Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 2 UCSF Helen Diller Family Comprehensive Cancer Center;
  • 3 University of Michigan Rogel Cancer Center;
  • 4 City of Hope National Medical Center;
  • 5 Vanderbilt-Ingram Cancer Center;
  • 6 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • 7 Fox Chase Cancer Center;
  • 8 University of Wisconsin Carbone Cancer Center;
  • 9 UT Southwestern Simmons Comprehensive Cancer Center;
  • 10 Huntsman Cancer Institute at the University of Utah;
  • 11 Fred & Pamela Buffett Cancer Center;
  • 12 O’Neal Comprehensive Cancer Center at UAB;
  • 13 UCLA Jonsson Comprehensive Cancer Center;
  • 14 Moffitt Cancer Center;
  • 15 Mayo Clinic Cancer Center;
  • 16 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 17 Yale Cancer Center/Smilow Cancer Hospital;
  • 18 Stanford Cancer Institute;
  • 19 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • 20 University of Colorado Cancer Center;
  • 21 Dana-Farber Brigham and Women’s Cancer Center;
  • 22 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 23 Roswell Park Comprehensive Cancer Center;
  • 24 The University of Texas MD Anderson Cancer Center;
  • 25 Massachusetts General Hospital Cancer Center;
  • 26 UC San Diego Moores Cancer Center;
  • 27 Memorial Sloan Kettering Cancer Center;
  • 28 Abramson Cancer Center at the University of Pennsylvania;
  • 29 The University of Tennessee Health Science Center;
  • 30 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • 31 Duke Cancer Institute; and
  • 32 National Comprehensive Cancer Network.
Restricted access

This selection from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Colon Cancer focuses on systemic therapy options for the treatment of metastatic colorectal cancer (mCRC), because important updates have recently been made to this section. These updates include recommendations for first-line use of checkpoint inhibitors for mCRC, that is deficient mismatch repair/microsatellite instability-high, recommendations related to the use of biosimilars, and expanded recommendations for biomarker testing. The systemic therapy recommendations now include targeted therapy options for patients with mCRC that is HER2-amplified, or BRAF V600E mutation–positive. Treatment and management of nonmetastatic or resectable/ablatable metastatic disease are discussed in the complete version of the NCCN Guidelines for Colon Cancer available at NCCN.org. Additional topics covered in the complete version include risk assessment, staging, pathology, posttreatment surveillance, and survivorship.

Individual Disclosures for the NCCN Colon Cancer Panel

T1

  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:730.

  • 2.

    Cheng L, Eng C, Nieman LZ, . Trends in colorectal cancer incidence by anatomic site and disease stage in the United States from 1976 to 2005. Am J Clin Oncol 2011;34:573580.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Siegel RL, Miller KD, Goding Sauer A, . Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70:145164.

  • 4.

    Bailey CE, Hu CY, You YN, . Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg 2014;32(3_suppl):16.

    • Search Google Scholar
    • Export Citation
  • 5.

    Weinberg BA, Marshall JL, Salem ME. The growing challenge of young adults with colorectal cancer. Oncology (Williston Park) 2017;31:381389.

  • 6.

    Lee WS, Yun SH, Chun HK, . Pulmonary resection for metastases from colorectal cancer: prognostic factors and survival. Int J Colorectal Dis 2007;22:699704.

  • 7.

    Van Cutsem E, Nordlinger B, Adam R, . Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 2006;42:22122221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Yoo PS, Lopez-Soler RI, Longo WE, . Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer 2006;6:202207.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Alberts SR, Horvath WL, Sternfeld WC, . Oxaliplatin, fluorouracil, and leucovorin for patients with unresectable liver-only metastases from colorectal cancer: a North Central Cancer Treatment Group phase II study. J Clin Oncol 2005;23:92439249.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dawood O, Mahadevan A, Goodman KA. Stereotactic body radiation therapy for liver metastases. Eur J Cancer 2009;45:29472959.

  • 11.

    Kemeny N. Management of liver metastases from colorectal cancer. Oncology (Williston Park) 2006;20:11611176, 1179; discussion 1179–1180, 1185–1166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Muratore A, Zorzi D, Bouzari H, . Asymptomatic colorectal cancer with un-resectable liver metastases: immediate colorectal resection or up-front systemic chemotherapy? Ann Surg Oncol 2007;14:766770.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fong Y, Cohen AM, Fortner JG, . Liver resection for colorectal metastases. J Clin Oncol 1997;15:938946.

