Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 4.2020, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 The University of Texas MD Anderson Cancer Center;
  • 2 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 3 Massachusetts General Hospital Cancer Center;
  • 4 Yale Cancer Center/Smilow Cancer Hospital;
  • 5 Fred & Pamela Buffett Cancer Center;
  • 6 Duke Cancer Institute;
  • 7 Dana-Farber/Brigham and Women's Cancer Center;
  • 8 Mayo Clinic Cancer Center;
  • 9 Moffitt Cancer Center;
  • 10 Stanford Cancer Institute;
  • 11 O'Neal Comprehensive Cancer Center at UAB;
  • 12 University of Wisconsin Carbone Cancer Center;
  • 13 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic; Taussig Cancer Institute;
  • 14 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 15 University of Colorado Cancer Center;
  • 16 UCSF Helen Diller Family Comprehensive Cancer Center;
  • 17 Fox Chase Cancer Center;
  • 18 UC San Diego Moores Cancer Center;
  • 19 Abramson Cancer Center at the University of Pennsylvania;
  • 20 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 21 University of Michigan Rogel Cancer Center;
  • 22 Memorial Sloan Kettering Cancer Center;
  • 23 Vanderbilt-Ingram Cancer Center;
  • 24 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • 25 City of Hope National Medical Center;
  • 26 Huntsman Cancer Institute at the University of Utah;
  • 27 Roswell Park Comprehensive Cancer Center;
  • 28 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; and
  • 29 National Comprehensive Cancer Network
Restricted access

Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are characterized by a progressive accumulation of leukemic cells in the peripheral blood, bone marrow, and lymphoid tissues. Treatment of CLL/SLL has evolved significantly in recent years because of the improved understanding of the disease biology and the development of novel targeted therapies. In patients with indications for initiating treatment, the selection of treatment should be based on the disease stage, patient’s age and overall fitness (performance status and comorbid conditions), and cytogenetic abnormalities. This manuscript discusses the recommendations outlined in the NCCN Guidelines for the diagnosis and management of patients with CLL/SLL.

Individual Disclosures for the NCCN Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Panel

TU1

  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:734.

  • 2.

    Tsimberidou AM, Wen S, O’Brien S, . Assessment of chronic lymphocytic leukemia and small lymphocytic lymphoma by absolute lymphocyte counts in 2,126 patients: 20 years of experience at the University of Texas M.D. Anderson Cancer Center. J Clin Oncol 2007;25:46484656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Rai KR, Sawitsky A, Cronkite EP, . Clinical staging of chronic lymphocytic leukemia. Blood 1975;46:219234.

  • 4.

    Binet JL, Auquier A, Dighiero G, . A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981;48:198206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cheson BD, Fisher RI, Barrington SF, . Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014;32:30593068.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Damle RN, Wasil T, Fais F, . Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94:18401847.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hamblin TJ, Davis Z, Gardiner A, . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94:18481854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Tobin G, Thunberg U, Johnson A, . Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 2002;99:22622264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Oscier DG, Gardiner AC, Mould SJ, . Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002;100:11771184.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kröber A, Seiler T, Benner A, . V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002;100:14101416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kröber A, Bloehdorn J, Hafner S, . Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J Clin Oncol 2006;24:969975.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Oscier D, Wade R, Davis Z, . Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica 2010;95:17051712.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Döhner H, Stilgenbauer S, Benner A, . Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343:19101916.

  • 14.

    Tsimberidou AM, Tam C, Abruzzo LV, . Chemoimmunotherapy may overcome the adverse prognostic significance of 11q deletion in previously untreated patients with chronic lymphocytic leukemia. Cancer 2009;115:373380.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tam CS, Shanafelt TD, Wierda WG, . De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood 2009;114:957964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Van Dyke DL, Werner L, Rassenti LZ, . The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br J Haematol 2016;173:105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Stilgenbauer S, Sander S, Bullinger L, . Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007;92:12421245.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rossi D, Cerri M, Deambrogi C, . The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 2009;15:9951004.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zenz T, Eichhorst B, Busch R, . TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010;28:44734479.

