Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • 2 Stanford Cancer Institute;
  • 3 The University of Texas MD Anderson Cancer Center;
  • 4 Huntsman Cancer Institute at the University of Utah;
  • 5 Memorial Sloan Kettering Cancer Center;
  • 6 Roswell Park Comprehensive Cancer Center;
  • 7 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • 8 Fred & Pamela Buffett Cancer Center;
  • 9 Abramson Cancer Center at the University of Pennsylvania;
  • 10 Massachusetts General Hospital Cancer Center;
  • 11 UC San Diego Moores Cancer Center;
  • 12 Moffitt Cancer Center;
  • 13 University of Colorado Cancer Center;
  • 14 Vanderbilt-Ingram Cancer Center;
  • 15 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • 16 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 17 Mayo Clinic Cancer Center;
  • 18 Yale Cancer Center/Smilow Cancer Hospital;
  • 19 University of Wisconsin Carbone Cancer Center;
  • 20 Duke Cancer Institute;
  • 21 City of Hope National Medical Center;
  • 22 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 23 University of Michigan Rogel Cancer Center;
  • 24 O'Neal Comprehensive Cancer Center at UAB;
  • 25 Dana-Farber/Brigham and Women’s Cancer Center;
  • 26 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 27 UCLA Jonsson Comprehensive Cancer Center; and
  • 28 National Comprehensive Cancer Network
Restricted access

Eosinophilic disorders and related syndromes represent a heterogeneous group of neoplastic and nonneoplastic conditions, characterized by more eosinophils in the peripheral blood, and may involve eosinophil-induced organ damage. In the WHO classification of myeloid and lymphoid neoplasms, eosinophilic disorders characterized by dysregulated tyrosine kinase (TK) fusion genes are recognized as a new category termed, myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1 or with PCM1-JAK2. In addition to these aforementioned TK fusion genes, rearrangements involving FLT3 and ABL1 genes have also been described. These new NCCN Guidelines include recommendations for the diagnosis, staging, and treatment of any one of the myeloid/lymphoid neoplasms with eosinophilia (MLN-Eo) and a TK fusion gene included in the 2017 WHO Classification, as well as MLN-Eo and a FLT3 or ABL1 rearrangement.

Individual Disclosures for the NCCN Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes Panel

TU1

Supplementary Materials

    • Supplemental Materials (PDF 2.97 MB)
  • 1.

    Valent P, Gleich GJ, Reiter A, . Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev Hematol 2012;5:157176.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Valent P, Klion AD, Rosenwasser LJ, . ICON: Eosinophil Disorders. World Allergy Organ J 2012;5:174181.

  • 3.

    Montgomery ND, Dunphy CH, Mooberry M, . Diagnostic complexities of eosinophilia. Arch Pathol Lab Med 2013;137:259269.

  • 4.

    Valent P, Klion AD, Horny HP, . Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 2012;130:607612.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vega F, Medeiros LJ, Bueso-Ramos CE, . Hematolymphoid neoplasms associated with rearrangements of PDGFRA, PDGFRB, and FGFR1. Am J Clin Pathol 2015;144:377392.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood 2017;129:704714.

  • 7.

    Shomali W, Gotlib J. World Health Organization-defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol 2019;94:11491167.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Swerdlow SH, Campo E, Harris NL, . WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th Ed. Lyon, France: IARC; 2008.

    • Search Google Scholar
    • Export Citation
  • 9.

    Patterer V, Schnittger S, Kern W, . Hematologic malignancies with PCM1-JAK2 gene fusion share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, and FGFR1. Ann Hematol 2013;92:759769.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bain BJ, Ahmad S. Should myeloid and lymphoid neoplasms with PCM1-JAK2 and other rearrangements of JAK2 be recognized as specific entities? Br J Haematol 2014;166:809817.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Swerdlow SH, Harris NL, Jaffe ES, . WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed. Lyon, France: IARC; 2017.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gotlib J. Tyrosine kinase inhibitors in the treatment of eosinophilic neoplasms and systemic mastocytosis. Hematol Oncol Clin North Am 2017;31:643661.

