NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021

Featured Updates to the NCCN Guidelines

View More View Less
  • 1 University of Colorado Cancer Center;
  • 2 University of Michigan Rogel Cancer Center;
  • 3 Abramson Cancer Center at the University of Pennsylvania;
  • 4 Fred & Pamela Buffett Cancer Center;
  • 5 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 6 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • 7 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • 8 Massachusetts General Hospital Cancer Center;
  • 9 Mayo Clinic Cancer Center;
  • 10 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • 11 University of Wisconsin Carbone Cancer Center;
  • 12 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 13 Moffitt Cancer Center;
  • 14 Stanford Cancer Institute;
  • 15 City of Hope National Medical Center;
  • 16 St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center;
  • 17 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 18 Duke Cancer Institute;
  • 19 Fox Chase Cancer Center;
  • 20 UCSF Helen Diller Family Comprehensive Cancer Center;
  • 21 Yale Cancer Center/Smilow Cancer Hospital;
  • 22 Roswell Park Comprehensive Cancer Center;
  • 23 UCLA Jonsson Comprehensive Cancer Center;
  • 24 The University of Texas MD Anderson Cancer Center;
  • 25 Huntsman Cancer Institute at the University of Utah;
  • 26 Dana-Farber/Brigham and Women’s Cancer Center;
  • 27 Vanderbilt-Ingram Cancer Center;
  • 28 O'Neal Comprehensive Cancer Center at UAB;
  • 29 UC San Diego Moores Cancer Center;
  • 30 National Comprehensive Cancer Network; and
  • 31 Memorial Sloan Kettering Cancer Center.
Restricted access

The NCCN Guidelines for Acute Myeloid Leukemia (AML) provide recommendations for the diagnosis and treatment of adults with AML based on clinical trials that have led to significant improvements in treatment, or have yielded new information regarding factors with prognostic importance, and are intended to aid physicians with clinical decision-making. These NCCN Guidelines Insights focus on recent select updates to the NCCN Guidelines, including familial genetic alterations in AML, postinduction or postremission treatment strategies in low-risk acute promyelocytic leukemia or favorable-risk AML, principles surrounding the use of venetoclax-based therapies, and considerations for patients who prefer not to receive blood transfusions during treatment.

  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:730.

  • 2.

    Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975-2016, National Cancer Institute. Accessed April 29, 2020. Available at: https://seer.cancer.gov/csr/1975_2016/

  • 3.

    Juliusson G. Older patients with acute myeloid leukemia benefit from intensive chemotherapy: an update from the Swedish Acute Leukemia Registry. Clin Lymphoma Myeloma Leuk 2011;11(Suppl 1):S5459.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Arber DA, Orazi A, Hasserjian R, . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:23912405.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wei AH, Döhner H, Pocock C, . The QUAZAR AML-001 maintenance trial: results of a phase III international, randomized, double-blind, placebo-controlled study of CC-486 (oral formulation of azacitidine) in patients with acute myeloid leukemia (AML) in first remission [abstract]. Blood 2019;134(Suppl):Abstract LBA-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Döhner H, Estey E, Grimwade D, . Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fey MF, Buske C. Acute myeloblastic leukaemias in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013;24(Suppl 6):vi138143.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tallman MS, Wang ES, Altman JK, . Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019;17:721749.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv 2018;2:13561366.

  • 10.

    Schuurhuis GJ, Heuser M, Freeman S, . Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018;131:12751291.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ley TJ, Miller C, Ding L, . Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368:20592074.

  • 12.

    DiNardo CD, Wei AH. How I treat acute myeloid leukemia in the era of new drugs. Blood 2020;135:8596.

  • 13.

    Churpek JE, Godley LA. Familial acute leukemia and myelodysplastic syndromes. Accessed November 20, 2020. Available at: https://www.uptodate.com/contents/familial-acute-leukemia-and-myelodysplastic-syndromes

    • Export Citation
  • 14.

    Rio-Machin A, Vulliamy T, Hug N, . The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun 2020;11:1044.

  • 15.

    Churpek JE, Pyrtel K, Kanchi KL, . Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 2015;126:24842490.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Simon L, Spinella JF, Yao CY, . High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. Blood 2020;135:18821886.

  • 17.

    University of Chicago Hematopoietic Malignancies Cancer Risk Team. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood 2016;128:18001813.

    • Search Google Scholar
    • Export Citation
  • 18.

    Shimamura A. Aplastic anemia and clonal evolution: germ line and somatic genetics. Hematology (Am Soc Hematol Educ Program) 2016;2016:7482.

  • 19.

    Bannon SA, DiNardo CD. Hereditary predispositions to myelodysplastic syndrome. Int J Mol Sci 2016;17:838.

  • 20.

    Baliakas P, Tesi B, Wartiovaara-Kautto U, . Nordic guidelines for germline predisposition to myeloid neoplasms in adults: recommendations for genetic diagnosis, clinical management and follow-up. HemaSphere 2019;3:e321.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia—a review. Br J Haematol 2008;140:123132.

  • 22.

    Smith ML, Cavenagh JD, Lister TA, . Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 2004;351:24032407.

  • 23.

