Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 Fox Chase Cancer Center;
  • 2 Vanderbilt-Ingram Cancer Center;
  • 3 St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center;
  • 4 Huntsman Cancer Institute at the University of Utah;
  • 5 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 6 Abramson Cancer Center at the University of Pennsylvania;
  • 7 O'Neal Comprehensive Cancer Center at UAB;
  • 8 FORCE: Facing Our Risk of Cancer Empowered;
  • 9 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • 10 Roswell Park Comprehensive Cancer Center;
  • 11 UCLA Jonsson Comprehensive Cancer Center;
  • 12 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 13 University of Colorado Cancer Center;
  • 14 Stanford Cancer Institute;
  • 15 Moffitt Cancer Center;
  • 16 The University of Texas MD Anderson Cancer Center;
  • 17 UCSF Helen Diller Family Comprehensive Cancer Center;
  • 18 Duke Cancer Institute;
  • 19 University of Michigan Rogel Cancer Center;
  • 20 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • 21 Memorial Sloan Kettering Cancer Center;
  • 22 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • 23 Fred & Pamela Buffett Cancer Center;
  • 24 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 25 Massachusetts General Hospital Cancer Center;
  • 26 UC San Diego Moores Cancer Center;
  • 27 City of Hope National Medical Center;
  • 28 Mayo Clinic Cancer Center;
  • 29 University of Wisconsin Carbone Cancer Center;
  • 30 Dana-Farber/Brigham and Women’s Cancer Center; and
  • 31 National Comprehensive Cancer Network
Restricted access

The NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic focus primarily on assessment of pathogenic or likely pathogenic variants associated with increased risk of breast, ovarian, and pancreatic cancer and recommended approaches to genetic testing/counseling and management strategies in individuals with these pathogenic or likely pathogenic variants. This manuscript focuses on cancer risk and risk management for BRCA-related breast/ovarian cancer syndrome and Li-Fraumeni syndrome. Carriers of a BRCA1/2 pathogenic or likely pathogenic variant have an excessive risk for both breast and ovarian cancer that warrants consideration of more intensive screening and preventive strategies. There is also evidence that risks of prostate cancer and pancreatic cancer are elevated in these carriers. Li-Fraumeni syndrome is a highly penetrant cancer syndrome associated with a high lifetime risk for cancer, including soft tissue sarcomas, osteosarcomas, premenopausal breast cancer, colon cancer, gastric cancer, adrenocortical carcinoma, and brain tumors.

Individual Disclosures for the NCCN Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic Panel

T1

  • 1.

    Blackwood MA, Weber BL. BRCA1 and BRCA2: from molecular genetics to clinical medicine. J Clin Oncol 1998;16:19691977.

  • 2.

    Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002;108:171182.

  • 3.

    Schneider KA, Garber J. Li-Fraumeni syndrome. GeneReviews. Accessed December 9, 2020. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1311/

    • Export Citation
  • 4.

    Abeliovich D, Kaduri L, Lerer I, . The founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset breast cancer patients among Ashkenazi women. Am J Hum Genet 1997;60:505514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Levy-Lahad E, Catane R, Eisenberg S, . Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families. Am J Hum Genet 1997;60:10591067.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Petrucelli N, Daly MB, Bars Culver JO, . BRCA1 and BRCA2 hereditary breast/ovarian cancer. GeneReviews. Accessed December 9, 2020. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1247/

  • 7.

    Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br J Cancer 2000;83:13011308.

    • Search Google Scholar
    • Export Citation
  • 8.

    Antoniou A, Pharoah PD, Narod S, . Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003;72:11171130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 2007;25:13291333.

  • 10.

    Ford D, Easton DF, Bishop DT, . Risks of cancer in BRCA1-mutation carriers. Lancet 1994;343:692695.

  • 11.

    King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003;302:643646.

  • 12.

    Mavaddat N, Peock S, Frost D, .EMBRACE. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 2013;105:812822.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Risch HA, McLaughlin JR, Cole DE, . Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006;98:16941706.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    van den Broek AJ, van ’t Veer LJ, Hooning MJ, . Impact of age at primary breast cancer on contralateral breast cancer risk in BRCA1/2 mutation carriers. J Clin Oncol 2016;34:409418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hu C, Polley EC, Yadav S, . The contribution of germline predisposition gene mutations to clinical subtypes of invasive breast cancer from a clinical genetic testing cohort [published online February 24,2020]. J Natl Cancer Inst, doi: 10.1093/jnci/djaa023

    • Search Google Scholar
    • Export Citation
  • 16.

