NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020

Featured Updates to the NCCN Guidelines

View More View Less
  • 1 Fox Chase Cancer Center;
  • 2 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 3 Dana-Farber/Brigham and Women’s Cancer Center;
  • 4 St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center;
  • 5 Huntsman Cancer Institute at the University of Utah;
  • 6 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 7 Abramson Cancer Center at the University of Pennsylvania;
  • 8 O'Neal Comprehensive Cancer Center at UAB;
  • 9 FORCE: Facing Our Risk of Cancer Empowered;
  • 10 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • 11 Roswell Park Comprehensive Cancer Center;
  • 12 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 13 University of Colorado Cancer Center;
  • 14 Stanford Cancer Institute;
  • 15 Moffitt Cancer Center;
  • 16 The University of Texas MD Anderson Cancer Center;
  • 17 UCSF Helen Diller Family Comprehensive Cancer Center;
  • 18 Duke Cancer Institute;
  • 19 University of Michigan Rogel Cancer Center;
  • 20 University of Washington/Seattle Cancer Care Alliance;
  • 21 Memorial Sloan Kettering Cancer Center;
  • 22 Vanderbilt-Ingram Cancer Center;
  • 23 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • 24 Fred & Pamela Buffett Cancer Center;
  • 25 Massachusetts General Hospital Cancer Center;
  • 26 City of Hope National Medical Center;
  • 27 Mayo Clinic Cancer Center;
  • 28 University of Wisconsin Carbone Cancer Center; and
  • 29 National Comprehensive Cancer Network.
Restricted access

The NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic provide recommendations for genetic testing and counseling for hereditary cancer syndromes, and risk management recommendations for patients who are diagnosed with syndromes associated with an increased risk of these cancers. The NCCN panel meets at least annually to review comments, examine relevant new data, and reevaluate and update recommendations. These NCCN Guidelines Insights summarize the panel’s discussion and most recent recommendations regarding criteria for high-penetrance genes associated with breast and ovarian cancer beyond BRCA1/2, pancreas screening and genes associated with pancreatic cancer, genetic testing for the purpose of systemic therapy decision-making, and testing for people with Ashkenazi Jewish ancestry.

  • 1.

    Gabai-Kapara E, Lahad A, Kaufman B, . Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci USA 2014;111:1420514210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Manchanda R, Loggenberg K, Sanderson S, . Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial. J Natl Cancer Inst 2014;107:379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Best AF, Tucker MA, Frone MN, . A pragmatic testing-eligibility framework for population mutation screening: the example of BRCA1/2. Cancer Epidemiol Biomarkers Prev 2019;28:293302.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Metcalfe KA, Poll A, Royer R, . A comparison of the detection of BRCA mutation carriers through the provision of Jewish population-based genetic testing compared with clinic-based genetic testing. Br J Cancer 2013;109:777779.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lieberman S, Tomer A, Ben-Chetrit A, . Population screening for BRCA1/BRCA2 founder mutations in Ashkenazi Jews: proactive recruitment compared with self-referral. Genet Med 2017;19:754762.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Robson M, Im SA, Senkus E, . Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017;377:523533.

  • 7.

    Litton JK, Rugo HS, Ettl J, . Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 2018;379:753763.

  • 8.

    Moore KN, Secord AA, Geller MA, . Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2019;20:636648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kaufman B, Shapira-Frommer R, Schmutzler RK, . Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Swisher EM, Lin KK, Oza AM, . Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 2017;18:7587.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Golan T, Hammel P, Reni M, . Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 2019;381:317327.

  • 12.

    Mateo J, Porta N, Bianchini D, . Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2020;21:162174.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Clarke N, Wiechno P, Alekseev B, . Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2018;19:975986.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lancaster JM, Powell CB, Chen LM, . Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 2015;136:37.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hong YC, Liu HM, Chen PS, . Hair follicle: a reliable source of recipient origin after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2007;40:871874.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tran SD, Pillemer SR, Dutra A, . Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet 2003;361:10841088.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Weitzel JN, Chao EC, Nehoray B, . Somatic TP53 variants frequently confound germ-line testing results. Genet Med 2018;20:809816.

  • 18.

    Balmaña J, Digiovanni L, Gaddam P, . Conflicting interpretation of genetic variants and cancer risk by commercial laboratories as assessed by the prospective registry of multiplex testing. J Clin Oncol 2016;34:40714078.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Vail PJ, Morris B, van Kan A, . Comparison of locus-specific databases for BRCA1 and BRCA2 variants reveals disparity in variant classification within and among databases. J Community Genet 2015;6:351359.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lincoln SE, Yang S, Cline MS, . Consistency of BRCA1 and BRCA2 variant classifications among clinical diagnostic laboratories. JCO Precis Oncol 2017;1:110.

