Diagnosis and Management of Monoclonal Gammopathy and Smoldering Multiple Myeloma

View More View Less
  • 1 Winship Cancer Institute, Emory University, Atlanta, Georgia; and
  • | 2 University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
Restricted access

The presence of monoclonal proteins is common, with a prevalence in the United States around 5% that increases with age. Although most patients are asymptomatic, most cases are caused by a clonal plasma cell disorder. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic precursor conditions with variable risk of progression to multiple myeloma. In recent years, significant progress has been made to better understand the factors that lead to the development of symptoms and progression to myeloma. This review summarizes the current diagnosis treatment guidelines for MGUS and SMM and highlights recent advances that underscore a shifting paradigm in the evaluation and management of plasma cell precursor conditions.

Submitted June 28, 2020; accepted for publication September 28, 2020.

Disclosures: The authors have disclosed that they have no financial interests, arrangements, affiliations, or commercial interests with the manufacturers of any products discussed in this article or their competitors.

Funding: This work was supported by funding from the University of Wisconsin Trilium Fund.

Correspondence: Natalie S. Callander, MD, University of Wisconsin Carbone Cancer Center, 4059 WIMR, Madison, WI 53792. Email: nsc@medicine.wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 476.39 KB)
  • 1.

    Kaufmann SH. Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol 2008;9:705712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Tiselius A. Electrophoresis of serum globulin: electrophoretic analysis of normal and immune sera. Biochem J 1937;31:14641477.

  • 3.

    Longsworth LG, Shedlovsky T, Macinnes DA. Electrophoretic patterns of normal and pathological human blood serum and plasma. J Exp Med 1939;70:399413.

  • 4.

    Waldenström J. Incipient myelomatosis or “essential” hyperglobulinemia with fibrinogenopenia—a new syndrome? Acta Med Scand 1944;117:216247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hällén J. Discrete gammaglobulin (M-)components in serum. Clinical study of 150 subjects without myelomatosis. Acta Med Scand Suppl 1966;462:1127.

  • 6.

    Kyle RA. Monoclonal gammopathy of undetermined significance. Natural history in 241 cases. Am J Med 1978;64:814826.

  • 7.

    Rajkumar SV, Dimopoulos MA, Palumbo A, et al. . International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wu SP, Minter A, Costello R, et al. . MGUS prevalence in an ethnically Chinese population in Hong Kong. Blood 2013;121:23632364.

  • 9.

    Iwanaga M, Tomonaga M. Prevalence of monoclonal gammopathy of undetermined significance in Asia: a viewpoint from Nagasaki atomic bomb survivors. Clin Lymphoma Myeloma Leuk 2014;14:1820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wadhera RK, Rajkumar SV. Prevalence of monoclonal gammopathy of undetermined significance: a systematic review. Mayo Clin Proc 2010;85:933942.

  • 11.

    Crawford J, Eye MK, Cohen HJ. Evaluation of monoclonal gammopathies in the “well” elderly. Am J Med 1987;82:3945.

  • 12.

    Landgren O, Graubard BI, Kumar S, et al. . Prevalence of myeloma precursor state monoclonal gammopathy of undetermined significance in 12372 individuals 10-49 years old: a population-based study from the National Health and Nutrition Examination Survey. Blood Cancer J 2017;7:e618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Landgren O, Rajkumar SV, Pfeiffer RM, et al. . Obesity is associated with an increased risk of monoclonal gammopathy of undetermined significance among black and white women. Blood 2010;116:10561059.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chang SH, Luo S, Thomas TS, et al. . Obesity and the transformation of monoclonal gammopathy of undetermined significance to multiple myeloma: a population-based cohort study. J Natl Cancer Inst 2016;109:djw264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Grass S, Preuss KD, Ahlgrimm M, et al. . Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study. Lancet Oncol 2009;10:950956.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zwick C, Held G, Auth M, et al. . Over one-third of African-American MGUS and multiple myeloma patients are carriers of hyperphosphorylated paratarg-7, an autosomal dominantly inherited risk factor for MGUS/MM. Int J Cancer 2014;135:934938.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Chubb D, Weinhold N, Broderick P, et al. . Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet 2013;45:12211225.

  • 18.

    Landgren O, Shim YK, Michalek J, et al. . Agent Orange exposure and monoclonal gammopathy of undetermined significance: an Operation Ranch Hand veteran cohort study. JAMA Oncol 2015;1:10611068.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Landgren O, Kyle RA, Hoppin JA, et al. . Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the Agricultural Health Study. Blood 2009;113:63866391.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Landgren O, Zeig-Owens R, Giricz O, et al. . Multiple myeloma and its precursor disease among firefighters exposed to the World Trade Center disaster. JAMA Oncol 2018;4:821827.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lynch HT, Ferrara K, Barlogie B, et al. . Familial myeloma. N Engl J Med 2008;359:152157.

  • 22.

    Clay-Gilmour AI, Kumar S, Rajkumar SV, et al. . Risk of MGUS in relatives of multiple myeloma cases by clinical and tumor characteristics. Leukemia 2019;33:499507.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Greenberg AJ, Rajkumar SV, Vachon CM. Familial monoclonal gammopathy of undetermined significance and multiple myeloma: epidemiology, risk factors, and biological characteristics. Blood 2012;119:53595366.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    VanValkenburg ME, Pruitt GI, Brill IK, et al. . Family history of hematologic malignancies and risk of multiple myeloma: differences by race and clinical features. Cancer Causes Control 2016;27:8191.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Weiss BM, Abadie J, Verma P, et al. . A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 2009;113:54185422.