  • 20.

    Stilgenbauer S, Schnaiter A, Paschka P, . Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014;123:32473254.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Woyach JA, Ruppert AS, Heerema NA, . Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med 2018;379:25172528.

  • 22.

    Woyach JA, Ruppert AS, Heerema NA, . Chemoimmunotherapy with fludarabine and rituximab produces extended overall survival and progression-free survival in chronic lymphocytic leukemia: long-term follow-up of CALGB study 9712. J Clin Oncol 2011;29:13491355.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Fischer K, Bahlo J, Fink AM, . Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 2016;127:208215.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bulian P, Shanafelt TD, Fegan C, . CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol 2014;32:897904.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Baumann T, Delgado J, Santacruz R, . CD49d (ITGA4) expression is a predictor of time to first treatment in patients with chronic lymphocytic leukaemia and mutated IGHV status. Br J Haematol 2016;172:4855.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dal Bo M, Bulian P, Bomben R, . CD49d prevails over the novel recurrent mutations as independent prognosticator of overall survival in chronic lymphocytic leukemia. Leukemia 2016;30:20112018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Strati P, Parikh SA, Chaffee KG, . CD49d associates with nodal presentation and subsequent development of lymphadenopathy in patients with chronic lymphocytic leukaemia. Br J Haematol 2017;178:99105.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gooden CE, Jones P, Bates R, . CD49d shows superior performance characteristics for flow cytometric prognostic testing in chronic lymphocytic leukemia/small lymphocytic lymphoma. Cytometry B Clin Cytom 2018;94:129135.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Del Poeta G, Maurillo L, Venditti A, . Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood 2001;98:26332639.

  • 30.

    Ibrahim S, Keating M, Do KA, . CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001;98:181186.

  • 31.

    Gentile M, Mauro FR, Calabrese E, . The prognostic value of CD38 expression in chronic lymphocytic leukaemia patients studied prospectively at diagnosis: a single institute experience. Br J Haematol 2005;130:549557.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Crespo M, Bosch F, Villamor N, . ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003;348:17641775.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wiestner A, Rosenwald A, Barry TS, . ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003;101:49444951.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Orchard JA, Ibbotson RE, Davis Z, . ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004;363:105111.

  • 35.

    Rassenti LZ, Huynh L, Toy TL, . ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004;351:893901.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Del Principe MI, Del Poeta G, Buccisano F, . Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood 2006;108:853861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Rassenti LZ, Jain S, Keating MJ, . Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008;112:19231930.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Corcoran M, Parker A, Orchard J, . ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 2005;90:10781088.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Claus R, Lucas DM, Stilgenbauer S, . Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J Clin Oncol 2012;30:24832491.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Claus R, Lucas DM, Ruppert AS, . Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood 2014;124:4248.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Wierda WG, O’Brien S, Wang X, . Characteristics associated with important clinical end points in patients with chronic lymphocytic leukemia at initial treatment. J Clin Oncol 2009;27:16371643.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Thompson PA, O’Brien SM, Xiao L, . β2 -microglobulin normalization within 6 months of ibrutinib-based treatment is associated with superior progression-free survival in patients with chronic lymphocytic leukemia. Cancer 2016;122:565573.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Fabbri G, Rasi S, Rossi D, . Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011;208:13891401.

  • 44.

    Puente XS, Pinyol M, Quesada V, . Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011;475:101105.

  • 45.

    Wang L, Lawrence MS, Wan Y, . SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011;365:24972506.

  • 46.

    Quesada V, Conde L, Villamor N, . Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011;44:4752.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Rossi D, Fangazio M, Rasi S, . Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012;119:28542862.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Rossi D, Rasi S, Fabbri G, . Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012;119:521529.

  • 49.