  • 14.

    Hayashi M, Inoue Y, Komeda K, . Clinicopathological analysis of recurrence patterns and prognostic factors for survival after hepatectomy for colorectal liver metastasis. BMC Surg 2010;10:27.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tsai M-S, Su Y-H, Ho M-C, . Clinicopathological features and prognosis in resectable synchronous and metachronous colorectal liver metastasis. Ann Surg Oncol 2007;14:786794.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster JH. Treatment of metastatic disease of the liver: a skeptic’s view. Semin Liver Dis 1984;4:170179.

  • 17.

    Stangl R, Altendorf-Hofmann A, Charnley RM, . Factors influencing the natural history of colorectal liver metastases. Lancet 1994;343:14051410.

  • 18.

    Adam R, Delvart V, Pascal G, . Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 2004;240:644657., discussion 657–658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Choti MA, Sitzmann JV, Tiburi MF, . Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002;235:759766.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Elias D, Liberale G, Vernerey D, . Hepatic and extrahepatic colorectal metastases: when resectable, their localization does not matter, but their total number has a prognostic effect. Ann Surg Oncol 2005;12:900909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Fong Y, Salo J. Surgical therapy of hepatic colorectal metastasis. Semin Oncol 1999;26:514523.

  • 22.

    Pawlik TM, Scoggins CR, Zorzi D, . Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg 2005;241:715722., discussion 722–724.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Van Cutsem E, Cervantes A, Adam R, . ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27:13861422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Goldberg RM, Rothenberg ML, Van Cutsem E, . The continuum of care: a paradigm for the management of metastatic colorectal cancer. Oncologist 2007;12:3850.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ducreux M, Malka D, Mendiboure J, . Sequential versus combination chemotherapy for the treatment of advanced colorectal cancer (FFCD 2000-05): an open-label, randomised, phase 3 trial. Lancet Oncol 2011;12:10321044.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Koopman M, Antonini NF, Douma J, . Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 2007;370:135142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Seymour MT, Maughan TS, Ledermann JA, . Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet 2007;370:143152.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tournigand C, André T, Achille E, . FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004;22:229237.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Grothey A, Sargent D, Goldberg RM, . Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 2004;22:12091214.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sargent DJ, Köhne CH, Sanoff HK, . Pooled safety and efficacy analysis examining the effect of performance status on outcomes in nine first-line treatment trials using individual data from patients with metastatic colorectal cancer. J Clin Oncol 2009;27:19481955.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nielsen DL, Palshof JA, Larsen FO, . A systematic review of salvage therapy to patients with metastatic colorectal cancer previously treated with fluorouracil, oxaliplatin and irinotecan +/- targeted therapy. Cancer Treat Rev 2014;40:701715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Costa T, Nuñez J, Felismino T, . REOX: evaluation of the efficacy of retreatment with an oxaliplatin-containing regimen in metastatic colorectal cancer: a retrospective single-center study. Clin Colorectal Cancer 2017;16:316323.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Besora S, Santos C, Izquierdo C, . Rechallenge with oxaliplatin and peripheral neuropathy in colorectal cancer patients. J Cancer Res Clin Oncol 2018;144:17931801.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Tanioka H, Asano M, Yoshida R, . Cetuximab retreatment in patients with metastatic colorectal cancer who exhibited a clinical benefit in response to prior cetuximab: a retrospective study. Oncol Lett 2018;16:36743680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mauri G, Pizzutilo EG, Amatu A, . Retreatment with anti-EGFR monoclonal antibodies in metastatic colorectal cancer: systematic review of different strategies. Cancer Treat Rev 2019;73:4153.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Liu X, George GC, Tsimberidou AM, . Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer 2015;15:713.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kajitani T, Makiyama A, Arita S, . Anti-epidermal growth factor receptor antibody readministration in chemorefractory metastatic colorectal cancer. Anticancer Res 2017;37:64596468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cremolini C, Rossini D, Dell’Aquila E, . Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol 2019;5:343350.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    U. S. Food & Drug Administration. Package Insert. MVASI™ (bevacizumab-awwb) injection, for intravenous use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761028s004lbl.pdf

  • 40.

    U. S. Food & Drug Administration. Package Insert. ZIRABEVTM (bevacizumab-bvzr) injection, for intravenous use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761099s000lbl.pdf

  • 41.

    U.S. Food & Drug Administration. Package Insert. HERZUMA® (trastuzumab-pkrb) for injection, for intravenous use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761091s001s002lbl.pdf

  • 42.

