Genomic Instability and Clonal Evolution in Chronic Lymphocytic Leukemia: Clinical Relevance

Authors:
Adalgisa Condoluci Division of Hematology, Oncology Institute of Southern Switzerland, and
Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland.

Search for other papers by Adalgisa Condoluci in
Current site
Google Scholar
PubMed
Close
 MD
and
Davide Rossi Division of Hematology, Oncology Institute of Southern Switzerland, and
Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland.

Search for other papers by Davide Rossi in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Genomic instability and clonal heterogeneity can influence cancer progression, response to therapy, and relapse. Chronic lymphocytic leukemia (CLL) harbors a variety of clones and subclones that will evolve differently according to intrinsic (microenvironment) and extrinsic (therapy) pressures. Different patterns of clonal evolution have been described, providing insights into the CLL leukemic cell, dynamics, selection, and treatment refractoriness. With the help of genomic technologies allowing a granular resolution of CLL clones, novel synergic therapeutic strategies can be tested with the aim of reaching a genomic–epigenomic ultrapersonalized, tailored approach. These efforts should consider the presence of targetable alterations, continuous cancer reshaping conferring disease refractoriness, and intratumoral clonal equilibrium to possibly avoid clonal selection.

Submitted January 2, 2020; accepted for publication July 15, 2020. Published online December 31, 2020.

Disclosures: The authors have disclosed that they have no financial interests, arrangements, affiliations, or commercial interests with the manufacturers of any products discussed in this article or their competitors.

Correspondence: Davide Rossi, MD, PhD, Division of Hematology, Oncology Institute of Southern Switzerland, and Laboratory of Experimental Hematology, Institute of Oncology Research, Via A. Gallino 13, 6500 Bellizona, CH Bellinzona, Switzerland. Email: davide.rossi@eoc.ch
  • Collapse
  • Expand
  • 1.

    Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:2328.

  • 2.

    Fidler IJ. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 1978;38:26512660.

  • 3.

    Merlo LM, Pepper JW, Reid BJ, et al.. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006;6:924935.

  • 4.

    Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012;12:587598.

  • 5.

    Bassaganyas L, Beà S, Escaramís G, et al.. Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis. Leukemia 2013;27:23762379.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Landau DA, Tausch E, Taylor-Weiner AN, et al.. Mutations driving CLL and their evolution in progression and relapse. Nature 2015;526:525530.

  • 7.

    Puente XS, Beà S, Valdés-Mas R, et al.. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526:519524.

  • 8.

    Juliusson G, Oscier DG, Fitchett M, et al.. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 1990;323:720724.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Döhner H, Stilgenbauer S, Benner A, et al.. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343:19101916.

  • 10.

    Calin GA, Dumitru CD, Shimizu M, et al.. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99:1552415529.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Roberts AW, Davids MS, Pagel JM, et al.. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016;374:311322.

  • 12.

    Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 2012;13:579590.

  • 13.

    Schaffner C, Stilgenbauer S, Rappold GA, et al.. Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 1999;94:748753.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stankovic T, Weber P, Stewart G, et al.. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 1999;353:2629.

  • 15.

    Ouillette P, Li J, Shaknovich R, et al.. Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2012;51:11251132.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Que TH, Marco JG, Ellis J, et al.. Trisomy 12 in chronic lymphocytic leukemia detected by fluorescence in situ hybridization: analysis by stage, immunophenotype, and morphology. Blood 1993;82:571575.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Balatti V, Bottoni A, Palamarchuk A, et al.. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012;119:329331.

  • 18.

    Rossi D, Cerri M, Deambrogi C, et al.. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 2009;15:9951004.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Malcikova J, Smardova J, Rocnova L, et al.. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 2009;114:53075314.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rossi D, Khiabanian H, Spina V, et al.. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014;123:21392147.

  • 21.

    Baliakas P, Hadzidimitriou A, Sutton LA, et al.. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015;29:329336.

  • 22.

    International CLL-IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 2016;17:779790.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Nadeu F, Delgado J, Royo C, et al.. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016;127:21222130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schuh A, Becq J, Humphray S, et al.. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 2012;120:41914196.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rawstron AC, Bennett FL, O’Connor SJ, et al.. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008;359:575583.

  • 26.