    Schnaiter A, Paschka P, Rossi M, . NOTCH1, SF3B1, and TP53 mutations in fludarabine-refractory CLL patients treated with alemtuzumab: results from the CLL2H trial of the GCLLSG. Blood 2013;122:12661270.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Oscier DG, Rose-Zerilli MJ, Winkelmann N, . The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013;121:468475.

  • 51.

    Messina M, Del Giudice I, Khiabanian H, . Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood 2014;123:23782388.

  • 52.

    Wierda WG, O’Brien S, Wang X, . Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood 2007;109:46794685.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Shanafelt TD, Jenkins G, Call TG, . Validation of a new prognostic index for patients with chronic lymphocytic leukemia. Cancer 2009;115:363372.

  • 54.

    Molica S, Mauro FR, Callea V, . The utility of a prognostic index for predicting time to first treatment in early chronic lymphocytic leukemia: the GIMEMA experience. Haematologica 2010;95:464469.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Wierda WG, O’Brien S, Wang X, . Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J Clin Oncol 2011;29:40884095.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Rossi D, Rasi S, Spina V, . Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013;121:14031412.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Visentin A, Facco M, Frezzato F, . Integrated CLL scoring system, a new and simple index to predict time to treatment and overall survival in patients with chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 2015;15:612620. e611–615.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 2016;17:779790.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Baliakas P, Iskas M, Gardiner A, . Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol 2014;89:249255.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Thompson PA, O’Brien SM, Wierda WG, . Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer 2015;121:36123621.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Blanco G, Puiggros A, Baliakas P, . Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations. Oncotarget 2016;7:8091680924.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Le Bris Y, Struski S, Guièze R, . Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol 2017;35:664670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Puiggros A, Collado R, Calasanz MJ, . Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget 2017;8:5429754303.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Baliakas P, Jeromin S, Iskas M, . Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood 2019;133:12051216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Woyach JA, Ruppert AS, Guinn D, . BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol 2017;35:14371443.

  • 66.

    Woyach JA, Furman RR, Liu TM, . Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med 2014;370:22862294.

  • 67.

    Ahn IE, Underbayev C, Albitar A, . Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017;129:14691479.

  • 68.

    Woyach J, Huang Y, Rogers K, . Resistance to acalabrutinib in CLL is mediated primarily by BTK mutations [abstract]. Blood 2019;134(Suppl 1):504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Hallek M, Cheson BD, Catovsky D, . iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018;131:27452760.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Chanan-Khan A, Miller KC, Lawrence D, . Tumor flare reaction associated with lenalidomide treatment in patients with chronic lymphocytic leukemia predicts clinical response. Cancer 2011;117:21272135.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Woyach JA, Smucker K, Smith LL, . Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood 2014;123:18101817.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Brown JR, Byrd JC, Coutre SE, . Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014;123:33903397.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Byrd JC, Harrington B, O’Brien S, . Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 2016;374:323332.

  • 74.

    Cheson BD, Byrd JC, Rai KR, . Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol 2012;30:28202822.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Kovacs G, Robrecht S, Fink AM, . Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic lLeukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol 2016;34:37583765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Thompson PA, Peterson CB, Strati P, . Serial minimal residual disease (MRD) monitoring during first-line FCR treatment for CLL may direct individualized therapeutic strategies. Leukemia 2018;32:23882398.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Molica S, Giannarelli D, Montserrat E. Minimal residual disease and survival outcomes in patients with chronic lymphocytic leukemia: a systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk 2019;19:423430.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Fischer K, Ritgen M, Al-Sawaf O, . Quantitative analysis of minimal residual disease (MRD) shows high rates of undetectable MRD after fixed-duration chemotherapy-free treatment and serves as surrogate marker for progression-free survival: a prospective analysis of the randomized CLL14 trial [abstract]. Blood 2019;134(Supplement_1):36. (Abstract 36)

    • Search Google Scholar
    • Export Citation
  • 79.