    Kuchenbaecker KB, Hopper JL, Barnes DR, . Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017;317:24022416.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bordeleau L, Panchal S, Goodwin P. Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat 2010;119:1324.

  • 18.

    Verhoog LC, Berns EM, Brekelmans CT, . Prognostic significance of germline BRCA2 mutations in hereditary breast cancer patients. J Clin Oncol 2000; 18(21, Suppl):119S124S.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zhong Q, Peng HL, Zhao X, . Effects of BRCA1- and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis. Clin Cancer Res 2015;21:211220.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Baretta Z, Mocellin S, Goldin E, . Effect of BRCA germline mutations on breast cancer prognosis: A systematic review and meta-analysis. Medicine (Baltimore) 2016;95:e4975.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    van den Broek AJ, Schmidt MK, van ’t Veer LJ, . Worse breast cancer prognosis of BRCA1/BRCA2 mutation carriers: what’s the evidence? A systematic review with meta-analysis. PLoS One 2015;10:e0120189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Copson ER, Maishman TC, Tapper WJ, . Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol 2018;19:169180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kast K, Rhiem K, Wappenschmidt B, . Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 2016;53:465471.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schmidt MK, van den Broek AJ, Tollenaar RA, . Breast cancer survival of BRCA1/BRCA2 mutation carriers in a hospital-based cohort of young women [published online August 1, 2017. J Natl Cancer Inst, doi: 10.1093/jnci/djw329

    • Search Google Scholar
    • Export Citation
  • 25.

    Litton JK, Ready K, Chen H, . Earlier age of onset of BRCA mutation-related cancers in subsequent generations. Cancer 2012;118:321325.

  • 26.

    Guindalini RS, Song A, Fackenthal JD, . Genetic anticipation in BRCA1/BRCA2 families after controlling for ascertainment bias and cohort effect. Cancer 2016;122:19131920.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Atchley DP, Albarracin CT, Lopez A, . Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 2008;26:42824288.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Eerola H, Heikkilä P, Tamminen A, . Relationship of patients’ age to histopathol]ogical features of breast tumours in BRCA1 and BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 2005;7:R465R469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lakhani SR, Reis-Filho JS, Fulford L, . Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 2005;11:51755180.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lakhani SR, Van De Vijver MJ, Jacquemier J, . The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 2002;20:23102318.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lee E, McKean-Cowdin R, Ma H, . Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol 2011;29:43734380.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Young SR, Pilarski RT, Donenberg T, . The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer 2009;9:86.

  • 33.

    Fostira F, Tsitlaidou M, Papadimitriou C, . Prevalence of BRCA1 mutations among 403 women with triple-negative breast cancer: implications for genetic screening selection criteria: a Hellenic Cooperative Oncology Group Study. Breast Cancer Res Treat 2012;134:353362.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gonzalez-Angulo AM, Timms KM, Liu S, . Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 2011;17:10821089.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Rummel S, Varner E, Shriver CD, . Evaluation of BRCA1 mutations in an unselected patient population with triple-negative breast cancer. Breast Cancer Res Treat 2013;137:119125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Couch FJ, Hart SN, Sharma P, . Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 2015;33:304311.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tung N, Lin NU, Kidd J, . Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 2016;34:14601468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Buys SS, Sandbach JF, Gammon A, . A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017;123:17211730.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Shimelis H, LaDuca H, Hu C, . Triple-negative breast cancer risk genes identified by multigene hereditary cancer panel testing. J Natl Cancer Inst 2018;110:855862.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Evans DG, Howell A, Ward D, . Prevalence of BRCA1 and BRCA2 mutations in triple negative breast cancer. J Med Genet 2011;48:520522.

  • 41.

    Meyer P, Landgraf K, Högel B, . BRCA2 mutations and triple-negative breast cancer. PLoS One 2012;7:e38361.

  • 42.

    Metcalfe K, Lynch HT, Foulkes WD, . Oestrogen receptor status and survival in women with BRCA2-associated breast cancer. Br J Cancer 2019;120:398403.

  • 43.

    Jonasson JG, Stefansson OA, Johannsson OT, . Oestrogen receptor status, treatment and breast cancer prognosis in Icelandic BRCA2 mutation carriers. Br J Cancer 2016;115:776783.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Lee LJ, Alexander B, Schnitt SJ, . Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer 2011;117:30933100.

  • 45.

    Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 2004;22:735742.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Basham VM, Lipscombe JM, Ward JM, . BRCA1 and BRCA2 mutations in a population-based study of male breast cancer. Breast Cancer Res 2002;4:R2.

  • 47.

    Couch FJ, Farid LM, DeShano ML, . BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nat Genet 1996;13:123125.

  • 48.

    Ding YC, Steele L, Kuan CJ, . Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat 2011;126:771778.

  • 49.

    Friedman LS, Gayther SA, Kurosaki T, . Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population. Am J Hum Genet 1997;60:313319.

    • Search Google Scholar
    • Export Citation
  • 50.

    Evans DG, Susnerwala I, Dawson J, . Risk of breast cancer in male BRCA2 carriers. J Med Genet 2010;47:710711.

  • 51.

    Tai YC, Domchek S, Parmigiani G, . Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2007;99:18111814.

  • 52.

    What are the key statistics about breast cancer in men? Accessed May 28, 2015. Available at: http://www.cancer.org/cancer/breastcancerinmen/detailedguide/breast-cancer-in-men-key-statistics

    • Export Citation
  • 53.

    Levine DA, Argenta PA, Yee CJ, . Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J Clin Oncol 2003;21:42224227.

  • 54.

    Piver MS, Jishi MF, Tsukada Y, . Primary peritoneal carcinoma after prophylactic oophorectomy in women with a family history of ovarian cancer. A report of the Gilda Radner Familial Ovarian Cancer Registry. Cancer 1993;71:27512755.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Arts-de Jong M, de Bock GH, van Asperen CJ, . Germline BRCA1/2 mutation testing is indicated in every patient with epithelial ovarian cancer: a systematic review. Eur J Cancer 2016;61:137145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Pal T, Permuth-Wey J, Betts JA, . BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 2005;104:28072816.

  • 57.

    Schrader KA, Hurlburt J, Kalloger SE, . Germline BRCA1 and BRCA2 mutations in ovarian cancer: utility of a histology-based referral strategy. Obstet Gynecol 2012;120:235240.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Zhang S, Royer R, Li S, . Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol Oncol 2011;121:353357.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Song H, Cicek MS, Dicks E, . The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet 2014;23:47034709.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Chen J, Bae E, Zhang L, . Penetrance of breast and ovarian cancer in women who carry a BRCA1/2 mutation and do not use risk-reducing salpingo-oophorectomy: an updated meta-analysis [published online August 4, 2020]. JNCI Cancer Spectr, doi: 10.1093/jncics/pkaa029

    • Search Google Scholar
    • Export Citation
  • 61.

    Alsop K, Fereday S, Meldrum C, . BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 2012;30:26542663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Bolton KL, Chenevix-Trench G, Goh C, . Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 2012;307:382390.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Cass I, Baldwin RL, Varkey T, . Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 2003;97:21872195.

  • 64.

    Chetrit A, Hirsh-Yechezkel G, Ben-David Y, . Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 2008;26:2025.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Tan DS, Rothermundt C, Thomas K, . “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 2008;26:55305536.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Yang D, Khan S, Sun Y, . Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011;306:15571565.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Dong F, Davineni PK, Howitt BE, . BRCA1/2 mutational signature and survival in ovarian high-grade serous carcinoma. Cancer Epidemiol Biomarkers Prev 2016;25:15111516.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Norquist BM, Harrell MI, Brady MF, . Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2016;2:482490.

  • 69.

    Bjørge T, Lie AK, Hovig E, . BRCA1 mutations in ovarian cancer and borderline tumours in Norway: a nested case-control study. Br J Cancer 2004;91:18291834.

  • 70.

    Jazaeri AA, Lu K, Schmandt R, . Molecular determinants of tumor differentiation in papillary serous ovarian carcinoma. Mol Carcinog 2003;36:5359.

  • 71.

    Lakhani SR, Manek S, Penault-Llorca F, . Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. Clin Cancer Res 2004;10:24732481.

  • 72.

    Press JZ, De Luca A, Boyd N, . Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 2008;8:17.

  • 73.