    Rossi D, Sozzi E, Puma A, et al.. The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br J Haematol 2009;146:6475.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kern W, Bacher U, Haferlach C, et al.. Monoclonal B-cell lymphocytosis is closely related to chronic lymphocytic leukaemia and may be better classified as early-stage CLL. Br J Haematol 2012;157:8696.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Chigrinova E, Rinaldi A, Kwee I, et al.. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 2013;122:26732682.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fabbri G, Khiabanian H, Holmes AB, et al.. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med 2013;210:22732288.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ouillette P, Saiya-Cork K, Seymour E, et al.. Clonal evolution, genomic drivers, and effects of therapy in chronic lymphocytic leukemia. Clin Cancer Res 2013;19:28932904.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Landau DA, Carter SL, Stojanov P, et al.. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013;152:714726.

  • 32.

    Ballman KV. Biomarker: predictive or prognostic? J Clin Oncol 2015;33:39683971.

  • 33.

    Rossi D, Terzi-di-Bergamo L, De Paoli L, et al.. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood 2015;126:19211924.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Fischer K, Bahlo J, Fink AM, et al.. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 2016;127:208215.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Thompson PA, Tam CS, O’Brien SM, et al.. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016;127:303309.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Eichhorst B, Fink AM, Bahlo J, et al.. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 2016;17:928942.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Coutre SE, Leonard JP, Barrientos JC, et al.. Clinical activity of idelalisib (GS-1101), a selective inhibitor of PI3Kδ, in phase 1 and 2 trials in chronic lymphocytic leukemia (CLL): effect of del(17p)/TP53 mutation, del(11q), IGHV mutation, and NOTCH1 mutation [abstract]. Blood 2013;122:1632. Abstract 642.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    O’Brien S, Furman RR, Coutre S, et al.. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood 2018;131:19101919.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Burger JA, Tedeschi A, Barr PM, et al.. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015;373:24252437.

  • 40.

    Hallek M, Fischer K, Fingerle-Rowson G, et al.. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010;376:11641174.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Fischer K, Cramer P, Busch R, et al.. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia study group. J Clin Oncol 2012;30:32093216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Goede V, Fischer K, Busch R, et al.. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014;370:11011110.

  • 43.

    Hillmen P, Robak T, Janssens A, et al.. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial. Lancet 2015;385:18731883.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Anderson MA, Deng J, Seymour JF, et al.. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood 2016;127:32153224.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Hallek M, Cheson BD, Catovsky D, et al.. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018;131:27452760.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Nadeu F, Clot G, Delgado J, et al.. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 2018;32:645653.

  • 47.

    Al’Khafaji AM, Deatherage D, Brock A. Control of lineage-specific gene expression by functionalized gRNA barcodes. ACS Synth Biol 2018;7:24682474.

  • 48.

    Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, et al.. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med 2015;21:440448.

  • 49.

    Hata AN, Niederst MJ, Archibald HL, et al.. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 2016;22:262269.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    McKenna A, Findlay GM, Gagnon JA, et al.. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 2016;353:aaf7907.

  • 51.

    Gaiti F, Chaligne R, Gu H, et al.. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 2019;569:576580.

  • 52.

    Ojha J, Ayres J, Secreto C, et al.. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood 2015;125:492498.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Landau DA, Sun C, Rosebrock D, et al.. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat Commun 2017;8:2185.

  • 54.

    Jethwa A, Hüllein J, Stolz T, et al.. Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia. Br J Haematol 2013;163:496500.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Gruber M, Bozic I, Leshchiner I, et al.. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature 2019;570:474479.

  • 56.

    Cahill N, Bergh AC, Kanduri M, et al.. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 2013;27:150158.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Kulis M, Merkel A, Heath S, et al.. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 2015;47:746756.

  • 58.

    Beekman R, Chapaprieta V, Russiñol N, et al.. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med 2018;24:868880.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Oakes CC, Seifert M, Assenov Y, et al.. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016;48:253264.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Pastore A, Gaiti F, Lu SX, et al.. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nat Commun 2019;10:1874.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Burger JA, Landau DA, Taylor-Weiner A, et al.. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 2016;7:11589.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Woyach JA, Ruppert AS, Guinn D, et al.. BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol 2017;35:14371443.

  • 63.

    Lazarian G, Guièze R, Wu CJ. Clinical implications of novel genomic discoveries in chronic lymphocytic leukemia. J Clin Oncol 2017;35:984993.

  • 64.

    Ahn IE, Underbayev C, Albitar A, et al.. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017;129:14691479.

  • 65.

    Woyach JA, Johnson AJ. Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood 2015;126:471477.

  • 66.

    Kadri S, Lee J, Fitzpatrick C, et al.. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL. Blood Adv 2017;1:715727.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Blombery P, Anderson MA, Gong JN, et al.. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov 2019;9:342353.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Herling CD, Abedpour N, Weiss J, et al.. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat Commun 2018;9:727.

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3583 606 114
PDF Downloads 1503 233 23
EPUB Downloads 0 0 0