    Rawstron AC, Böttcher S, Letestu R, . Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 2013;27:142149.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Rawstron AC, Fazi C, Agathangelidis A, . A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia 2016;30:929936.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Logan AC, Gao H, Wang C, . High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Natl Acad Sci USA 2011;108:2119421199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Aw A, Kim HT, Fernandes SM, . Minimal residual disease detected by immunoglobulin sequencing predicts CLL relapse more effectively than flow cytometry. Leuk Lymphoma 2018;59:19861989.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Gutierrez A, Jr., Tschumper RC, Wu X, . LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 2010;116:29752983.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Palumbo GA, Parrinello N, Fargione G, . CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res 2009;33:12121216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Sandes AF, de Lourdes Chauffaille M, Oliveira CR, . CD200 has an important role in the differential diagnosis of mature B-cell neoplasms by multiparameter flow cytometry. Cytometry B Clin Cytom 2014;86:98105.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Menter T, Dirnhofer S, Tzankov A. LEF1: a highly specific marker for the diagnosis of chronic lymphocytic B cell leukaemia/small lymphocytic B cell lymphoma. J Clin Pathol 2015;68:473478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Dicker F, Schnittger S, Haferlach T, . Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 2006;108:31523160.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Heerema NA, Byrd JC, Dal Cin PS, . Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study. Cancer Genet Cytogenet 2010;203:134140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Davis Z, Forconi F, Parker A, . The outcome of chronic lymphocytic leukaemia patients with 97% IGHV gene identity to germline is distinct from cases with <97% identity and similar to those with 98% identity. Br J Haematol 2016;173:127136.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Jain P, Nogueras González GM, Kanagal-Shamanna R, . The absolute percent deviation of IGHV mutation rather than a 98% cut-off predicts survival of chronic lymphocytic leukaemia patients treated with fludarabine, cyclophosphamide and rituximab. Br J Haematol 2018;180:3340.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Tobin G, Thunberg U, Laurell A, . Patients with chronic lymphocytic leukemia with mutated VH genes presenting with Binet stage B or C form a subgroup with a poor outcome. Haematologica 2005;90:465469.

    • Search Google Scholar
    • Export Citation
  • 92.

    Morabito F, Shanafelt TD, Gentile M, . Immunoglobulin heavy chain variable region gene and prediction of time to first treatment in patients with chronic lymphocytic leukemia: mutational load or mutational status? Analysis of 1003 cases. Am J Hematol 2018;93:E216E219.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Thompson PA, Tam CS, O’Brien SM, . Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016;127:303309.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Hamblin TJ, Orchard JA, Ibbotson RE, . CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002;99:10231029.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Rawstron AC, Bennett FL, O’Connor SJ, . Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008;359:575583.

  • 96.

    Rossi D, Sozzi E, Puma A, . The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br J Haematol 2009;146:6475.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Marti GE, Rawstron AC, Ghia P, . Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol 2005;130:325332.

  • 98.

    Rawstron AC, Shanafelt T, Lanasa MC, . Different biology and clinical outcome according to the absolute numbers of clonal B-cells in monoclonal B-cell lymphocytosis (MBL). Cytometry B Clin Cytom 2010; 78(S1, Suppl 1)S19S23.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Swerdlow SH, Campo E, Pileri SA, . The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127:23752390.

  • 100.

    Shanafelt TD, Kay NE, Rabe KG, . Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia. J Clin Oncol 2009;27:39593963.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Gibson SE, Swerdlow SH, Ferry JA, . Reassessment of small lymphocytic lymphoma in the era of monoclonal B-cell lymphocytosis. Haematologica 2011;96:11441152.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Conte MJ, Bowen DA, Wiseman GA, . Use of positron emission tomography-computed tomography in the management of patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma 2014;55:20792084.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Falchi L, Keating MJ, Marom EM, . Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood 2014;123:27832790.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Woyach JA, Ruppert AS, Rai K, . Impact of age on outcomes after initial therapy with chemotherapy and different chemoimmunotherapy regimens in patients with chronic lymphocytic leukemia: results of sequential cancer and leukemia group B studies. J Clin Oncol 2013;31:440447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Goede V, Cramer P, Busch R, . Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. Haematologica 2014;99:10951100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Salvi F, Miller MD, Grilli A, . A manual of guidelines to score the modified cumulative illness rating scale and its validation in acute hospitalized elderly patients. J Am Geriatr Soc 2008;56:19261931.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Fischer K, Al-Sawaf O, Bahlo J, . Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med 2019;380:22252236.