    Rechsteiner M, Zimmermann AK, Wild PJ, . TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp Mol Pathol 2013;95:235241.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Werness BA, Ramus SJ, DiCioccio RA, . Histopathology, FIGO stage, and BRCA mutation status of ovarian cancers from the Gilda Radner Familial Ovarian Cancer Registry. Int J Gynecol Pathol 2004;23:2934.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Callahan MJ, Crum CP, Medeiros F, . Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol 2007;25:39853990.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Finch A, Shaw P, Rosen B, . Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol Oncol 2006;100:5864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Powell CB, Chen LM, McLennan J, . Risk-reducing salpingo-oophorectomy (RRSO) in BRCA mutation carriers: experience with a consecutive series of 111 patients using a standardized surgical-pathological protocol. Int J Gynecol Cancer 2011;21:846851.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Rush SK, Swisher EM, Garcia RL, . Pathologic findings and clinical outcomes in women undergoing risk-reducing surgery to prevent ovarian and fallopian tube carcinoma: A large prospective single institution experience. Gynecol Oncol 2020;157:514520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Powell CB, Kenley E, Chen LM, . Risk-reducing salpingo-oophorectomy in BRCA mutation carriers: role of serial sectioning in the detection of occult malignancy. J Clin Oncol 2005;23:127132.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Shaw PA, Rouzbahman M, Pizer ES, . Candidate serous cancer precursors in fallopian tube epithelium of BRCA1/2 mutation carriers. Mod Pathol 2009;22:11331138.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Medeiros F, Muto MG, Lee Y, . The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol 2006;30:230236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Kindelberger DW, Lee Y, Miron A, . Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol 2007;31:161169.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Agalliu I, Gern R, Leanza S, . Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 2009;15:11121120.

  • 84.

    Leongamornlert D, Mahmud N, Tymrakiewicz M, . Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012;106:16971701.

  • 85.

    Nicolosi P, Ledet E, Yang S, . Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol 2019;5:523528.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Giri VN, Hegarty SE, Hyatt C, . Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate 2019;79:333339.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Abida W, Armenia J, Gopalan A, . Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making [published online May 31, 2017]. JCO Precis Oncol, doi: 10.1200/PO.17.00029

    • Search Google Scholar
    • Export Citation
  • 88.

    Na R, Zheng SL, Han M, . Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 2017;71:740747.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Pritchard CC, Mateo J, Walsh MF, . Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443453.

  • 90.

    Lang SH, Swift SL, White H, . A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol 2019;55:597616.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Nyberg T, Frost D, Barrowdale D, . Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Eur Urol 2020;77:2435.

  • 92.

    Castro E, Goh C, Olmos D, . Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:17481757.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Kirchhoff T, Kauff ND, Mitra N, . BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 2004;10:29182921.

  • 94.

    Gallagher DJ, Gaudet MM, Pal P, . Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010;16:21152121.

  • 95.

    Hamel N, Kotar K, Foulkes WD. Founder mutations in BRCA1/2 are not frequent in Canadian Ashkenazi Jewish men with prostate cancer. BMC Med Genet 2003;4:7.

  • 96.

    Nastiuk KL, Mansukhani M, Terry MB, . Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate 1999;40:172177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Goggins M, Schutte M, Lu J, . Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996;56:53605364.

  • 98.

    Lal G, Liu G, Schmocker B, . Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res 2000;60:409416.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Murphy KM, Brune KA, Griffin C, . Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 2002;62:37893793.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Couch FJ, Johnson MR, Rabe KG, . The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2007;16:342346.

  • 101.

    Ghiorzo P, Fornarini G, Sciallero S, . CDKN2A is the main susceptibility gene in Italian pancreatic cancer families. J Med Genet 2012;49:164170.

  • 102.

    Lucas AL, Shakya R, Lipsyc MD, . High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clin Cancer Res 2013;19:33963403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Holter S, Borgida A, Dodd A, . Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015;33:31243129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Zhen DB, Rabe KG, Gallinger S, . BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 2015;17:569577.

  • 105.

    Salo-Mullen EE, O’Reilly EM, Kelsen DP, . Identification of germline genetic mutations in patients with pancreatic cancer. Cancer 2015;121:43824388.

  • 106.

    Mandelker D, Zhang L, Kemel Y, . Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA 2017;318:825835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Shindo K, Yu J, Suenaga M, . Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 2017;35:33823390.

  • 108.

    Huang KL, Mashl RJ, Wu Y, . Pathogenic germline variants in 10,389 adult cancers. Cell 2018;173:355370,e314.

  • 109.

    Chaffee KG, Oberg AL, McWilliams RR, . Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med 2018;20:119127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Hu C, Hart SN, Polley EC, . Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018;319:24012409.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Lowery MA, Wong W, Jordan EJ, . Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 2018;110:10671074.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Ferrone CR, Levine DA, Tang LH, . BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol 2009;27:433438.