  • 13.

    Cools J, DeAngelo DJ, Gotlib J, . A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:12011214.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pardanani A, Ketterling RP, Brockman SR, . CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 2003;102:30933096.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 2008;22:19992010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Boyer DF. Blood and bone marrow evaluation for eosinophilia. Arch Pathol Lab Med 2016;140:10601067.

  • 17.

    Metzgeroth G, Walz C, Score J, . Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007;21:11831188.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Helbig G, Moskwa A, Hus M, . Clinical characteristics of patients with chronic eosinophilic leukaemia (CEL) harbouring FIP1L1-PDGFRA fusion transcript--results of Polish multicentre study. Hematol Oncol 2010;28:9397.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rapanotti MC, Caruso R, Ammatuna E, . Molecular characterization of paediatric idiopathic hypereosinophilia. Br J Haematol 2010;151:440446.

  • 20.

    Farruggia P, Giugliano E, Russo D, . FIP1L1-PDGFRα-positive hypereosinophilic syndrome in childhood: a case report and review of literature. J Pediatr Hematol Oncol 2014;36:e28e30.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zeng K, Li L, Huang L, . Newly identified phenotypes in a FIP1L1/PDGFRA-associated paediatric HES patient: thrombocytosis, mHPA, young stroke and blindness. J Eur Acad Dermatol Venereol 2015;29:614616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Srinivasan A, Scordino T, Baker A. Myeloid neoplasm with eosinophilia and FIP1L1-PDGFRA rearrangement treated with imatinib mesylate: A pediatric case with long-term follow-up. J Pediatr Hematol Oncol 2019;41:334335.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Golub TR, Barker GF, Lovett M, . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77:307316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Jawhar M, Naumann N, Schwaab J, . Imatinib in myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRB in chronic or blast phase. Ann Hematol 2017;96:14631470.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Xiao S, Nalabolu SR, Aster JC, . FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 1998;18:8487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Strati P, Tang G, Duose DY, . Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk Lymphoma 2018;59:16721676.

  • 27.

    Umino K, Fujiwara SI, Ikeda T, . Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement. Hematology 2018;23:470477.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol 2010;41:461476.

  • 29.

    Vu HA, Xinh PT, Masuda M, . FLT3 is fused to ETV6 in a myeloproliferative disorder with hypereosinophilia and a t(12;13)(p13;q12) translocation. Leukemia 2006;20:14141421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Zaliova M, Moorman AV, Cazzaniga G, . Characterization of leukemias with ETV6-ABL1 fusion. Haematologica 2016;101:10821093.

  • 31.

