Role of Immunotherapy in Triple-Negative Breast Cancer

Authors: Tanya E. Keenan MD, MPH 1 , 2 and Sara M. Tolaney MD, MPH 1 , 2
View More View Less
  • 1 Department of Medical Oncology, Dana-Farber Cancer Institute, and
  • 2 Harvard Medical School, Boston, Massachusetts.
Restricted access

Immune checkpoint inhibitors (ICIs) have led to durable clinical remissions in many metastatic cancers. However, the single-agent efficacy of ICIs in breast cancer is low, including in triple-negative breast cancer (TNBC), which has several key characteristics that enhance ICI responses. Strategies to improve anticancer immune responses in TNBC are urgently needed to extend survival for patients with metastatic disease. This review presents ICI monotherapy response rates and discusses combination strategies with chemotherapy, targeted therapies, and novel immunotherapies. It concludes with a summary of immunotherapy biomarkers in TNBC and a call to action for future directions of research critical to advancing the efficacy of immunotherapy for patients with TNBC.

Submitted October 21, 2019; accepted for publication February 20, 2020.

Disclosures: Dr. Keenan has disclosed that she has no financial interests, arrangements, affiliations, or commercial interests with the manufacturers of any products discussed in this article or their competitors. Dr. Tolaney has disclosed that she receives grant/research support from Novartis, Genentech, Eli Lilly, Pfizer, Merck, Exelixis, Eisai, Bristol Meyers Squibb, AstraZeneca, Cyclacel, Immunomedics, Odonate, and Nektar; and that she is a scientific advisor/consultant for Novartis, Eli Lilly, Pfizer, Merck, AstraZeneca, Eisai, Puma, Genentech, Immunomedics, Nektar, Tesaro, Daiichi-Sankyo, Oncopep, Paxman, Athenex, Abbvie, and Nanostring.

Correspondence: Sara M. Tolaney, MD, MPH, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Email: sara_tolaney@dfci.harvard.edu
  • 1.

    Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 2019;9:176198.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Topalian SL, Hodi FS, Brahmer JR, . Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:24432454.

  • 3.

    Garon EB, Rizvi NA, Hui R, . Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:20182028.

  • 4.

    Motzer RJ, Rini BI, McDermott DF, . Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 2015;33:14301437.

  • 5.

    Rosenberg JE, Hoffman-Censits J, Powles T, . Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387:19091920.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wolchok JD, Chiarion-Sileni V, Gonzalez R, . Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017;377:13451356.

  • 7.

    El-Khoueiry AB, Sangro B, Yau T, . Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:24922502.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kim ST, Cristescu R, Bass AJ, . Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24:14491458.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:13501355.

  • 10.

    Denkert C, von Minckwitz G, Darb-Esfahani S, . Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018;19:4050.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fehrenbacher L, Spira A, Ballinger M, . Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016;387:18371846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Loi S, Drubay D, Adams S, . Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 2019;37:559569.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mittendorf EA, Philips AV, Meric-Bernstam F, . PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2014;2:361370.

  • 14.

    Gatalica Z, Snyder C, Maney T, . Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev 2014;23:29652970.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Luen S, Virassamy B, Savas P, . The genomic landscape of breast cancer and its interaction with host immunity. Breast 2016;29:241250.

  • 16.

    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:6974.

  • 17.

    Yarchoan M, Johnson BA III, Lutz ER, . Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017;17:209222.

  • 18.

    Nanda R, Chow LQ, Dees EC, . Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 2016;34:24602467.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Adams S, Schmid P, Rugo HS, . Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol 2019;30:397404.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Adams S, Loi S, Toppmeyer D, . Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol 2019;30:405411.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cortes J, Lipatov O, Im S, . KEYNOTE-119: phase 3 study of pembrolizumab versus single-agent chemotherapy for metastatic triple-negative breast cancer (mTNBC) [abstract]. Ann Oncol 2019;30(Suppl 5):v851934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Dirix LY, Takacs I, Jerusalem G, . Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 2018;167:671686.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Emens LA, Cruz C, Eder JP, . Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol 2019;5:7482.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ueda S, Saeki T, Takeuchi H, . In vivo imaging of eribulin-induced reoxygenation in advanced breast cancer patients: a comparison to bevacizumab. Br J Cancer 2016;114:12121218.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mariathasan S, Turley SJ, Nickles D, . TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554:544548.

  • 26.

    Tolaney SM, Kalinsky K, Kaklamani V, . Phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer [abstract]. Cancer Res 2018;78(Suppl):Abstract PD6-13.

    • Crossref
    • Export Citation
  • 27.

    Adams S, Diamond JR, Hamilton E, . Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol 2019;5:334342.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Schmid P, Adams S, Rugo HS, . Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018;379:21082121.

  • 29.