  • 113.

    de Jonge MM, Mooyaart AL, Vreeswijk MP, . Linking uterine serous carcinoma to BRCA1/2-associated cancer syndrome: A meta-analysis and case report. Eur J Cancer 2017;72:215225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Lavie O, Ben-Arie A, Segev Y, . BRCA germline mutations in women with uterine serous carcinoma--still a debate. Int J Gynecol Cancer 2010;20:15311534.

    • Search Google Scholar
    • Export Citation
  • 115.

    Saule C, Mouret-Fourme E, Briaux A, . Risk of serous endometrial carcinoma in women with pathogenic BRCA1/2 variant after risk-reducing salpingo-oophorectomy [published online February 10, 2018]. J Natl Cancer Inst, doi: 10.1093/jnci/djx159

    • Search Google Scholar
    • Export Citation
  • 116.

    Laitman Y, Michaelson-Cohen R, Levi E, . Uterine cancer in Jewish Israeli BRCA1/2 mutation carriers. Cancer 2019;125:698703.

  • 117.

    Shu CA, Pike MC, Jotwani AR, . Uterine cancer after risk-reducing salpingo-oophorectomy without hysterectomy in women with BRCA mutations. JAMA Oncol 2016;2:14341440.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Beiner ME, Finch A, Rosen B, .Hereditary Ovarian Cancer Clinical Study Group. The risk of endometrial cancer in women with BRCA1 and BRCA2 mutations. A prospective study. Gynecol Oncol 2007;104:710.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Lee YC, Milne RL, Lheureux S, . Risk of uterine cancer for BRCA1 and BRCA2 mutation carriers. Eur J Cancer 2017;84:114120.

  • 120.

    Gumaste PV, Penn LA, Cymerman RM, . Skin cancer risk in BRCA1/2 mutation carriers. Br J Dermatol 2015;172:14981506.

  • 121.

    Iqbal J, Nussenzweig A, Lubinski J, . The incidence of leukaemia in women with BRCA1 and BRCA2 mutations: an International Prospective Cohort Study. Br J Cancer 2016;114:11601164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Lorenzo Bermejo J, Hemminki K. Risk of cancer at sites other than the breast in Swedish families eligible for BRCA1 or BRCA2 mutation testing. Ann Oncol 2004;15:18341841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123.

    Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999;91:13101316.

  • 124.

    Moran A, O’Hara C, Khan S, . Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 2012;11:235242.

  • 125.

    Warner E, Plewes DB, Hill KA, . Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 2004;292:13171325.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Kriege M, Brekelmans CT, Boetes C, . Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 2004;351:427437.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Leach MO, Boggis CR, Dixon AK, . Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 2005;365:17691778.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Saslow D, Boetes C, Burke W, . American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007;57:7589.

  • 129.

    Stoutjesdijk MJ, Boetes C, Jager GJ, . Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer. J Natl Cancer Inst 2001;93:10951102.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Berg WA. How well does supplemental screening magnetic resonance imaging work in high-risk women? J Clin Oncol 2014;32:21932196.

  • 131.

    Buist DS, Porter PL, Lehman C, . Factors contributing to mammography failure in women aged 40-49 years. J Natl Cancer Inst 2004;96:14321440.

  • 132.

    Mandelson MT, Oestreicher N, Porter PL, . Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000;92:10811087.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Tilanus-Linthorst M, Verhoog L, Obdeijn IM, . A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int J Cancer 2002;102:9195.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    van Gils CH, Otten JD, Verbeek AL, . Effect of mammographic breast density on breast cancer screening performance: a study in Nijmegen, The Netherlands. J Epidemiol Community Health 1998;52:267271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Gilliland FD, Joste N, Stauber PM, . Biologic characteristics of interval and screen-detected breast cancers. J Natl Cancer Inst 2000;92:743749.

  • 136.

    Kuhl CK, Schrading S, Leutner CC, . Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 2005;23:84698476.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Riedl CC, Ponhold L, Flöry D, . Magnetic resonance imaging of the breast improves detection of invasive cancer, preinvasive cancer, and premalignant lesions during surveillance of women at high risk for breast cancer. Clin Cancer Res 2007;13:61446152.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Sardanelli F, Podo F, D’Agnolo G, . Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results. Radiology 2007;242:698715.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Passaperuma K, Warner E, Causer PA, . Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br J Cancer 2012;107:2430.

  • 140.

    Lehman CD, Lee JM, DeMartini WB, . Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst 2016;108: djv349.

  • 141.