    • Search Google Scholar
    • Export Citation
  • 21.

    Eccles DM, Mitchell G, Monteiro AN, . BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann Oncol 2015;26:20572065.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Badalato L, Kalokairinou L, Borry P. Third party interpretation of raw genetic data: an ethical exploration. Eur J Hum Genet 2017;25:11891194.

  • 23.

    Tandy-Connor S, Guiltinan J, Krempely K, . False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med 2018;20:15151521.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Robson ME, Bradbury AR, Arun B, . American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 2015;33:36603667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Green RC, Berg JS, Grody WW, . ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013;15:565574.

  • 26.

    Walsh T, Casadei S, Coats KH, . Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 2006;295:13791388.

  • 27.

    Kurian AW, Hare EE, Mills MA, . Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 2014;32:20012009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kurian AW, Ward KC, Hamilton AS, . Uptake, results, and outcomes of germline multiple-gene sequencing after diagnosis of breast cancer. JAMA Oncol 2018;4:10661072.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hall MJ, Forman AD, Pilarski R, . Gene panel testing for inherited cancer risk. J Natl Compr Canc Netw 2014;12:13391346.

  • 30.

    Hall MJ, Obeid E, Daly MB. Multigene panels to evaluate hereditary cancer risk: reckless or relevant? J Clin Oncol 2016;34:41864187.

  • 31.

    Manchanda R, Patel S, Gordeev VS, . Cost-effectiveness of population-based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 mutation testing in unselected general population women. J Natl Cancer Inst 2018;110:714725.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Walsh T, Lee MK, Casadei S, . Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci USA 2010;107:1262912633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Bombard Y, Bach PB, Offit K. Translating genomics in cancer care. J Natl Compr Canc Netw 2013;11:13431353.

  • 34.

    Rainville IR, Rana HQ. Next-generation sequencing for inherited breast cancer risk: counseling through the complexity. Curr Oncol Rep 2014;16:371.

  • 35.

    Blazer KR, Slavin T, Weitzel JN. Increased reach of genetic cancer risk assessment as a tool for precision management of hereditary breast cancer. JAMA Oncol 2016;2:723724.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Tung N, Domchek SM, Stadler Z, . Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 2016;13:581588.

  • 37.

    van Marcke C, De Leener A, Berlière M, . Routine use of gene panel testing in hereditary breast cancer should be performed with caution. Crit Rev Oncol Hematol 2016;108:3339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Cragun D, Radford C, Dolinsky JS, . Panel-based testing for inherited colorectal cancer: a descriptive study of clinical testing performed by a US laboratory. Clin Genet 2014;86:510520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    LaDuca H, Stuenkel AJ, Dolinsky JS, . Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med 2014;16:830837.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mauer CB, Pirzadeh-Miller SM, Robinson LD, . The integration of next-generation sequencing panels in the clinical cancer genetics practice: an institutional experience. Genet Med 2014;16:407412.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Tung N, Battelli C, Allen B, . Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 2015;121:2533.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kapoor NS, Curcio LD, Blakemore CA, . Multigene panel testing detects equal rates of pathogenic BRCA1/2 mutations and has a higher diagnostic yield compared with limited BRCA1/2 analysis alone in patients at risk for hereditary breast cancer. Ann Surg Oncol 2015;22:32823288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Renaux-Petel M, Charbonnier F, Théry JC, . Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. J Med Genet 2018;55:173180.

  • 44.

    Jaiswal S, Fontanillas P, Flannick J, . Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371:24882498.

  • 45.

    Genovese G, Kähler AK, Handsaker RE, . Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014;371:24772487.

  • 46.

    Trepanier A, Ahrens M, McKinnon W, . Genetic cancer risk assessment and counseling: recommendations of the national society of genetic counselors. J Genet Couns 2004;13:83114.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Genetic Information Nondiscrimination Act of 2008. Accessed February 28, 2020. Available at: https://www.eeoc.gov/laws/statutes/gina.cfm

  • 48.

    Berliner JL, Fay AM. Risk assessment and genetic counseling for hereditary breast and ovarian cancer: recommendations of the National Society of Genetic Counselors. J Genet Couns 2007;16:241260.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Calzone KA, Soballe PW. Genetic testing for cancer susceptibility. Surg Clin North Am 2008;88:705721.

  • 50.

