Background: Increasing demand for genetic testing for inherited cancer risk coupled with a shortage of providers trained in genetics highlight the potential for automated tools embedded in the clinic process to meet this demand. We developed and tested a scalable, easy-to-use, 12-minute web-based educational tool that included standard pretest genetic counseling elements related to panel-based testing for multiple genes associated with cancer risk. Methods: The tool was viewed by new patients at the Vanderbilt Hereditary Cancer Clinic before meeting with a board-certified genetics professional. Pre- and post-tool surveys measured knowledge, feeling informed/empowered to decide about testing, attitudinal values about genetic testing, and health literacy. Of the initial 100 participants, 50 were randomized to only have knowledge measured on the post-tool survey to assess for a priming effect. Results: Of 360 patients approached, 305 consented and completed both the pre- and post-tool surveys, with a mean age of 47 years, including 80% female patients and 48% patients with cancer. Survey results showed an increase in knowledge and feeling informed/empowered after viewing the tool (P<.001), but no significant change in attitude (P=.64). Post-tool survey data indicated no difference in median knowledge between low and high health literacy groups (P=.30). No priming effect was present among the initial 100 participants (P=.675). Conclusions: Viewing the educational tool resulted in significant gains in knowledge across health literacy levels, and most individuals felt informed and empowered to decide about genetic testing. These findings indicate that the use of an automated pretest genetic counseling tool may help streamline the delivery of genetic services.
Submitted November 5, 2019; accepted for publication February 7, 2020.
Author contributions: Study concept: Cragun, Pal. Methodology: Cragun, Pal. Project administration: Weidner, Tezak. Data curation: Weidner. Formal analysis: Cragun, Weidner. Investigation: Zuniga. Funding acquisition: Pal. Writing—original draft: Cragun. Writing—review and editing: All authors.
Disclosures: The authors have disclosed that they have not received any financial consideration from any person or organization to support the preparation, analysis, results, or discussion of this article.
Funding: This work was supported by funding from Ingram Professorship (ID0EQ6AG3405), Kleberg Foundation (ID0ESDBG3406), and Vanderbilt Genetic Institute Departmental Funds (ID0EUHBG3407). This project was also supported by CTSA (award number UL1 TR002243) from the National Center for Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the NIH.