  • 108.

    Burger JA, Tedeschi A, Barr PM, . Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015;373:24252437.

  • 109.

    Burger JA, Barr PM, Robak T, . Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study [published online October 18, 2019]. Leukemia. doi: 10.1038/s41375-019-0602-x.

    • Crossref
    • Export Citation
  • 110.

    Shanafelt TD, Wang XV, Kay NE, . Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med 2019;381:432443.

  • 111.

    Sharman JP, Banerji V, Fogliatto LM, . ELEVATE TN: phase 3 study of acalabrutinib combined with obinutuzumab (O) or alone vs O plus chlorambucil (Clb) in patients (Pts) with treatment-naive chronic lymphocytic leukemia (CLL) [abstract]. Blood 2019;134(Supplement_1):31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Michallet AS, Aktan M, Hiddemann W, . Rituximab plus bendamustine or chlorambucil for chronic lymphocytic leukemia: primary analysis of the randomized, open-label MABLE study. Haematologica 2018;103:698706.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Flinn IW, Panayiotidis P, Afanasyev B, . A phase 2, multicenter study investigating ofatumumab and bendamustine combination in patients with untreated or relapsed CLL. Am J Hematol 2016;91:900906.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Stilgenbauer S, Leblond V, Foà R, . Obinutuzumab plus bendamustine in previously untreated patients with CLL: a subgroup analysis of the GREEN study. Leukemia 2018;32:17781786.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Eichhorst B, Fink AM, Bahlo J, . First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 2016;17:928942.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Goede V, Fischer K, Engelke A, . Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia 2015;29:16021604.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Moreno C, Greil R, Demirkan F, . Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019;20:4356.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Shanafelt TD, Wang V, Kay NE, . Ibrutinib and rituximab provides superior clinical outcome compared to FCR in younger patients with chronic lymphocytic leukemia (CLL): extended follow-up from the E1912 Trial [abstract]. Blood 2019;134(Supplement_1):33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Byrd JC, Peterson BL, Morrison VA, . Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood 2003;101:614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Castro JE, James DF, Sandoval-Sus JD, . Rituximab in combination with high-dose methylprednisolone for the treatment of chronic lymphocytic leukemia. Leukemia 2009;23:17791789.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Burger JA, Sivina M, Jain N, . Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood 2019;133:10111019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Kay NE, Geyer SM, Call TG, . Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood 2007;109:405411.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Kay NE, Wu W, Kabat B, . Pentostatin and rituximab therapy for previously untreated patients with B-cell chronic lymphocytic leukemia. Cancer 2010;116:21802187.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Reynolds C, Di Bella N, Lyons RM, . A phase III trial of fludarabine, cyclophosphamide, and rituximab vs. pentostatin, cyclophosphamide, and rituximab in B-cell chronic lymphocytic leukemia. Invest New Drugs 2012;30:12321240.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Byrd JC, Flynn JM, Kipps TJ, . Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia. Blood 2016;127:7986.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Hainsworth JD, Litchy S, Barton JH, . Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 2003;21:17461751.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Eichhorst BF, Busch R, Stilgenbauer S, . First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood 2009;114:33823391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Fink AM, Bahlo J, Robrecht S, . Lenalidomide maintenance after first-line therapy for high-risk chronic lymphocytic leukaemia (CLLM1): final results from a randomised, double-blind, phase 3 study. Lancet Haematol 2017;4:e475e486.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Byrd JC, Brown JR, O’Brien S, . Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 2014;371:213223.

  • 130.

    Seymour JF, Kipps TJ, Eichhorst B, . Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 2018;378:11071120.

  • 131.