    Phi XA, Saadatmand S, De Bock GH, . Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis. Br J Cancer 2016;114:631637.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Le-Petross HT, Whitman GJ, Atchley DP, . Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer. Cancer 2011;117:39003907.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Goldfrank D, Chuai S, Bernstein JL, . Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2. Cancer Epidemiol Biomarkers Prev 2006;15:23112313.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Narod SA, Lubinski J, Ghadirian P, . Screening mammography and risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet Oncol 2006;7:402406.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Pijpe A, Andrieu N, Easton DF, .HEBON. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 2012;345(sep06 2):e5660.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Ciatto S, Houssami N, Bernardi D, . Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 2013;14:583589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147.

    Skaane P, Bandos AI, Gullien R, . Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 2013;267:4756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 148.

    Rafferty EA, Park JM, Philpotts LE, . Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology 2013;266:104113.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Friedewald SM, Rafferty EA, Conant EF. Breast cancer screening with tomosynthesis and digital mammography-reply. JAMA 2014;312:16951696.

  • 150.

    Lourenco AP, Barry-Brooks M, Baird GL, . Changes in recall type and patient treatment following implementation of screening digital breast tomosynthesis. Radiology 2015;274:337342.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Rose SL, Tidwell AL, Ice MF, . A reader study comparing prospective tomosynthesis interpretations with retrospective readings of the corresponding FFDM examinations. Acad Radiol 2014;21:12041210.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Destounis S, Arieno A, Morgan R. Initial experience with combination digital breast tomosynthesis plus full field digital mammography or full field digital mammography alone in the screening environment. J Clin Imaging Sci 2014;4:9.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Margolies L, Cohen A, Sonnenblick E, . Digital breast tomosynthesis changes management in patients seen at a tertiary care breast center. ISRN Radiol 2014;2014:658929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154.

    Lång K, Andersson I, Rosso A, . Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study. Eur Radiol 2016;26:184190.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Gilbert FJ, Tucker L, Gillan MG, . Accuracy of digital breast tomosynthesis for depicting breast cancer subgroups in a UK retrospective reading study (TOMMY Trial). Radiology 2015;277:697706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 156.

    Zuckerman SP, Conant EF, Keller BM, . Implementation of synthesized two-dimensional mammography in a population-based digital breast tomosynthesis screening program. Radiology 2016;281:730736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 157.

    Skaane P, Bandos AI, Eben EB, . Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: comparison with digital breast tomosynthesis with full-field digital mammographic images. Radiology 2014;271:655663.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Lowry KP, Lee JM, Kong CY, . Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis. Cancer 2012;118:20212030.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Hartmann LC, Lindor NM. The role of risk-reducing surgery in hereditary breast and ovarian cancer. N Engl J Med 2016;374:454468.

  • 160.

    Jacobs IJ, Menon U, Ryan A, . Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 2016;387:945956.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Menon U, Gentry-Maharaj A, Hallett R, . Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol 2009;10:327340.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Rosenthal AN, Fraser LSM, Philpott S, . Evidence of stage shift in women diagnosed with ovarian cancer during phase II of the United Kingdom Familial Ovarian Cancer Screening Study. J Clin Oncol 2017;35:14111420.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Skates SJ, Greene MH, Buys SS, . Early detection of ovarian cancer using the risk of ovarian cancer algorithm with frequent CA125 testing in women at increased familial risk - combined results from two screening trials. Clin Cancer Res 2017;23:36283637.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Gao Y, Goldberg JE, Young TK, . Breast cancer screening in high-risk men: a 12-year longitudinal observational study of male breast imaging utilization and outcomes. Radiology 2019;293:282291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 165.

    Li X, You R, Wang X, . Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res 2016;22:39713981.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Honold F, Camus M. Prophylactic mastectomy versus surveillance for the prevention of breast cancer in women’s BRCA carriers. Medwave 2018;18:e7161.

  • 167.

    Hartmann LC, Schaid DJ, Woods JE, . Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 1999;340:7784.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Hartmann LC, Sellers TA, Schaid DJ, . Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 2001;93:16331637.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Meijers-Heijboer H, van Geel B, van Putten WL, . Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 2001;345:159164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Rebbeck TR, Friebel T, Lynch HT, . Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 2004;22:10551062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 171.

    Carbine NE, Lostumbo L, Wallace J, . Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst Rev 2018;4:CD002748.

  • 172.

    Morrow M, Mehrara B. Prophylactic mastectomy and the timing of breast reconstruction. Br J Surg 2009;96:12.

  • 173.

