Defining and Managing High-Risk Multiple Myeloma: Current Concepts

Authors: Luciano J. Costa MD, PhD1 and Saad Z. Usmani MD2
View More View Less
  • 1 Division of Hematology and Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; and
  • | 2 Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, North Carolina.

Multiple myeloma is a very heterogeneous disease. Despite advances in diagnostics and therapeutics, a subset of patients still experiences abbreviated responses to therapy, frequent relapses, and short survival and is considered to have high-risk multiple myeloma (HRMM). Stage III diagnosis according to the International Staging System; the presence of del(17p), t(4;14), or t(14;16) by fluorescence in situ hybridization; certain gene expression patterns; high serum lactic dehydrogenase level; and the presence of extramedullary disease at diagnosis are all considered indicators of HRMM. More recent evidence shows that patients who experience response to therapy but with a high burden of measurable residual disease or persistence of abnormal FDG uptake on PET/CT scan after initial therapy also have unfavorable outcomes, shaping the concept of dynamic risk assessment. Triplet therapy with proteasome inhibitors, immunomodulatory agents, and corticosteroids and autologous hematopoietic cell transplantation remain the pillars of HRMM therapy. Recent evidence indicates a benefit of immunotherapy with anti-CD38 monoclonal antibodies in HRMM. Future trials will inform the impact of novel immunotherapeutic approaches, including T-cell engagers, CAR T cells, and nonimmunotherapeutic approaches in HRMM. Those agents are likely to be deployed early in the disease course in the setting of risk- and response-adapted trials.

Submitted July 29, 2020; accepted for publication October 15, 2020.

Disclosures: Dr. Costa has disclosed that he receives honoraria from Amgen, Bristol-Myers Squibb, AbbVie, and Janssen, and grant/research support from Amgen, Bristol-Myers Squibb, AbbVie, and Janssen. Dr. Usmani has disclosed that he receives honoraria from Celgene/Bristol-Myers Squibb, Amgen, Merck & Co., Inc., GlaxoSmithKline, Seattle Genetics, Takeda, Sanofi, and Janssen, and grant/research support from Onyx, Janssen, Sanofi, Array BioPharma, Pharmacyclics, Takeda, Celgene, and Bristol-Myers Squibb.

Correspondence: Luciano J. Costa, MD, PhD, Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294. Email: ljcosta@uabmc.edu
  • 1.

    Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975;36:842854.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Greipp PR, San Miguel J, Durie BG, et al.. International staging system for multiple myeloma. J Clin Oncol 2005;23:34123420.

  • 3.

    Palumbo A, Avet-Loiseau H, Oliva S, et al.. Revised International Staging System for Multiple Myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015;33:28632869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Ross FM, Chiecchio L, Dagrada G, et al.. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 2010;95:12211225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Shaughnessy JD Jr, Qu P, Usmani S, et al.. Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3. Blood 2011;118:35123524.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Giri S, Huntington SF, Wang R, et al.. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv 2020;4:22452253.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Walker BA, Mavrommatis K, Wardell CP, et al.. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019;33:159170.

  • 8.

    Schena M, Shalon D, Davis RW, et al.. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467470.

  • 9.

    Zhan F, Huang Y, Colla S, et al.. The molecular classification of multiple myeloma. Blood 2006;108:20202028.

  • 10.

    Zhan F, Barlogie B, Mulligan G, et al.. High-risk myeloma: a gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood 2008;111:968969.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kuiper R, Broyl A, de Knegt Y, et al.. A gene expression signature for high-risk multiple myeloma. Leukemia 2012;26:24062413.

  • 12.

    Bhutani M, Foureau DM, Atrash S, et al.. Extramedullary multiple myeloma. Leukemia 2020;34:120.

  • 13.

    Rajkumar SV, Dimopoulos MA, Palumbo A, et al.. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fernández de Larrea C, Kyle RA, Durie BG, et al.. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia 2013;27:780791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Mina R, Joseph NS, Kaufman JL, et al.. Survival outcomes of patients with primary plasma cell leukemia (pPCL) treated with novel agents. Cancer 2019;125:416423.

  • 16.

    Gonsalves WI, Rajkumar SV, Go RS, et al.. Trends in survival of patients with primary plasma cell leukemia: a population-based analysis. Blood 2014;124:907912.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Usmani SZ, Heuck C, Mitchell A, et al.. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica 2012;97:17611767.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Varettoni M, Corso A, Pica G, et al.. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol 2010;21:325330.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lahuerta JJ, Paiva B, Vidriales MB, et al.. Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials. J Clin Oncol 2017;35:29002910.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kumar S, Paiva B, Anderson KC, et al.. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17:e328346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Munshi NC, Avet-Loiseau H, Rawstron AC, et al.. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol 2017;3:2835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Martinez-Lopez J, Lahuerta JJ, Pepin F, et al.. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014;123:30733079.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Paiva B, Puig N, Cedena MT, et al.. Measurable residual disease by next-generation flow cytometry in multiple myeloma. J Clin Oncol 2020;38:784792.

  • 24.

    Perrot A, Lauwers-Cances V, Corre J, et al.. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 2018;132:24562464.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Moreau P, Zweegman S, Perrot A, et al.. Evaluation of the prognostic value of positron emission tomography-computed tomography (PET-CT) at diagnosis and follow-up in transplant-eligible newly diagnosed multiple myeloma (TE NDMM) patients treated in the phase 3 CASSIOPEIA study: results of the CASSIOPET companion study [abstract]. Blood 2019;134(Suppl):Abstract 692.

    • Crossref
    • Export Citation
  • 26.

    Rasche L, Chavan SS, Stephens OW, et al.. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun 2017;8:268.