    Schmid P, Adams S, Rugo HS, . IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab (atezo) + nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC) [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 1003.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kulangara K, Zhang N, Corigliano E, . Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med 2019;143:330337.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nanda R, Liu MC, Yau C, . Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial [published online February 13, 2020]. JAMA Oncol, doi: 10.1001/jamaoncol.2019.6650

    • Search Google Scholar
    • Export Citation
  • 32.

    Galluzzi L, Buqué A, Kepp O, . Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015;28:690714.

  • 33.

    Zitvogel L, Apetoh L, Ghiringhelli F, . Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008;8:5973.

  • 34.

    Loibl S, Untch M, Burchardi N, . A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol 2019;30:12791288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Schmid P, Cortes J, Dent R, . KEYNOTE-522: phase 3 study of pembrolizumab (pembro) + chemotherapy (chemo) vs placebo (pbo) + chemo as neoadjuvant treatment, followed by pembro vs pbo as adjuvant treatment of early triple-negative breast cancer (TNBC). Ann Oncol 2019;30(Suppl 5):v851934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gianni L, Huang CS, Egle D, . Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. Presented at the 2019 San Antonio Breast Cancer Symposium; December 10–14, 2019; San Antonio, Texas. Abstract GS3-04.

    • Crossref
    • Export Citation
  • 37.

    Liu MC, Robinson PA, Yau C, . Evaluation of a pembrolizumab-8 cycle neoadjuvant regimen without AC for high-risk early-stage HER2-negative breast cancer: results from the I-SPY 2 TRIAL. Presented at the 2019 San Antonio Breast Cancer Symposium; December 10–14, 2019; San Antonio, Texas. Abstract P3-09-02.

  • 38.

    Voorwerk L, Slagter M, Horlings HM, . Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med 2019;25:920928.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    LaFleur MW, Muroyama Y, Drake CG, . Inhibitors of the PD-1 pathway in tumor therapy. J Immunol 2018;200:375383.

  • 40.

    Pantelidou C, Sonzogni O, De Oliveria Taveira M, . PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov 2019;9:722737.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kraya AA, Maxwell KN, Wubbenhorst B, . Genomic signatures predict the immunogenicity of BRCA-deficient breast cancer. Clin Cancer Res 2019;25:43634374.

  • 42.

    Vinayak S, Tolaney SM, Schwartzberg L, . Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol 2019;5:11321140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Senkus-Konefka E, Domchek S, Im SA, . Subgroup analysis of olaparib monotherapy versus chemotherapy by hormone receptor and BRCA mutation status in patients with HER2-negative metastatic breast cancer and a germline BRCA mutation: OlympiAD. Eur J Cancer 2018;92(Suppl 3):S1920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Eiermann W, Rugo HS, Diab S, . Analysis of germline BRCA1/2 mutated (gBRCAmut) hormone receptor-positive (HR+) and triple negative breast cancer (TNBC) treated with talazoparib (TALA) [abstract]. J Clin Oncol 2018;36(Suppl):Abstract 1070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Domchek S, Postel-Vinay S, Im S, . Phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): updated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol 2019;30(Suppl 5):v475532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Peng W, Chen JQ, Liu C, . Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016;6:202216.

  • 47.

    George S, Miao D, Demetri GD, . Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 2017;46:197204.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Crompton JG, Sukumar M, Roychoudhuri R, . Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 2015;75:296305.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Schmid P, Loirat D, Savas P, . Phase 1b study evaluating a triplet combination of ipatasertib, atezolizumab, and paclitaxel or nab-paclitaxel as first-line therapy for locally advanced/metastatic triple-negative breast cancer [abstract]. Cancer Res 2019;79(13 Suppl):Abstract CT049.

    • Search Google Scholar
    • Export Citation
  • 50.

    Loi S, Dushyanthen S, Beavis PA, . RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 2016;22:14991509.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Brufsky A, Kim SB, Zvirbule Z, . Phase II COLET study: atezolizumab (A) + cobimetinib (C) + paclitaxel (P)/nab-paclitaxel (nP) as first-line (1L) treatment (tx) for patients (pts) with locally advanced or metastatic triple-negative breast cancer (mTNBC) [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 1013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Charych DH, Hoch U, Langowski JL, . NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res 2016;22:680690.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Diab A, Hurwitz ME, Cho DC, . NKTR-214 (CD-122-biased agonist) plus nivolumab in patients with advanced solid tumors: preliminary phase 1/2 results of PIVOT [abstract]. J Clin Oncol 2018;36(Suppl):Abstract 3006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Bentebibel SE, Hurwitz ME, Bernatchez C, . A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov 2019;9:711721.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Ribas A, Medina T, Kummar S, . SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov 2018;8:12501257.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Isakoff SJ, Tolaney SM, Tung NM, . A phase 1b study of safety and immune response to PVX-410 vaccine alone and in combination with durvalumab (MEDI4736) in HLA-A2+ patients following adjuvant therapy for stage 2/3 triple negative breast cancer [abstract]. J Clin Oncol 2017;35(Suppl):Abstract TPS1126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Kalli KR, Block MS, Kasi PM, . Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients. Clin Cancer Res 2018;24:30143025.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Liu XS, Mardis ER. Applications of immunogenomics to cancer. Cell 2017;168:600612.