    Jakub JW, Peled AW, Gray RJ, . Oncologic safety of prophylactic nipple-sparing mastectomy in a population with BRCA mutations: a multi-institutional study. JAMA Surg 2018;153:123129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 174.

    Satagopan JM, Boyd J, Kauff ND, . Ovarian cancer risk in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Clin Cancer Res 2002;8:37763781.

  • 175.

    Finch AP, Lubinski J, Møller P, . Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 2014;32:15471553.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst 2009;101:8087.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Kauff ND, Domchek SM, Friebel TM, . Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 2008;26:13311337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178.

    Kauff ND, Satagopan JM, Robson ME, . Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 2002;346:16091615.

  • 179.

    Rebbeck TR, Levin AM, Eisen A, . Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 1999;91:14751479.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Rebbeck TR, Lynch HT, Neuhausen SL, . Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 2002;346:16161622.

  • 181.

    Harmsen MG, Piek JMJ, Bulten J, . Peritoneal carcinomatosis after risk-reducing surgery in BRCA1/2 mutation carriers. Cancer 2018;124:952959.

  • 182.

    Sherman ME, Piedmonte M, Mai PL, . Pathologic findings at risk-reducing salpingo-oophorectomy: primary results from Gynecologic Oncology Group Trial GOG-0199. J Clin Oncol 2014;32:32753283.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Eisen A, Lubinski J, Klijn J, . Breast cancer risk following bilateral oophorectomy in BRCA1 and BRCA2 mutation carriers: an international case-control study. J Clin Oncol 2005;23:74917496.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Xiao YL, Wang K, Liu Q, . Risk reduction and survival benefit of risk-reducing salpingo-oophorectomy in hereditary breast cancer: meta-analysis and systematic review. Clin Breast Cancer 2019;19:e48e65.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Domchek SM, Friebel TM, Singer CF, . Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010;304:967975.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Domchek SM, Friebel TM, Neuhausen SL, . Mortality after bilateral salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Lancet Oncol 2006;7:223229.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Metcalfe K, Lynch HT, Foulkes WD, . Effect of oophorectomy on survival after breast cancer in BRCA1 and BRCA2 mutation carriers. JAMA Oncol 2015;1:306313.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Heemskerk-Gerritsen BA, Seynaeve C, van Asperen CJ, . Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction [published online March 18, 2015]. J Natl Cancer Inst, doi: 10.1093/jnci/djv033

    • Search Google Scholar
    • Export Citation
  • 189.

    Chai X, Domchek S, Kauff N, . RE: Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction [published online August 11, 2015]. J Natl Cancer Inst, doi: 10.1093/jnci/djv217

    • Search Google Scholar
    • Export Citation
  • 190.

    Terry MB, Daly MB, Phillips KA, . Risk-reducing oophorectomy and breast cancer risk across the spectrum of familial risk. J Natl Cancer Inst 2019;111:331334.

  • 191.

    Kotsopoulos J, Huzarski T, Gronwald J, . Bilateral oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers [published online September 6, 2016]. J Natl Cancer Inst, doi: 10.1093/jnci/djw177

    • Search Google Scholar
    • Export Citation
  • 192.

    Stjepanovic N, Villacampa G, Nead KT, . Association of premenopausal risk-reducing salpingo-oophorectomy with breast cancer risk in BRCA1/2 mutation carriers: maximising bias-reduction. Eur J Cancer 2020;132:5360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Marchetti C, De Felice F, Boccia S, . Hormone replacement therapy after prophylactic risk-reducing salpingo-oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers: A meta-analysis. Crit Rev Oncol Hematol 2018;132:111115.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Gordhandas S, Norquist BM, Pennington KP, . Hormone replacement therapy after risk reducing salpingo-oophorectomy in patients with BRCA1 or BRCA2 mutations; a systematic review of risks and benefits. Gynecol Oncol 2019;153:192200.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Chlebowski RT, Prentice RL. Menopausal hormone therapy in BRCA1 mutation carriers: uncertainty and caution. J Natl Cancer Inst 2008;100:13411343.

  • 196.

    Garber JE, Hartman AR. Prophylactic oophorectomy and hormone replacement therapy: protection at what price? J Clin Oncol 2004;22:978980.

  • 197.

    McAlpine JN, Hanley GE, Woo MM, . Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention. Am J Obstet Gynecol 2014;210:471.e1471.e11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 198.