  • 27.

    Joseph NS, Kaufman JL, Dhodapkar MV, et al.. Long-term follow-up results of lenalidomide, bortezomib, and dexamethasone induction therapy and risk-adapted maintenance approach in newly diagnosed multiple myeloma. J Clin Oncol 2020;38:19281937.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Durie BGM, Hoering A, Abidi MH, et al.. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 2017;389:519527.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gay F, Cerrato C, Petrucci MT, et al.. Efficacy of carfilzomib lenalidomide dexamethasone (KRd) with or without transplantation in newly diagnosed myeloma according to risk status: results from the FORTE trial [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 8002.

    • Crossref
    • Export Citation
  • 30.

    Kumar SK, Jacobus SJ, Cohen AD, et al.. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2020;21:13171330.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mateos MV, Cavo M, Blade J, et al.. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): a randomised, open-label, phase 3 trial. Lancet 2020;395:132141.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Facon T, Kumar S, Plesner T, et al.. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med 2019;380:21042115.

  • 33.

    Moreau P, Attal M, Hulin C, et al.. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 2019;394:2938.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Giri S, Grimshaw A, Bal S, et al.. Efficacy of daratumumab in the treatment of multiple myeloma with high-risk cytogenetics: meta-analysis of randomized phase III trials [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 8540.

    • Crossref
    • Export Citation
  • 35.

    Usmani SZ, Ailawadhi S, Sexton R, et al.. Primary analysis of the randomized phase II trial of bortezomib, lenalidomide, dexamethasone with/without elotuzumab for newly diagnosed, high-risk multiple myeloma (SWOG-1211) [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 8507.

    • Crossref
    • Export Citation
  • 36.

    Scott EC, Hari P, Sharma M, et al.. Post-transplant outcomes in high-risk compared with non-high-risk multiple myeloma: a CIBMTR analysis. Biol Blood Marrow Transplant 2016;22:18931899.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Drake MB, Iacobelli S, van Biezen A, et al.. Primary plasma cell leukemia and autologous stem cell transplantation. Haematologica 2010;95:804809.

  • 38.

    Mahindra A, Kalaycio ME, Vela-Ojeda J, et al.. Hematopoietic cell transplantation for primary plasma cell leukemia: results from the Center for International Blood and Marrow Transplant Research. Leukemia 2012;26:10911097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Cavo M, Gay F, Beksac M, et al.. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): a multicentre, randomised, open-label, phase 3 study. Lancet Haematol 2020;7:e456468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Stadtmauer EA, Pasquini MC, Blackwell B, et al.. Autologous transplantation, consolidation, and maintenance therapy in multiple myeloma: results of the BMT CTN 0702 trial. J Clin Oncol 2019;37:589597.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hari P, Pasquini MC, Stadtmauer EA, et al.. Long-term follow-up of BMT CTN 0702 (STaMINA) of postautologous hematopoietic cell transplantation (autoHCT) strategies in the upfront treatment of multiple myeloma (MM) [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 8506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Chakraborty R, Muchtar E, Kumar SK, et al.. Impact of post-transplant response and minimal residual disease on survival in myeloma with high-risk cytogenetics. Biol Blood Marrow Transplant 2017;23:598605.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Costa LJ, Iacobelli S, Pasquini MC, et al.. Long-term survival of 1338 MM patients treated with tandem autologous vs. autologous-allogeneic transplantation. Bone Marrow Transplant 2020;55:18101816.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Greil C, Engelhardt M, Ihorst G, et al.. Allogeneic transplantation of multiple myeloma patients may allow long-term survival in carefully selected patients with acceptable toxicity and preserved quality of life. Haematologica 2019;104:370379.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Shah N, Chari A, Scott E, et al.. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 2020;34:9851005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Raje N, Berdeja J, Lin Y, et al.. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 2019;380:17261737.

  • 47.

    Madduri D, Usmani SZ, Jagannath S, et al.. Results from CARTITUDE-1: a phase 1b/2 study of JNJ-4528, a CAR-T cell therapy directed against B-cell maturation antigen (BCMA), in patients with relapsed and/or refractory multiple myeloma (R/R MM) [abstract]. Blood 2019;134(Suppl):Abstract 577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Mailankody S, Jakubowiak AJ, Htut M, et al.. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011) [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 8504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Kumar S, Kaufman JL, Gasparetto C, et al.. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017;130:24012409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Tai YT, Landesman Y, Acharya C, et al.. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia 2014;28:155165.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Chari A, Vogl DT, Gavriatopoulou M, et al.. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med 2019;381:727738.

  • 52.

    Nooka AK, Yee AJ, Huff CA, et al.. Influence of cytogenetics in patients with relapsed refractory multiple myeloma treated with oral selinexor and dexamethasone: a post-hoc analysis of the STORM study [abstract]. Blood 2019;134(Suppl):Abstract 1872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Dimopoulos MA, Delimpasi S, Simonova M, et al.. Weekly selinexor, bortezomib, and dexamethasone (SVd) versus twice weekly bortezomib and dexamethasone (Vd) in patients with multiple myeloma (MM) after one to three prior therapies: initial results of the phase III BOSTON study [abstract]. J Clin Oncol 2020;38(Suppl):Abstract 8501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Lonial S, Lee HC, Badros A, et al.. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol 2020;21:207221.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Topp MS, Duell J, Zugmaier G, et al.. Anti-B-cell maturation antigen BiTE molecule AMG 420 indices responses in multiple myeloma. J Clin Oncol 2020;38:775783.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6258 5376 1301
PDF Downloads 3479 3060 1048
EPUB Downloads 0 0 0