    U.S. Food & Drug Administration. Package Insert. KANJINTI™ (trastuzumab-anns) for injection, for intravenous use. 2019. Accessed Novmeber 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761073Orig1s000lbl.pdf

  • 43.

    U.S. Food & Drug Administration. Package Insert. OGIVRI (trastuzumab-dkst) for injection, for intravenous use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761074s004lbl.pdf

  • 44.

    U.S. Food & Drug Administration. Package Insert. ONTRUZANT (trastuzumab-dttb) for injection, for intravenous use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761100s000lbl.pdf

  • 45.

    U.S. Food & Drug Administration. Package Insert. TRAZIMERATM (trastuzumab-qyyp) for injection, for intravenous use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761081s000lbl.pdf

  • 46.

    Amado RG, Wolf M, Peeters M, . Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:16261634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Baselga J, Rosen N. Determinants of RASistance to anti-epidermal growth factor receptor agents. J Clin Oncol 2008;26:15821584.

  • 48.

    Bokemeyer C, Bondarenko I, Makhson A, . Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009;27:663671.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    De Roock W, Piessevaux H, De Schutter J, . KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 2008;19:508515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Karapetis CS, Khambata-Ford S, Jonker DJ, . K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:17571765.

  • 51.

    Khambata-Ford S, Garrett CR, Meropol NJ, . Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007;25:32303237.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Lièvre A, Bachet J-B, Boige V, . KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008;26:374379.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Tejpar S, Celik I, Schlichting M, . Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 2012;30:35703577.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Van Cutsem E, Köhne CH, Hitre E, . Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:14081417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Douillard JY, Oliner KS, Siena S, . Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:10231034.

  • 56.

    Sorich MJ, Wiese MD, Rowland A, . Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 2015;26:1321.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Allegra CJ, Rumble RB, Hamilton SR, . Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J Clin Oncol 2016;34:179185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Sepulveda AR, Hamilton SR, Allegra CJ, . Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Mol Diagn 2017;19:187225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Artale S, Sartore-Bianchi A, Veronese SM, . Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 2008;26:42174219.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Etienne-Grimaldi M-C, Formento J-L, Francoual M, . K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res 2008;14:48304835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Knijn N, Mekenkamp LJ, Klomp M, . KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 2011;104:10201026.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Wang HL, Lopategui J, Amin MB, . KRAS mutation testing in human cancers: the pathologist’s role in the era of personalized medicine. Adv Anat Pathol 2010;17:2332.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Monzon FA, Ogino S, Hammond MEH, . The role of KRAS mutation testing in the management of patients with metastatic colorectal cancer. Arch Pathol Lab Med 2009;133:16001606.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Yoon HH, Tougeron D, Shi Q, . KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res 2014;20:30333043.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    De Roock W, Jonker DJ, Di Nicolantonio F, . Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 2010;304:18121820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Peeters M, Douillard JY, Van Cutsem E, . Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol 2013;31:759765.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Schirripa M, Loupakis F, Lonardi S, . Phase II study of single-agent cetuximab in KRAS G13D mutant metastatic colorectal cancer. Ann Oncol 2015;26:2503.

  • 68.

    Segelov E, Thavaneswaran S, Waring PM, . Response to cetuximab with or without irinotecan in patients with refractory metastatic colorectal cancer harboring the KRAS G13D mutation: Australasian Gastro-Intestinal Trials Group ICECREAM study. J Clin Oncol 2016;34:22582264.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Rowland A, Dias MM, Wiese MD, . Meta-analysis comparing the efficacy of anti-EGFR monoclonal antibody therapy between KRAS G13D and other KRAS mutant metastatic colorectal cancer tumours. Eur J Cancer 2016;55:122130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Price TJ, Bruhn MA, Lee CK, . Correlation of extended RAS and PIK3CA gene mutation status with outcomes from the phase III AGITG MAX STUDY involving capecitabine alone or in combination with bevacizumab plus or minus mitomycin C in advanced colorectal cancer. Br J Cancer 2015;112:963970.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Heinemann V, von Weikersthal LF, Decker T, . FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:10651075.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    U.S. Food & Drug Administration. Package Insert. Vectibix® (Panitumumab). 2017. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf

  • 73.

    Tol J, Nagtegaal ID, Punt CJA. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009;361:9899.

  • 74.