    Findley AD, Siedhoff MT, Hobbs KA, . Short-term effects of salpingectomy during laparoscopic hysterectomy on ovarian reserve: a pilot randomized controlled trial. Fertil Steril 2013;100:17041708.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 199.

    Daly MB, Dresher CW, Yates MS, . Salpingectomy as a means to reduce ovarian cancer risk. Cancer Prev Res (Phila) 2015;8:342348.

  • 200.

    Chlebowski RT, Rohan TE, Manson JE, . Breast cancer after use of estrogen plus progestin and estrogen alone: analyses of data from 2 Women’s Health Initiative randomized clinical trials. JAMA Oncol 2015;1:296305.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    College of American Pathologists (CAP). Protocol for the examination of specimens from patients with carcinoma of the ovary. 2009. Available at:. Accessed March 2011. http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Ovary_09protocol.pdf

    • Export Citation
  • 202.

    Cummings SR, Eckert S, Krueger KA, . The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. multiple outcomes of raloxifene evaluation. JAMA 1999;281:21892197.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Cuzick J, Sestak I, Bonanni B, . Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 2013;381:18271834.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 204.

    Lippman ME, Cummings SR, Disch DP, . Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk. Clin Cancer Res 2006;12:52425247.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 205.

    Martino S, Cauley JA, Barrett-Connor E, .CORE Investigators. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 2004;96:17511761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 206.

    Vogel VG, Costantino JP, Wickerham DL, . Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 2006;295:27272741.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Vogel VG, Costantino JP, Wickerham DL, . Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: preventing breast cancer. Cancer Prev Res (Phila) 2010;3:696706.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 208.

    Powles TJ, Ashley S, Tidy A, . Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J Natl Cancer Inst 2007;99:283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 209.

    Fisher B, Costantino JP, Wickerham DL, . Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 2005;97:16521662.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 210.

    Metcalfe K, Lynch HT, Ghadirian P, . Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 2004;22:23282335.

  • 211.

    Gronwald J, Tung N, Foulkes WD, . Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int J Cancer 2006;118:22812284.

  • 212.

    Narod SA, Brunet JS, Ghadirian P, . Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet 2000;356:18761881.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 213.

    King MC, Wieand S, Hale K, . Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 2001;286:22512256.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    Ingle JN, Liu M, Wickerham DL, . Selective estrogen receptor modulators and pharmacogenomic variation in ZNF423 regulation of BRCA1 expression: individualized breast cancer prevention. Cancer Discov 2013;3:812825.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 215.

    Goss PE, Ingle JN, Alés-Martínez JE, . Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 2011;364:23812391.

  • 216.

    Cuzick J, Sestak I, Forbes JF, . Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 2014;383:10411048.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 217.

    Nemati Shafaee M, Gutierrez-Barrera AM, Lin HY, . Aromatase inhibitors and the risk of contralateral breast cancer in BRCA mutation carriers. J Clin Oncol 2015;33(28_suppl):33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 218.

    McLaughlin JR, Risch HA, Lubinski J, . Reproductive risk factors for ovarian cancer in carriers of BRCA1 or BRCA2 mutations: a case-control study. Lancet Oncol 2007;8:2634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 219.

    Narod SA, Risch H, Moslehi R, . Oral contraceptives and the risk of hereditary ovarian cancer. N Engl J Med 1998;339:424428.

  • 220.

    Iodice S, Barile M, Rotmensz N, . Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer 2010;46:22752284.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 221.

    Moorman PG, Havrilesky LJ, Gierisch JM, . Oral contraceptives and risk of ovarian cancer and breast cancer among high-risk women: a systematic review and meta-analysis. J Clin Oncol 2013;31:41884198.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 222.

    Narod SA, Dubé MP, Klijn J, . Oral contraceptives and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2002;94:17731779.

  • 223.

    Haile RW, Thomas DC, McGuire V, . BRCA1 and BRCA2 mutation carriers, oral contraceptive use, and breast cancer before age 50. Cancer Epidemiol Biomarkers Prev 2006;15:18631870.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 224.

    Milne RL, Knight JA, John EM, . Oral contraceptive use and risk of early-onset breast cancer in carriers and noncarriers of BRCA1 and BRCA2 mutations. Cancer Epidemiol Biomarkers Prev 2005;14:350356.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 225.

    Lee E, Ma H, McKean-Cowdin R, . Effect of reproductive factors and oral contraceptives on breast cancer risk in BRCA1/2 mutation carriers and noncarriers: results from a population-based study. Cancer Epidemiol Biomarkers Prev 2008;17:31703178.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 226.

    Offit K, Levran O