    Helbig G, Wieczorkiewicz A, Dziaczkowska-Suszek J, . T-cell abnormalities are present at high frequencies in patients with hypereosinophilic syndrome. Haematologica 2009;94:12361241.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Legrand F, Renneville A, MacIntyre E, .French Eosinophil Network. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine (Baltimore) 2013;92:e1e9.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wang SA, Hasserjian RP, Tam W, . Bone marrow morphology is a strong discriminator between chronic eosinophilic leukemia, not otherwise specified and reactive idiopathic hypereosinophilic syndrome. Haematologica 2017;102:13521360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Steensma DP, Bejar R, Jaiswal S, . Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126:916.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sperr WR, Jordan JH, Fiegl M, . Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int Arch Allergy Immunol 2002;128:136141.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Böhm A, Födinger M, Wimazal F, . Eosinophilia in systemic mastocytosis: clinical and molecular correlates and prognostic significance. J Allergy Clin Immunol 2007;120:192199.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kluin-Nelemans HC, Reiter A, Illerhaus A, . Prognostic impact of eosinophils in mastocytosis: analysis of 2350 patients collected in the ECNM Registry. Leukemia 2020;34:10901101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Walker S, Wang C, Walradt T, . Identification of a gain-of-function STAT3 mutation (p.Y640F) in lymphocytic variant hypereosinophilic syndrome. Blood 2016;127:948951.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cools J, Stover EH, Gilliland DG. Detection of the FIP1L1-PDGFRA fusion in idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. Methods Mol Med 2006;125:177187.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Score J, Walz C, Jovanovic JV, . Detection and molecular monitoring of FIP1L1-PDGFRA-positive disease by analysis of patient-specific genomic DNA fusion junctions. Leukemia 2009;23:332339.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Erben P, Gosenca D, Müller MC, . Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis. Haematologica 2010;95:738744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Elling C, Erben P, Walz C, . Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 2011;117:29352943.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Olsson-Arvidsson L, Norberg A, Sjögren H, . Frequent false-negative FIP1L1-PDGFRA FISH analyses of bone marrow samples from clonal eosinophilia at diagnosis. Br J Haematol 2020;188:e76e79.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Walz C, Score J, Mix J, . The molecular anatomy of the FIP1L1-PDGFRA fusion gene. Leukemia 2009;23:271278.

  • 45.

    De Luca-Johnson J, Ninfea JI, Pearson L, . Myeloid neoplasms with t(5;12) and ETV6-ACSL6 gene fusion, potential mimickers of myeloid neoplasm with PDGFRB rearrangement: case report with imatinib therapy and review of the literature [published online September 26,2016]. Case Rep Med doi: 10.1155/2016/8324791

    • Search Google Scholar
    • Export Citation
  • 46.

    Jawhar M, Naumann N, Knut M, . Cytogenetically cryptic ZMYM2-FLT3 and DIAPH1-PDGFRB gene fusions in myeloid neoplasms with eosinophilia. Leukemia 2017;31:22712273.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Singh ZN, Richards S, El Chaer F, . Cryptic ETV6-PDGFRB fusion in a highly complex rearrangement of chromosomes 1, 5, and 12 due to a chromothripsis-like event in a myelodysplastic syndrome/myeloproliferative neoplasm. Leuk Lymphoma 2019;60:13041307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Zimmermann N, Nassiri M, Zhou J, . Myeloid neoplasm with a novel cryptic PDGFRB rearrangement detected by next-generation sequencing. Cancer Genet 2020;244:5559.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Fang H, Tang G, Loghavi S, . Systematic use of fluorescence in-situ hybridisation and clinicopathological features in the screening of PDGFRB rearrangements of patients with myeloid/lymphoid neoplasms. Histopathology 2020;76:10421054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Bidet A, Chollet C, Gardembas M, . Molecular monitoring of patients with ETV6-PDGFRB rearrangement: Implications for therapeutic adaptation. Br J Haematol 2018;182:148152.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Such E, Liquori A, Mora E, . RNA sequencing analysis for the identification of a PCM1/PDGFRB fusion gene responsive to imatinib. Acta Haematol 2019;142:9297.

  • 52.