    Van Cutsem E, Köhne CH, Láng I, . Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29:20112019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Maughan TS, Adams RA, Smith CG, . Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 2011;377:21032114.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Davies H, Bignell GR, Cox C, . Mutations of the BRAF gene in human cancer. Nature 2002;417:949954.

  • 77.

    Ikenoue T, Hikiba Y, Kanai F, . Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res 2003;63:81328137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Wan PT, Garnett MJ, Roe SM, . Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855867.

  • 79.

    Bokemeyer C, Van Cutsem E, Rougier P, . Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:14661475.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Di Nicolantonio F, Martini M, Molinari F, . Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:57055712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Laurent-Puig P, Cayre A, Manceau G, . Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 2009;27:59245930.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Loupakis F, Ruzzo A, Cremolini C, . KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009;101:715721.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    De Roock W, Claes B, Bernasconi D, . Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Seymour MT, Brown SR, Middleton G, . Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 2013;14:749759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Pietrantonio F, Petrelli F, Coinu A, . Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015;51:587594.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Rowland A, Dias MM, Wiese MD, . Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer 2015;112:18881894.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Chen D, Huang JF, Liu K, . BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS One 2014;9:e90607.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Price TJ, Hardingham JE, Lee CK, . Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol 2011;29:26752682.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Roth AD, Tejpar S, Delorenzi M, . Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010;28:466474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Safaee Ardekani G, Jafarnejad SM, Tan L, . The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS One 2012;7:e47054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Samowitz WS, Sweeney C, Herrick J, . Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005;65:60636069.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Saridaki Z, Papadatos-Pastos D, Tzardi M, . BRAF mutations, microsatellite instability status and cyclin D1 expression predict metastatic colorectal patients’ outcome. Br J Cancer 2010;102:17621768.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Xu Q, Xu AT, Zhu MM, . Predictive and prognostic roles of BRAF mutation in patients with metastatic colorectal cancer treated with anti-epidermal growth factor receptor monoclonal antibodies: a meta-analysis. J Dig Dis 2013;14:409416.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Sinicrope FA, Shi Q, Allegra CJ, . Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers: A secondary analysis of 2 randomized clinical trials. JAMA Oncol 2017;3:472480.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Clancy C, Burke JP, Kalady MF, . BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis 2013;15:e711e718.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Santini D, Spoto C, Loupakis F, . High concordance of BRAF status between primary colorectal tumours and related metastatic sites: implications for clinical practice. Ann Oncol 2010;21:1565.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Sartore-Bianchi A, Trusolino L, Martino C, . Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17:738746.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Sartore-Bianchi A, Amatu A, Porcu L, . HER2 positivity predicts unresponsiveness to EGFR-targeted treatment in metastatic colorectal cancer. Oncologist 2019;24:13951402.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Valtorta E, Martino C, Sartore-Bianchi A, . Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol 2015;28:14811491.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Hainsworth JD, Meric-Bernstam F, Swanton C, . Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018;36:536542.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Wu SW, Ma CC, Li WH. Does overexpression of HER-2 correlate with clinicopathological characteristics and prognosis in colorectal cancer? Evidence from a meta-analysis. Diagn Pathol 2015;10:144.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Martin V, Landi L, Molinari F, . HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br J Cancer 2013;108:668675.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Raghav K, Loree JM, Morris JS, . Validation of HER2 amplification as a predictive biomarker for anti–epidermal growth factor receptor antibody therapy in metastatic colorectal cancer [published online January 21, 2019. JCO Precis Oncol,.doi: 10.1200/PO.18.00226

    • Search Google Scholar
    • Export Citation
  • 104.

    Koopman M, Kortman GAM, Mekenkamp L, . Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 2009;100:266273.

  • 105.

    Lochhead P, Kuchiba A, Imamura Y, . Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst 2013;105:11511156.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Venderbosch S, Nagtegaal ID, Maughan TS, . Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 2014;20:53225330.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Topalian SL, Hodi FS, Brahmer JR, . Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:24432454.

  • 108.

    Drilon A, Laetsch TW, Kummar S, . Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731739.

  • 109.

    Gatalica Z, Xiu J, Swensen J, . Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32:147153.

  • 110.

    Okamura R, Boichard A, Kato S, . Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics [published online November 15, 2018]. JCO Precis Oncol, doi: 10.1200/PO.18.00183

    • Search Google Scholar
    • Export Citation
  • 111.

    Cocco E, Benhamida J, Middha S, . Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Res 2019;79:10471053.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Fancello L, Gandini S, Pelicci PG, . Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J Immunother Cancer 2019;7:183.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    U.S. Food & Drug Administration. Package Insert. KEYTRUDA® (pembrolizumab) injection, for intravenous use. 2020. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s088lbl.pdf

  • 114.