    Ghia P, Pluta A, Wach M, . ASCEND phase 3 study of acalabrutinib vs investigator’s choice of rituximab plus idelalisib (IDR) or bendamustine (BR) In patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) [abstract]. Presented at the European Hematology Association Congress; September 20_23, 2019; Edinburgh, Scotland. Abstract LB2606.

    • Crossref
    • Export Citation
  • 132.

    Flinn IW, Hillmen P, Montillo M, . The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood 2018;132:24462455.

  • 133.

    Furman RR, Sharman JP, Coutre SE, . Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014;370:9971007.

  • 134.

    Byrd JC, Wierda WG, Schuh A, . Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: updated results from the phase 1/2 ACE-CL-001 study. [abstract] Blood 2017;130:498.

    • Search Google Scholar
    • Export Citation
  • 135.

    Awan FT, Schuh A, Brown JR, . Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv 2019;3:15531562.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Munir T, Brown JR, O’Brien S, . Final analysis from RESONATE: up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol 2019;94:13531363.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Kater AP, Seymour JF, Hillmen P, . Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: post-treatment follow-up of the MURANO phase III study. J Clin Oncol 2019;37:269277.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Davids MS, Kuss BJ, Hillmen P, . The efficacy and safety of duvelisib following disease progression on ofatumumab in patients with relapsed/refractory CLL or SLL: updated results from the DUO crossover extension study [abstract]. Blood 2018;132 (Supplement_1):3140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Flinn IW, Miller CB, Ardeshna KM, . DYNAMO: a phase II study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma. J Clin Oncol 2019;37:912922.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Sharman JP, Coutre SE, Furman RR, . Final results of a randomized, phase III study of rituximab with or without idelalisib followed by open-label idelalisib in patients with relapsed chronic lymphocytic leukemia. J Clin Oncol 2019;37:13911402.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Keating MJ, Flinn I, Jain V, . Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002;99:35543561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Stilgenbauer S, Zenz T, Winkler D, . Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009;27:39944001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143.

    Faderl S, Ferrajoli A, Wierda W, . Alemtuzumab by continuous intravenous infusion followed by subcutaneous injection plus rituximab in the treatment of patients with chronic lymphocytic leukemia recurrence. Cancer 2010;116:23602365.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Fiegl M, Stauder R, Steurer M, . Alemtuzumab in chronic lymphocytic leukemia: final results of a large observational multicenter study in mostly pretreated patients. Ann Hematol 2014;93:267277.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Fischer K, Cramer P, Busch R, . Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2011;29:35593566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Fraser G, Cramer P, Demirkan F, . Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia 2019;33:969980.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Zelenetz AD, Barrientos JC, Brown JR, . Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 2017;18:297311.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Robak T, Dmoszynska A, Solal-Céligny P, . Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 2010;28:17561765.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Badoux XC, Keating MJ, Wang X, . Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood 2011;117:30163024.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Lamanna N, Kalaycio M, Maslak P, . Pentostatin, cyclophosphamide, and rituximab is an active, well-tolerated regimen for patients with previously treated chronic lymphocytic leukemia. J Clin Oncol 2006;24:15751581.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Robak T, Warzocha K, Govind Babu K, . Ofatumumab plus fludarabine and cyclophosphamide in relapsed chronic lymphocytic leukemia: results from the COMPLEMENT 2 trial. Leuk Lymphoma 2017;58:10841093.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Castro JE, Sandoval-Sus JD, Bole J, . Rituximab in combination with high-dose methylprednisolone for the treatment of fludarabine refractory high-risk chronic lymphocytic leukemia. Leukemia 2008;22:20482053.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Dungarwalla M, Evans SO, Riley U, . High dose methylprednisolone and rituximab is an effective therapy in advanced refractory chronic lymphocytic leukemia resistant to fludarabine therapy. Haematologica 2008;93:475476.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Gopal AK, Davies AJ, Flinn IW, . Idelalisib monotherapy and durable responses in patients with relapsed or refractory small lymphocytic lymphoma (SLL) [abstract]. Blood 2015;126:2743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 155.