    Guasch G, Mack GJ, Popovici C, . FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33). Blood 2000;95:17881796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Popovici C, Zhang B, Grégoire MJ, . The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood 1999;93:13811389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Bousquet M, Quelen C, De Mas V, . The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005;24:72487252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Murati A, Gelsi-Boyer V, Adélaïde J, . PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia 2005;19:16921696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Reiter A, Walz C, Watmore A, . The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005;65:26622667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Griesinger F, Hennig H, Hillmer F, . A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 2005;44:329333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Cirmena G, Aliano S, Fugazza G, . A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11) in a patient with acute myeloid leukemia. Cancer Genet Cytogenet 2008;183:105108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    He R, Greipp PT, Rangan A, . BCR-JAK2 fusion in a myeloproliferative neoplasm with associated eosinophilia. Cancer Genet 2016;209:223228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Hosseini N, Craddock KJ, Salehi-rad S, . ETV6 /FLT3 fusion in a mixed-phenotype acute leukemia arising in lymph nodes in a patient with myeloproliferative neoplasm with eosinophilia. J Hematop 2014;7:7177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Grand FH, Iqbal S, Zhang L, . A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Exp Hematol 2007;35:17231727.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Chung A, Hou Y, Ohgami RS, . A novel TRIP11-FLT3 fusion in a patient with a myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet 2017;216-217:1015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Troadec E, Dobbelstein S, Bertrand P, . A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia 2017;31:514517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Pardanani A, Lasho T, Wassie E, . Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia 2016;30:19241926.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Wang SA, Tam W, Tsai AG, . Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol 2016;29:854864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Lee JS, Seo H, Im K, . Idiopathic hypereosinophilia is clonal disorder? Clonality identified by targeted sequencing. PLoS One 2017;12:e0185602.

  • 67.

    Cross NCP, Hoade Y, Tapper WJ, . Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia. Leukemia 2019;33:415425.

  • 68.

    Baer C, Muehlbacher V, Kern W, . Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica 2018;103:e348e350.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Pardanani A, Lasho T, Barraco D, . Next generation sequencing of myeloid neoplasms with eosinophilia harboring the FIP1L1-PDGFRA mutation. Am J Hematol 2016;91:E10E11.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Patnaik MM, Lasho TL, Finke CM, . Targeted next generation sequencing of PDGFRB rearranged myeloid neoplasms with monocytosis. Am J Hematol 2016;91:E12E14.

  • 71.

    Klion AD, Robyn J, Akin C, . Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 2004;103:473478.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    von Bubnoff N, Sandherr M, Schlimok G, . Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2005;19:286287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Helbig G, Stella-Hołowiecka B, Majewski M, . A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol 2008;141:200204.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Pardanani A, Ketterling RP, Li CY, . FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 2006;30:965970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Jovanovic JV, Score J, Waghorn K, . Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007;109:46354640.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Metzgeroth G, Walz C, Erben P, . Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome: a phase-II study. Br J Haematol 2008;143:707715.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Metzgeroth G, Schwaab J, Gosenca D, . Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase. Leukemia 2013;27:22542256.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Pardanani A, D’Souza A, Knudson RA, . Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia: survival and clinical outcome. Leukemia 2012;26:24392441.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Qu SQ, Qin TJ, Xu ZF, . Long-term outcomes of imatinib in patients with FIP1L1/ PDGFRA associated chronic eosinophilic leukemia: experience of a single center in China. Oncotarget 2016;7:3322933236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Apperley JF, Gardembas M, Melo JV, . Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002;347:481487.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    David M, Cross NC, Burgstaller S, . Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood 2007;109:6164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Arefi M, García JL, Peñarrubia MJ, . Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur J Haematol 2012;89:3741.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Cheah CY, Burbury K, Apperley JF, . Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood 2014;123:35743577.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Baccarani M, Cilloni D, Rondoni M, . The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 2007;92:11731179.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Al-Riyami AZ, Hudoba M, Young S, . Sorafenib is effective for imatinib-resistant FIP1L1/PDGFRA T674I mutation-positive acute myeloid leukemia with eosinophilia. Leuk Lymphoma 2013;54:17881790.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Lierman E, Folens C, Stover EH, . Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 2006;108:13741376.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Metzgeroth G, Erben P, Martin H, . Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 2012;26:162164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Lierman E, Smits S, Cools J, . Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases. Leukemia 2012;26:16931695.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Azam M, Seeliger MA, Gray NS, . Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol 2008;15:11091118.

  • 90.

    Bastie JN, Garcia I, Terré C, . Lack of response to imatinib mesylate in a patient with accelerated phase myeloproliferative disorder with rearrangement of the platelet-derived growth factor receptor beta-gene. Haematologica 2004;89:12631264.

    • Search Google Scholar
    • Export Citation
  • 91.