    Marabelle A, Fakih M, Lopez J, . Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020;21:13531365.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Meiri E, Garrett-Mayer E, Halabi S, . Pembrolizumab (P) in patients (Pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. [abstract] J Clin Oncol 2020;38(4_suppl):133–133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Mattison LK, Soong R, Diasio RB. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics 2002;3:485492.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Amstutz U, Henricks LM, Offer SM, . Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther 2018;103:210216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Lee AM, Shi Q, Pavey E, . DPYD variants as predictors of 5-fluorouracil toxicity in adjuvant colon cancer treatment (NCCTG N0147). J Natl Cancer Inst 2014;106:106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Morel A, Boisdron-Celle M, Fey L, . Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2006;5:28952904.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Meulendijks D, Henricks LM, Sonke GS, . Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015;16:16391650.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Terrazzino S, Cargnin S, Del Re M, . DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis. Pharmacogenomics 2013;14:12551272.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Lunenburg CATC, Henricks LM, Guchelaar HJ, . Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: Ready for prime time. Eur J Cancer 2016;54:4048.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Deenen MJ, Cats A, Severens JL, . Reply to T. Magnes et al. J Clin Oncol 2016;34:24342435.

  • 124.

    Henricks LM, Lunenburg CATC, de Man FM, . A cost analysis of upfront DPYD genotype-guided dose individualisation in fluoropyrimidine-based anticancer therapy. Eur J Cancer 2019;107:6067.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Henricks LM, Lunenburg CATC, de Man FM, . DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol 2018;19:14591467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Deenen MJ, Meulendijks D, Cats A, . Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol 2016;34:227234.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Nordlinger B, Sorbye H, Glimelius B, . Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 2008;371:10071016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Nordlinger B, Sorbye H, Glimelius B, . Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 2013;14:12081215.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Hochster HS, Hart LL, Ramanathan RK, . Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE Study. J Clin Oncol 2008;26:35233529.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Saltz LB, Clarke S, Díaz-Rubio E, . Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:20132019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Douillard JY, Siena S, Cassidy J, . Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:46974705.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Venook AP, Niedzwiecki D, Lenz HJ, . Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2017;317:23922401.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Buchler T, Pavlik T, Melichar B, . Bevacizumab with 5-fluorouracil, leucovorin, and oxaliplatin versus bevacizumab with capecitabine and oxaliplatin for metastatic colorectal carcinoma: results of a large registry-based cohort analysis. BMC Cancer 2014;14:323.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Kidwell KM, Yothers G, Ganz PA, . Long-term neurotoxicity effects of oxaliplatin added to fluorouracil and leucovorin as adjuvant therapy for colon cancer: results from National Surgical Adjuvant Breast and Bowel Project trials C-07 and LTS-01. Cancer 2012;118:56145622.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Tournigand C, Cervantes A, Figer A, . OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-go fashion in advanced colorectal cancer--a GERCOR study. J Clin Oncol 2006;24:394400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Seymour M. Conceptual approaches to metastatic disease. Ann Oncol 2012;23(Suppl 10):x77x80.

  • 137.

    Berry SR, Cosby R, Asmis T, . Continuous versus intermittent chemotherapy strategies in metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol 2015;26:477485.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Chibaudel B, Maindrault-Goebel F, Lledo G, . Can chemotherapy be discontinued in unresectable metastatic colorectal cancer? The GERCOR OPTIMOX2 Study. J Clin Oncol 2009;27:57275733.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Hochster HS, Grothey A, Hart L, . Improved time to treatment failure with an intermittent oxaliplatin strategy: results of CONcePT. Ann Oncol 2014;25:11721178.

  • 140.

    Gamelin L, Boisdron-Celle M, Delva R, . Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res 2004;10:40554061.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Gamelin L, Boisdron-Celle M, Morel A, . Oxaliplatin-related neurotoxicity: interest of calcium-magnesium infusion and no impact on its efficacy. J Clin Oncol 2008;26:11881189., author reply 1189–1190.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Grothey A, Nikcevich DA, Sloan JA, . Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 2011;29:421427.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Hochster HS, Grothey A, Childs BH. Use of calcium and magnesium salts to reduce oxaliplatin-related neurotoxicity. J Clin Oncol 2007;25:40284029.

  • 144.