    Badoux XC, Keating MJ, Wen S, . Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2013;31:584591.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Bühler A, Wendtner CM, Kipps TJ, . Lenalidomide treatment and prognostic markers in relapsed or refractory chronic lymphocytic leukemia: data from the prospective, multicenter phase-II CLL-009 trial. Blood Cancer J 2016;6:e404.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Chavez JC, Piris-Villaespesa M, Dalia S, . Results of a phase II study of lenalidomide and rituximab for refractory/relapsed chronic lymphocytic leukemia. Leuk Res 2016;47:7883.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Cartron G, de Guibert S, Dilhuydy MS, . Obinutuzumab (GA101) in relapsed/refractory chronic lymphocytic leukemia: final data from the phase 1/2 GAUGUIN study. Blood 2014;124:21962202.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Österborg A, Jewell RC, Padmanabhan-Iyer S, . Ofatumumab monotherapy in fludarabine-refractory chronic lymphocytic leukemia: final results from a pivotal study. Haematologica 2015;100:e311e314.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Wierda WG, Padmanabhan S, Chan GW, . Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood 2011;118:51265129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161.

    Jones JA, Mato AR, Wierda WG, . Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 2018;19:6575.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Coutre S, Choi M, Furman RR, . Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood 2018;131:17041711.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Wierda WG, Byrd JC, Davids MS, . Venetoclax for chronic lymphocytic leukaemia patients who progress after more than one B-cell receptor pathway inhibitor. Br J Haematol 2019;185:961966.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Mato AR, Hill BT, Lamanna N, . Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol 2017;28:10501056.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    van Oers MH, Kuliczkowski K, Smolej L, . Ofatumumab maintenance versus observation in relapsed chronic lymphocytic leukaemia (PROLONG): an open-label, multicentre, randomised phase 3 study. Lancet Oncol 2015;16:13701379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 166.

    Chanan-Khan AA, Zaritskey A, Egyed M, . Lenalidomide maintenance therapy in previously treated chronic lymphocytic leukaemia (CONTINUUM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Haematol 2017;4:e534e543.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Farooqui MZ, Valdez J, Martyr S, . Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol 2015;16:169176.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Ahn IE, Farooqui MZH, Tian X, . Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood 2018;131:23572366.

  • 169.

    Lundin J, Kimby E, Björkholm M, . Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 2002;100:768773.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Hillmen P, Skotnicki AB, Robak T, . Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol 2007;25:56165623.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Frankfurt O, Ma S, Gordon L, . Phase II study of alemtuzumab-rituximab therapy in previously untreated patients with chronic lymphocytic leukemia: short- and long-term outcomes. Leuk Lymphoma 2015;56:315323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 172.

    Zent CS, Victoria Wang X, Ketterling RP, . A phase II randomized trial comparing standard and low dose rituximab combined with alemtuzumab as initial treatment of progressive chronic lymphocytic leukemia in older patients: a trial of the ECOG-ACRIN cancer research group (E1908). Am J Hematol 2016;91:308312.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    O’Brien S, Jones JA, Coutre SE, . Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol 2016;17:14091418.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Stilgenbauer S, Eichhorst B, Schetelig J, . Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J Clin Oncol 2018;36:19731980.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Brown JR, Flinn IW, Davids MS, . Clinical and biological indicators of duvelisib efficacy in CLL from the phase 3 DUOTM Study [abstract]. Blood 2018;132:1856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 176.

    Bowen DA, Call TG, Jenkins GD, . Methylprednisolone-rituximab is an effective salvage therapy for patients with relapsed chronic lymphocytic leukemia including those with unfavorable cytogenetic features. Leuk Lymphoma 2007;48:24122417.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Wierda WG, Kipps TJ, Mayer J, . Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 2010;28:17491755.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Byrd JC, Furman RR, Coutre SE, . Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 2015;125:24972506.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Dickerson T, Wiczer T, Waller A, . Hypertension and incident cardiovascular events following ibrutinib initiation. Blood 2019;134:19191928.

