.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Kovarik CL, Chu EY, Adamson AS. Gene expression profile testing for thin melanoma: evidence to support clinical use remains thin. JAMA Dermatol 2020;156:837838.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Opdivo (nivolumab) injection, for intravenous use [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; 2021. Accessed Jan 7, 2021. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125554s090lbl.pdf

    • PubMed
    • Export Citation
  • 156.

    Ribas A, Gonzalez R, Pavlick A, et al. Combination of vemurafenib and cobimetinib in patients with advanced BRAF(V600)-mutated melanoma: a phase 1b study. Lancet Oncol 2014;15:954965.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Long GV, Eroglu Z, Infante J, et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. J Clin Oncol 2018;36:667673.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 2014;371:18671876.

  • 159.

    Dummer R, Ascierto PA, Gogas HJ, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2018;19:603615.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40819 9954 2898
PDF Downloads 29222 5697 346
EPUB Downloads 0 0 0