    Knijn N, Tol J, Koopman M, . The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur J Cancer 2011;47:369374.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Kurniali PC, Luo LG, Weitberg AB. Role of calcium/ magnesium infusion in oxaliplatin-based chemotherapy for colorectal cancer patients. Oncology (Williston Park) 2010;24:289292.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Wen F, Zhou Y, Wang W, . Ca/Mg infusions for the prevention of oxaliplatin-related neurotoxicity in patients with colorectal cancer: a meta-analysis. Ann Oncol 2013;24:171178.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Wu Z, Ouyang J, He Z, . Infusion of calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in colorectal cancer: a systematic review and meta-analysis. Eur J Cancer 2012;48:17911798.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Loprinzi CL, Qin R, Dakhil SR, . Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol 2014;32:9971005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Cassidy J, Clarke S, Díaz-Rubio E, . Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 2008;26:20062012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Cassidy J, Tabernero J, Twelves C, . XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J Clin Oncol 2004;22:20842091.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Cassidy J, Clarke S, Díaz-Rubio E, . XELOX vs FOLFOX-4 as first-line therapy for metastatic colorectal cancer: NO16966 updated results. Br J Cancer 2011;105:5864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Ducreux M, Bennouna J, Hebbar M, . Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/leucovorin plus oxaliplatin (FOLFOX-6) as first-line treatment for metastatic colorectal cancer. Int J Cancer 2011;128:682690.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Porschen R, Arkenau H-T, Kubicka S, . Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 2007;25:42174223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154.

    Guo Y, Xiong BH, Zhang T, . XELOX vs. FOLFOX in metastatic colorectal cancer: An updated meta-analysis. Cancer Invest 2016;34:94104.

  • 155.

    Zhang C, Wang J, Gu H, . Capecitabine plus oxaliplatin compared with 5-fluorouracil plus oxaliplatin in metastatic colorectal cancer: meta-analysis of randomized controlled trials. Oncol Lett 2012;3:831838.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    U.S. Food & Drug Administration. Package Insert. ELOXATIN (oxaliplatin) injection for intravenous use. 2020. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021759s023lbl.pdf

  • 157.

    Yalcin S, Uslu R, Dane F, . Bevacizumab + capecitabine as maintenance therapy after initial bevacizumab + XELOX treatment in previously untreated patients with metastatic colorectal cancer: phase III ‘Stop and Go’ study results--a Turkish Oncology Group Trial. Oncology 2013;85:328335.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    U.S. Food & Drug Administration. Package Insert. XELODA® (capecitabine) tablets, for oral use. 2019. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020896s042lbl.pdf

  • 159.

    Haller DG, Cassidy J, Clarke SJ, . Potential regional differences for the tolerability profiles of fluoropyrimidines. J Clin Oncol 2008;26:21182123.

  • 160.

    Schmoll H-J, Arnold D. Update on capecitabine in colorectal cancer. Oncologist 2006;11:10031009.

  • 161.

    Hofheinz RD, Heinemann V, von Weikersthal LF, . Capecitabine-associated hand-foot-skin reaction is an independent clinical predictor of improved survival in patients with colorectal cancer. Br J Cancer 2012;107:16781683.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Colucci G, Gebbia V, Paoletti G, . Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell’Italia Meridionale. J Clin Oncol 2005;23:48664875.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Aparicio T, Lavau-Denes S, Phelip JM, . Randomized phase III trial in elderly patients comparing LV5FU2 with or without irinotecan for first-line treatment of metastatic colorectal cancer (FFCD 2001-02). Ann Oncol 2016;27:121127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Package Insert. Camptosar® (Irinotecan) Injection, intravenous infusion. 2020. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020571s051lbl.pdf

  • 165.

    Innocenti F, Undevia SD, Iyer L, . Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004;22:13821388.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Liu X, Cheng D, Kuang Q, . Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J 2014;14:120129.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    O’Dwyer PJ, Catalano RB. Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J Clin Oncol 2006;24:45344538.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Innocenti F, Schilsky RL, Ramírez J, . Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 2014;32:23282334.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Sobrero A, Ackland S, Clarke S, . Phase IV study of bevacizumab in combination with infusional fluorouracil, leucovorin and irinotecan (FOLFIRI) in first-line metastatic colorectal cancer. Oncology 2009;77:113119.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Yamazaki K, Nagase M, Tamagawa H, . Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol 2016;27:15391546.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Köhne CH, Hofheinz R, Mineur L, . First-line panitumumab plus irinotecan/5-fluorouracil/leucovorin treatment in patients with metastatic colorectal cancer. J Cancer Res Clin Oncol 2012;138:6572.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Peeters M, Price TJ, Cervantes A, . Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 2010;28:47064713.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    André T, Louvet C, Maindrault-Goebel F, . CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur J Cancer 1999;35:13431347.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Hurwitz HI, Fehrenbacher L, Hainsworth JD, . Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 2005;23:35023508.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Kabbinavar FF, Hambleton J, Mass RD, . Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 2005;23:37063712.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Van Cutsem E, Hoff PM, Harper P, . Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer 2004;90:11901197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 177.