  • 180.

    Salem JE, Manouchehri A, Bretagne M, . Cardiovascular toxicities associated with ibrutinib. J Am Coll Cardiol 2019;74:16671678.

  • 181.

    Hammond SP, Chen K, Pandit A, . Risk of hepatitis B virus reactivation in patients treated with ibrutinib. Blood 2018;131:19871989.

  • 182.

    Ghez D, Calleja A, Protin C, . Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood 2018;131:19551959.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Lampson BL, Kasar SN, Matos TR, . Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 2016;128:195203.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Roberts AW, Davids MS, Pagel JM, . Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016;374:311322.

  • 185.

    Davids M, Jones J, Eradat H, . Modified venetoclax dose ramp-up in select high-risk patients with chronic lymphocytic leukemia (CLL) with progression after B-cell receptor pathway inhibitors (BCRi). Clin Lymphoma Myeloma Leuk 2017;17:S302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 186

    Koenig K, Konstantinou D, Rogers A, . Rapid dose escalation of venetoclax in patients with chronic lymphocytic leukemia previously treated with B-cell receptor inhibitor therapy [abstract]. Presented at the EHA Congress, Friday, June 14–17, 2018; Stockholm, Sweden. Abstract PF357. Available at: https://library.ehaweb.org/eha/2018/stockholm/214830/kristin.koenig.rapid.dose.escalation.of.venetoclax.in.patients.with.chronic.html?f=ce_id=1346*ot_id=19050*media=2

  • 187.

    Moreno C, Villamor N, Colomer D, . Allogeneic stem-cell transplantation may overcome the adverse prognosis of unmutated VH gene in patients with chronic lymphocytic leukemia. J Clin Oncol 2005;23:34333438.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Schetelig J, van Biezen A, Brand R, . Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for Blood and Marrow Transplantation analysis. J Clin Oncol 2008;26:50945100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 189.

    Sorror ML, Storer BE, Sandmaier BM, . Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol 2008;26:49124920.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Khouri IF, Bassett R, Poindexter N, . Nonmyeloablative allogeneic stem cell transplantation in relapsed/refractory chronic lymphocytic leukemia: long-term follow-up, prognostic factors, and effect of human leukocyte histocompatibility antigen subtype on outcome. Cancer 2011;117:46794688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Brown JR, Kim HT, Armand P, . Long-term follow-up of reduced-intensity allogeneic stem cell transplantation for chronic lymphocytic leukemia: prognostic model to predict outcome. Leukemia 2013;27:362369.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Dreger P, Schnaiter A, Zenz T, . TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood 2013;121:32843288.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Herth I, Dietrich S, Benner A, . The impact of allogeneic stem cell transplantation on the natural course of poor-risk chronic lymphocytic leukemia as defined by the EBMT consensus criteria: a retrospective donor versus no donor comparison. Ann Oncol 2014;25:200206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Poon ML, Fox PS, Samuels BI, . Allogeneic stem cell transplant in patients with chronic lymphocytic leukemia with 17p deletion: consult-transplant versus consult- no-transplant analysis. Leuk Lymphoma 2015;56:711715.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Kharfan-Dabaja MA, Kumar A, Hamadani M, . Clinical practice recommendations for use of allogeneic hematopoietic cell transplantation in chronic lymphocytic leukemia on behalf of the Guidelines Committee of the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2016;22:21172125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 196.

    Sorror ML, Maris MB, Storb R, . Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005;106:29122919.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    ElSawy M, Storer BE, Pulsipher MA, . Multi-centre validation of the prognostic value of the haematopoietic cell transplantation- specific comorbidity index among recipient of allogeneic haematopoietic cell transplantation. Br J Haematol 2015;170:574583.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 198.

    Jaglowski SM, Ruppert AS, Heerema NA, . Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol 2012;159:8287.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6651 6651 286
PDF Downloads 2742 2742 144
EPUB Downloads 0 0 0