    Stelljes M, Corbacioglu A, Schlenk RF, . Allogeneic stem cell transplant to eliminate germline mutations in the gene for CCAAT-enhancer-binding protein α from hematopoietic cells in a family with AML. Leukemia 2011;25:12091210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Tawana K, Wang J, Renneville A, . Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 2015;126:12141223.

  • 25.

    Lewinsohn M, Brown AL, Weinel LM, . Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 2016;127:10171023.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Polprasert C, Schulze I, Sekeres MA, . Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 2015;27:658670.

  • 27.

    Sanders MA, Chew E, Flensburg C, . MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood 2018;132:15261534.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Song WJ, Sullivan MG, Legare RD, . Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999;23:166175.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Burnett AK, Russell NH, Hills RK, . Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol 2015;16:12951305.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Estey E, Garcia-Manero G, Ferrajoli A, . Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006;107:34693473.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lo-Coco F, Avvisati G, Vignetti M, . Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 2013;369:111121.

  • 32.

    Ravandi F, Estey E, Jones D, . Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J Clin Oncol 2009;27:504510.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Shen ZX, Shi ZZ, Fang J, . All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004;101:53285335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lo-Coco F, Avvisati G, Vignetti M, . Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: results of the AIDA-2000 trial of the GIMEMA Group. Blood 2010;116:31713179.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Burnett AK, Hills RK, Milligan D, . Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol 2011;29:369377.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cairoli R, Beghini A, Grillo G, . Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006;107:34633468.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Paschka P, Marcucci G, Ruppert AS, . Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study. J Clin Oncol 2006;24:39043911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Park SH, Chi HS, Min SK, . Prognostic impact of c-KIT mutations in core binding factor acute myeloid leukemia. Leuk Res 2011;35:13761383.

  • 39.

    Mayer RJ, Davis RB, Schiffer CA, . Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 1994;331:896903.

  • 40.

    Chen W, Xie H, Wang H, . Prognostic significance of KIT mutations in core-binding factor acute myeloid leukemia: a systematic review and meta-analysis. PLoS One 2016;11:e0146614.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Corbacioglu A, Scholl C, Schlenk RF, . Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol 2010;28:37243729.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Jourdan E, Boissel N, Chevret S, . Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013;121:22132223.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Yin JA, O’Brien MA, Hills RK, . Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 2012;120:28262835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Aldoss I, Pullarkat V. Therapy-related acute myeloid leukemia with favorable cytogenetics: still favorable? Leuk Res 2012;36:15471551.

  • 45.

    Jonas BA, Pollyea DA. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia 2019;33:27952804.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Stahl M, Shallis RM, Wei W, . Management of hyperleukocytosis and impact of leukapheresis among patients with acute myeloid leukemia (AML) on short- and long-term clinical outcomes: a large, retrospective, multicenter, international study. Leukemia 2020;34:31493160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Mei M, Aldoss I, Marcucci G, . Hypomethylating agents in combination with venetoclax for acute myeloid leukemia: update on clinical trial data and practical considerations for use. Am J Hematol 2019;94:358362.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Aldoss I, Dadwal S, Zhang J, . Invasive fungal infections in acute myeloid leukemia treated with venetoclax and hypomethylating agents. Blood Adv 2019;3:40434049.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Rubenstein M, Duvic M. Bone marrow transplantation in Jehovah’s Witnesses. Leuk Lymphoma 2004;45:635636.

  • 50.

    Beck A, Lin R, Reza Rejali A, . Safety of bloodless autologous stem cell transplantation in Jehovah’s Witness patients. Bone Marrow Transplant 2020;55:10591067.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Ballen KK, Becker PS, Yeap BY, . Autologous stem-cell transplantation can be performed safely without the use of blood-product support. J Clin Oncol 2004;22:40874094.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Bock AM, Pollyea DA. Venetoclax with azacitidine for two younger Jehovah’s Witness patients with high risk acute myeloid leukemia [published online June 29, 2020]. Am J Hematol, doi: 10.1002/ajh.25916

    • Search Google Scholar
    • Export Citation
  • 53.

    Laszlo D, Agazzi A, Goldhirsch A, . Tailored therapy of adult acute leukaemia in Jehovah’s Witnesses: unjustified reluctance to treat. Eur J Haematol 2004;72:264267.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Wandt H, Schaefer-Eckart K, Wilhelm M. Two allogeneic hematopoietic stem cell transplantations without the use of blood-product support. Haematologica 2005;90:12921294.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Wilop S, Osieka R. Antineoplastic chemotherapy in Jehovah’s Witness patients with acute myelogenous leukemia refusing blood products—a matched pair analysis. Hematology 2018;23:324329.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Yamamoto Y, Kawashima A, Kashiwagi E, . A Jehovah’s Witness with acute myeloid leukemia successfully treated with an epigenetic drug, azacitidine: a clue for development of anti-AML therapy requiring minimum blood transfusions. Case Rep Hematol 2014;2014:141260.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    El Chaer F, Ballen KK. Treatment of acute leukaemia in adult Jehovah’s Witnesses. Br J Haematol 2019;bjh.16284.

  • 58.

    Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol 2018;93:12671291.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 842 842 842
PDF Downloads 448 448 448
EPUB Downloads 0 0 0