    Van Cutsem E, Twelves C, Cassidy J, . Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 2001;19:40974106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178.

    Mitry E, Fields ALA, Bleiberg H, . Adjuvant chemotherapy after potentially curative resection of metastases from colorectal cancer: a pooled analysis of two randomized trials. J Clin Oncol 2008;26:49064911.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Cunningham D, Lang I, Marcuello E, . Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol 2013;14:10771085.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Falcone A, Ricci S, Brunetti I, . Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol 2007;25:16701676.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Souglakos J, Androulakis N, Syrigos K, . FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br J Cancer 2006;94:798805.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Masi G, Vasile E, Loupakis F, . Randomized trial of two induction chemotherapy regimens in metastatic colorectal cancer: an updated analysis. J Natl Cancer Inst 2011;103:2130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Loupakis F, Cremolini C, Masi G, . Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014;371:16091618.

  • 184.

    Cremolini C, Loupakis F, Antoniotti C, . FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015;16:13061315.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Cremolini C, Antoniotti C, Rossini D, . Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2020;21:497507.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Gruenberger T, Bridgewater J, Chau I, . Bevacizumab plus mFOLFOX-6 or FOLFOXIRI in patients with initially unresectable liver metastases from colorectal cancer: the OLIVIA multinational randomised phase II trial. Ann Oncol 2015;26:702708.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Schmoll H-J, Meinert FM, Cygon F, . “CHARTA”: FOLFOX/bevacizumab vs FOLFOXIRI/bevacizumab in advanced colorectal cancer—Final results, prognostic and potentially predictive factors from the randomized Phase II trial of the AIO. [abstract] J Clin Oncol 2017;35(15_suppl):3533–3533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 188.

    Hurwitz HI, Tan BR, Reeves JA, . Phase II randomized trial of sequential or concurrent FOLFOXIRI-bevacizumab versus FOLFOX-bevacizumab for metastatic colorectal cancer (STEAM). Oncologist 2019;24:921932.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    Rossini D, Lonardi S, Antoniotti C, . Treatments after progression to first-line FOLFOXIRI and bevacizumab in metastatic colorectal cancer: a pooled analysis of TRIBE and TRIBE2 studies by GONO. Br J Cancer 2020;124:183190.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Cremolini C, Antoniotti C, Stein A, . Individual patient data meta-analysis of FOLFOXIRI plus bevacizumab versus doublets plus bevacizumab as initial therapy of unresectable metastatic colorectal cancer. J Clin Oncol 2020;38:33143324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 191.

    U.S. Food & Drug Administration. Package Insert. AVASTIN® (bevacizumab) injection, for intravenous use 2020. Accessed November 17, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125085s336lbl.pdf

  • 192.

    Hurwitz H, Fehrenbacher L, Novotny W, . Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:23352342.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Kabbinavar F, Hurwitz HI, Fehrenbacher L, . Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21:6065.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Kabbinavar FF, Schulz J, McCleod M, . Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 2005;23:36973705.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Petrelli F, Borgonovo K, Cabiddu M, . FOLFIRI-bevacizumab as first-line chemotherapy in 3500 patients with advanced colorectal cancer: a pooled analysis of 29 published trials. Clin Colorectal Cancer 2013;12:145151.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 196.

    Hurwitz HI, Bekaii-Saab TS, Bendell JC, . Safety and effectiveness of bevacizumab treatment for metastatic colorectal cancer: final results from the Avastin(®) Registry - Investigation of Effectiveness and Safety (ARIES) observational cohort study. Clin Oncol (R Coll Radiol) 2014;26:323332.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    Fourrier-Réglat A, Smith D, Rouyer M, . Survival outcomes of bevacizumab in first-line metastatic colorectal cancer in a real-life setting: results of the ETNA cohort. Target Oncol 2014;9:311319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 198.