  • 59.

    Maeng H, Terabe M, Berzofsky JA. Cancer vaccines: translation from mice to human clinical trials. Curr Opin Immunol 2018;51:111122.

  • 60.

    Hernandez-Aya LF, Gao F, Goedegebuure PS, . A randomized phase II study of nab-paclitaxel + durvalumab + neoantigen vaccine versus nab-paclitaxel + durvalumab in metastatic triple-negative breast cancer (mTNBC) [abstract]. J Clin Oncol 2019;37(Suppl):Abstract TPS1114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Zacharakis N, Chinnasamy H, Black M, . Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 2018;24:724730.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Tchou J, Zhao Y, Levine BL, . Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 2017;5:11521161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov 2016;6:133146.

  • 64.

    Le DT, Durham JN, Smith KN, . Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409413.

  • 65.

    Reck M, Rodríguez-Abreu D, Robinson AG, . Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:18231833.

  • 66.

    Rugo HS, Loi S, Adams S, . Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): post-hoc analysis of IMpassion130 [abstract]. Ann Oncol 2019;30(Suppl):v858859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Rimm DL, Han G, Taube JM, . A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol 2017;3:10511058.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Ribas A, Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med 2016;213:28352840.

  • 69.

    Schmid P, Park YH, Ferreira M, . Keynote-522 study of pembrolizumab + chemotherapy vs placebo + chemotherapy as neoadjuvant treatment, followed by pembrolizumab vs placebo as adjuvant treatment of early triple-negative breast cancer: pathologic complete response in key subgroups. Presented at the 2019 San Antonio Breast Cancer Symposium; December 10–14, 2019; San Antonio, Texas. Abstract GS3-03.

  • 70.

    Rizvi NA, Hellmann MD, Snyder A, . Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Carbone DP, Reck M, Paz-Ares L, . First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017;376:24152426.

  • 72.

    Hellmann MD, Callahan MK, Awad MM, . Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 2018;33:853861.e854.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Cristescu R, Mogg R, Ayers M, . Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018;362:eaar3593.

  • 74.

    Ott PA, Bang YJ, Piha-Paul SA, . T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol 2019;37:318327.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Samstein RM, Lee CH, Shoushtari AN, . Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019;51:202206.

  • 76.

    Barroso-Sousa R, Jain E, Cohen O, . Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol 2020;31:387394.

  • 77.

    Barroso-Sousa R, Jain E, Kim D, . Determinants of high tumor mutational burden (TMB) and mutational signatures in breast cancer [abstract]. J Clin Oncol 2018;36(Suppl):Abstract 1010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Chen R, Zinzani PL, Fanale MA, . Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 2017;35:21252132.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Barroso-Sousa R, Keenan TE, Pernas S, . Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer [published online February 4, 2020]. Clin Cancer Res, doi: 10.1158/1078-0432.CCR-19-3507

    • Search Google Scholar
    • Export Citation
  • 80.

    Schmid P, Cruz C, Braiteh F, . Abstract 2986: atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analyses [abstract]. Cancer Res 2017;77(13 Suppl):Abstract 2986.

    • Search Google Scholar
    • Export Citation
  • 81.

    Loi S, Winer E, Lipatov O, . Abstract PD5-03: relationship between tumor-infiltrating lymphocytes (TILs) and outcomes in KEYNOTE-119 study of pembrolizumab vs chemotherapy for previously treated metastatic triple-negative breast cancer (mTNBC) [abstract]. Cancer Res 2020:80(4 Suppl):Abstract PD5-03.

    • Crossref
    • Export Citation
  • 82.

    Emens LA, Loi S, Rugo HS, . Abstract GS1-04: IMpassion130: efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer [abstract]. Cancer Res 2019;79(4 Suppl):Abstract GS1-04.

    • Crossref
    • Export Citation
  • 83.

    Blenman K, Li X, Marczyk M, . Predictive markers of response to durvalumab concurrent with nab-paclitaxel and dose dense doxorubicin cyclophosphamide (ddAC) neoadjuvant therapy for triple negative breast cancer (TNBC). Presented at the 42nd Annual SABCS; December 10–14, 2019; San Antonio, Texas. Abstract 1870.

  • 84.

    Sade-Feldman M, Jiao YJ, Chen JH, . Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 2017;8:1136.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6822 6822 611
PDF Downloads 2352 2352 187
EPUB Downloads 0 0 0