    Zhang Y, Gao Y, Zhang H, . PDGFRB mutation and tyrosine kinase inhibitor resistance in Ph-like acute lymphoblastic leukemia. Blood 2018;131:22562261.

  • 92.

    Heinrich M, Jones RL, von Mehren M, . Clinical response to avapritinib by RECIST and Choi Criteria in ≥4th line and PDGFRA exon 18 gastrointestinal stromal tumors (GIST) [abstract]. Connective Tissue Oncology Society Annual Meeting, Tokyo, Japan. 2019:Abstract 3027631.

    • Crossref
    • Export Citation
  • 93.

    Dhillon S. Avapritinib: first approval. Drugs 2020;80:433439.

  • 94.

    Helbig G, Kyrcz-Krzemień S. Cessation of imatinib mesylate may lead to sustained hematologic and molecular remission in FIP1L1-PDGFRA-mutated hypereosinophilic syndrome. Am J Hematol 2014;89:115.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Metzgeroth G, Schwaab J, Naumann N, . Treatment-free remission in FIP1L1-PDGFRA-positive myeloid/lymphoid neoplasms with eosinophilia after imatinib discontinuation. Blood Adv 2020;4:440443.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Chonabayashi K, Hishizawa M, Matsui M, . Successful allogeneic stem cell transplantation with long-term remission of ETV6/FLT3-positive myeloid/lymphoid neoplasm with eosinophilia. Ann Hematol 2014;93:535537.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Falchi L, Mehrotra M, Newberry KJ, . ETV6-FLT3 fusion gene-positive, eosinophilia-associated myeloproliferative neoplasm successfully treated with sorafenib and allogeneic stem cell transplant. Leukemia 2014;28:20902092.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Kreil S, Adès L, Bommer M, . Limited efficacy of ponatinib in myeloproliferative neoplasms associated with FGFR1 fusion genes. [abstract] Blood 2015;126: Abstract 2812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Schwaab J, Naumann N, Luebke J, . Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am J Hematol 2020;95:824833.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Khodadoust MS, Luo B, Medeiros BC, . Clinical activity of ponatinib in a patient with FGFR1-rearranged mixed-phenotype acute leukemia. Leukemia 2016;30:947950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Katagiri S, Umezu T, Azuma K, . Maintenance 5-azacytidine therapy by MRD monitoring after allogeneic HSCT in myeloid/lymphoid neoplasms with FGFR1 rearrangement. Bone Marrow Transplant 2019;54:11481150.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Verstovsek S, Vannucchi AM, Rambaldi A, . Interim results from Fight-203, a phase 2, open-label, multicenter study evaluating the efficacy and safety of pemigatinib (INCB054828) in patients with myeloid/lymphoid neoplasms with rearrangement of fibroblast growth factor receptor 1 (FGFR1) [abstract]. Blood 2018;132: Abstract 690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Hoy SM. Pemigatinib: first approval. Drugs 2020;80:923929.

  • 104.

    Chen J, Deangelo DJ, Kutok JL, . PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA 2004;101:1447914484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Chase A, Bryant C, Score J, . Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematologica 2013;98:103106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Rumi E, Milosevic JD, Casetti I, . Efficacy of ruxolitinib in chronic eosinophilic leukemia associated with a PCM1-JAK2 fusion gene. J Clin Oncol 2013;31:e269e271.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Rumi E, Milosevic JD, Selleslag D, . Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Ann Hematol 2015;94:19271928.

  • 108.

    Schwaab J, Knut M, Haferlach C, . Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann Hematol 2015;94:233238.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Walz C, Erben P, Ritter M, . Response of ETV6-FLT3-positive myeloid/lymphoid neoplasm with eosinophilia to inhibitors of FMS-like tyrosine kinase 3. Blood 2011;118:22392242.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 842 842 842
PDF Downloads 261 261 261
EPUB Downloads 0 0 0