    Berliner JL, Fay AM, Cummings SA, . NSGC practice guideline: risk assessment and genetic counseling for hereditary breast and ovarian cancer. J Genet Couns 2013;22:155163.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Offit K, Levran O, Mullaney B, . Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J Natl Cancer Inst 2003;95:15481551.

  • 52.

    Cragun D, Camperlengo L, Robinson E, . Differences in BRCA counseling and testing practices based on ordering provider type. Genet Med 2015;17:5157.

  • 53.

    Katz SJ, Ward KC, Hamilton AS, . Gaps in receipt of clinically indicated genetic counseling after diagnosis of breast cancer. J Clin Oncol 2018;36:12181224.

  • 54.

    Vadaparampil ST, Scherr CL, Cragun D, . Pre-test genetic counseling services for hereditary breast and ovarian cancer delivered by non-genetics professionals in the state of Florida. Clin Genet 2015;87:473477.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Hoskovec JM, Bennett RL, Carey ME, . Projecting the supply and demand for certified genetic counselors: a workforce study. J Genet Couns 2018;27:1620.

  • 56.

    Humphris JL, Johns AL, Simpson SH, . Clinical and pathologic features of familial pancreatic cancer. Cancer 2014;120:36693675.

  • 57.

    Petersen GM. Familial pancreatic cancer. Semin Oncol 2016;43:548553.

  • 58.

    Hu C, Hart SN, Polley EC, . Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018;319:24012409.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Chaffee KG, Oberg AL, McWilliams RR, . Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med 2018;20:119127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Yurgelun MB, Chittenden AB, Morales-Oyarvide V, . Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med 2019;21:213223.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Abe T, Blackford AL, Tamura K, . Deleterious germline mutations are a risk factor for neoplastic progression among high-risk individuals undergoing pancreatic surveillance. J Clin Oncol 2019;37:10701080.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Shindo K, Yu J, Suenaga M, . Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 2017;35:33823390.

  • 63.

    Roberts NJ, Jiao Y, Yu J, . ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012;2:4146.

  • 64.

    Slater EP, Langer P, Niemczyk E, . PALB2 mutations in European familial pancreatic cancer families. Clin Genet 2010;78:490494.

  • 65.

    Jones S, Hruban RH, Kamiyama M, . Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009;324:217.

  • 66.

    Casadei S, Norquist BM, Walsh T, . Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 2011;71:22222229.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Hu C, Hart SN, Bamlet WR, . Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev 2016;25:207211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Lowery MA, Wong W, Jordan EJ, . Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 2018;110:10671074.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Salo-Mullen EE, O’Reilly EM, Kelsen DP, . Identification of germline genetic mutations in patients with pancreatic cancer. Cancer 2015;121:43824388.

  • 70.

    Grant RC, Selander I, Connor AA, . Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015;148:556564.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Holter S, Borgida A, Dodd A, . Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015;33:31243129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Couch FJ, Johnson MR, Rabe KG, . The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2007;16:342346.

  • 73.

    Zhen DB, Rabe KG, Gallinger S, . BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 2015;17:569577.

  • 74.

    Ferrone CR, Levine DA, Tang LH, . BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol 2009;27:433438.

  • 75.

    Lucas AL, Shakya R, Lipsyc MD, . High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clin Cancer Res 2013;19:33963403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Klein AP, Brune KA, Petersen GM, . Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 2004;64:26342638.

  • 77.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:730.

  • 78.

    Simard EP, Ward EM, Siegel R, . Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin 2012;62:118128.

  • 79.

    Vasen H, Ibrahim I, Ponce CG, . Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers. J Clin Oncol 2016;34:20102019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Canto MI, Almario JA, Schulick RD, . Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology 2018;155:740751.e2.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Goggins M, Overbeek KA, Brand R, . Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020;69:717.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Syngal S, Brand RE, Church JM, . ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015;110:223262., quiz 263.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Weiss FU. Pancreatic cancer risk in hereditary pancreatitis. Front Physiol 2014;5:70.

  • 84.

    Rebours V, Lévy P, Ruszniewski P. An overview of hereditary pancreatitis. Dig Liver Dis 2012;44:815.

  • 85.

    Patel MR, Eppolito AL, Willingham FF. Hereditary pancreatitis for the endoscopist. Therap Adv Gastroenterol 2013;6:169179.

  • 86.

    Hasan A, Moscoso DI, Kastrinos F. The role of genetics in pancreatitis. Gastrointest Endosc Clin N Am 2018;28:587603.

  • 87.

    Canto MI, Hruban RH, Fishman EK, . Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 2012;142:796804, quiz e14–15.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6859 6859 719
PDF Downloads 2437 2437 223
EPUB Downloads 0 0 0