    Botrel TEA, Clark LGO, Paladini L, . Efficacy and safety of bevacizumab plus chemotherapy compared to chemotherapy alone in previously untreated advanced or metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2016;16:677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 199.

    Cao Y, Tan A, Gao F, . A meta-analysis of randomized controlled trials comparing chemotherapy plus bevacizumab with chemotherapy alone in metastatic colorectal cancer. Int J Colorectal Dis 2009;24:677685.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Hu W, Xu WS, Liao XF, . Bevacizumab in combination with first-line chemotherapy in patients with metastatic colorectal cancer: a meta-analysis. Minerva Chir 2015;70:451458.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    Hurwitz HI, Tebbutt NC, Kabbinavar F, . Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013;18:10041012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 202.

    Loupakis F, Bria E, Vaccaro V, . Magnitude of benefit of the addition of bevacizumab to first-line chemotherapy for metastatic colorectal cancer: meta-analysis of randomized clinical trials. J Exp Clin Cancer Res 2010;29:58.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Lv C, Wu S, Zheng D, . The efficacy of additional bevacizumab to cytotoxic chemotherapy regimens for the treatment of colorectal cancer: an updated meta-analysis for randomized trials. Cancer Biother Radiopharm 2013;28:501509.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 204.

    Qu CY, Zheng Y, Zhou M, . Value of bevacizumab in treatment of colorectal cancer: A meta-analysis. World J Gastroenterol 2015;21:50725080.

  • 205.

    Welch S, Spithoff K, Rumble RB, . Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: a systematic review. Ann Oncol 2010;21:11521162.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 206.

    Zhang G, Zhou X, Lin C. Efficacy of chemotherapy plus bevacizumab as first-line therapy in patients with metastatic colorectal cancer: a meta-analysis and up-date. Int J Clin Exp Med 2015;8:14341445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Macedo LT, da Costa Lima AB, Sasse AD. Addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer: a systematic review and meta-analysis, with emphasis on chemotherapy subgroups. BMC Cancer 2012;12:89.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 208.

    Meyerhardt JA, Li L, Sanoff HK, . Effectiveness of bevacizumab with first-line combination chemotherapy for Medicare patients with stage IV colorectal cancer. J Clin Oncol 2012;30:608615.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 209.

    Hartmann H, Müller J, Marschner N. Is there a difference in demography and clinical characteristics in patients treated with and without bevacizumab? J Clin Oncol 2012;30:33173318., author reply 3318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 210.

    Hurwitz HI, Lyman GH. Registries and randomized trials in assessing the effects of bevacizumab in colorectal cancer: is there a common theme? J Clin Oncol 2012;30:580581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 211.

    Cui CH, Huang SX, Qi J, . Neoadjuvant chemotherapy (NCT) plus targeted agents versus NCT alone in colorectal liver metastases patients: A systematic review and meta-analysis. Oncotarget 2015;6:4400544018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 212.

    Snoeren N, van Hillegersberg R, Schouten SB, . Randomized phase III study to assess efficacy and safety of adjuvant CAPOX with or without bevacizumab in patients after resection of colorectal liver metastases: HEPATICA study. Neoplasia 2017;19:9399.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 213.

    Allegra CJ, Yothers G, O’Connell MJ, . Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 2011;29:1116.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    de Gramont A, Van Cutsem E, Schmoll HJ, . Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 2012;13:12251233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 215.

    Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 2011;305:487494.

  • 216.

    Hurwitz HI, Saltz LB, Van Cutsem E, . Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J Clin Oncol 2011;29:17571764.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 217.

    Dai F, Shu L, Bian Y, . Safety of bevacizumab in treating metastatic colorectal cancer: a systematic review and meta-analysis of all randomized clinical trials. Clin Drug Investig 2013;33:779788.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 218.

    Scappaticci FA, Fehrenbacher L, Cartwright T, . Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 2005;91:173180.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 219.

    Cannistra SA, Matulonis UA, Penson RT, . Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007;25:51805186.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 220.

    Gruenberger B, Tamandl D, Schueller J, . Bevacizumab, capecitabine, and oxaliplatin as neoadjuvant therapy for patients with potentially curable metastatic colorectal cancer. J Clin Oncol 2008;26:18301835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 221.

    Reddy SK, Morse MA, Hurwitz HI, . Addition of bevacizumab to irinotecan- and oxaliplatin-based preoperative chemotherapy regimens does not increase morbidity after resection of colorectal liver metastases. J Am Coll Surg 2008;206:96106.