  • 26.

    Landgren O, Kyle RA, Pfeiffer RM, et al. . Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 2009;113:54125417.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dispenzieri A, Katzmann JA, Kyle RA, et al. . Prevalence and risk of progression of light-chain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study. Lancet 2010;375:17211728.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Leung N, Bridoux F, Hutchison CA, et al. . Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood 2012;120:42924295.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Steiner N, Göbel G, Suchecki P, et al. . Monoclonal gammopathy of renal significance (MGRS) increases the risk for progression to multiple myeloma: an observational study of 2935 MGUS patients. Oncotarget 2017;9:23442356.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Amaador K, Peeters H, Minnema MC, et al. . Monoclonal gammopathy of renal significance (MGRS) histopathologic classification, diagnostic workup, and therapeutic options. Neth J Med 2019;77:243254.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fermand JP, Bridoux F, Dispenzieri A, et al. . Monoclonal gammopathy of clinical significance: a novel concept with therapeutic implications. Blood 2018;132:14781485.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bustoros M, Kastritis E, Sklavenitis-Pistofidis R, et al. . Bone marrow biopsy in low-risk monoclonal gammopathy of undetermined significance reveals a novel smoldering multiple myeloma risk group. Am J Hematol 2019;94:E146149.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cesana C, Klersy C, Barbarano L, et al. . Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. J Clin Oncol 2002;20:16251634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mailankody S, Mena E, Yuan CM, et al. . Molecular and biologic markers of progression in monoclonal gammopathy of undetermined significance to multiple myeloma. Leuk Lymphoma 2010;51:21592170.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hanamura I, Stewart JP, Huang Y, et al. . Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006;108:17241732.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Chesi M, Bergsagel PL. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int J Hematol 2013;97:313323.

  • 37.

    Fonseca R, Bailey RJ, Ahmann GJ, et al. . Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002;100:14171424.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gleeson TG, Moriarty J, Shortt CP, et al. . Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 2009;38:225236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Pawlyn C, Fowkes L, Otero S, et al. . Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 2016;30:14461448.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ippolito D, Besostri V, Bonaffini PA, et al. . Diagnostic value of whole-body low-dose computed tomography (WBLDCT) in bone lesions detection in patients with multiple myeloma (MM). Eur J Radiol 2013;82:23222327.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Jamet B, Bailly C, Carlier T, et al. . Imaging of monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Cancers (Basel) 2020;12:486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Go RS, Rajkumar SV. How I manage monoclonal gammopathy of undetermined significance. Blood 2018;131:163173.

  • 43.

    Pepe J, Petrucci MT, Nofroni I, et al. . Lumbar bone mineral density as the major factor determining increased prevalence of vertebral fractures in monoclonal gammopathy of undetermined significance. Br J Haematol 2006;134:485490.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Melton LJ III, Rajkumar SV, Khosla S, et al. . Fracture risk in monoclonal gammopathy of undetermined significance. J Bone Miner Res 2004;19:2530.

  • 45.

    Veronese N, Luchini C, Solmi M, et al. . Monoclonal gammopathy of undetermined significance and bone health outcomes: a systematic review and exploratory meta-analysis. J Bone Miner Metab 2018;36:128132.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Go RS, Gundrum JD, Neuner JM. Determining the clinical significance of monoclonal gammopathy of undetermined significance: a SEER-Medicare population analysis. Clin Lymphoma Myeloma Leuk 2015;15:177186.e4.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Rajkumar SV, Kyle RA, Therneau TM, et al. . Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 2005;106:812817.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Kyle RA, Benson J, Larson D, et al. . IgM monoclonal gammopathy of undetermined significance and smoldering Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009;9:1718.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Go RS, Heien HC, Sangaralingham LR, et al. . Estimating the risk of progression of monoclonal gammopathy of undetermined significance into lymphoplasmacytic malignancies in the United States: determining demographic differences using a national dataset [abstract]. Blood 2016;128:Abstract 843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Kyle RA, Larson DR, Therneau TM, et al. . Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med 2018;378:241249.

  • 51.

    Dalakas MC. Advances in the diagnosis, immunopathogenesis and therapies of IgM-anti-MAG antibody-mediated neuropathies. Ther Adv Neurol Disord 2018;11:1756285617746640.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Kyle RA, Greipp PR. Smoldering multiple myeloma. N Engl J Med 1980;302:13471349.

  • 53.

    International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749757.

    • Search Google Scholar
    • Export Citation
  • 54.

    Hillengass J, Fechtner K, Weber MA, et al. . Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 2010;28:16061610.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kastritis E, Moulopoulos LA, Terpos E, et al. . The prognostic importance of the presence of more than one focal lesion in spine MRI of patients with asymptomatic (smoldering) multiple myeloma. Leukemia 2014;28:24022403.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Kastritis E, Terpos E, Moulopoulos L, et al. . Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia 2013;27:947953.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Larsen JT, Kumar SK, Dispenzieri A, et al. . Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia 2013;27:941946.

  • 58.

    Rajkumar SV, Larson D, Kyle RA. Diagnosis of smoldering multiple myeloma. N Engl J Med 2011;365:474475.

  • 59.

    Kyle RA, Remstein ED, Therneau TM, et al. . Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 2007;356:25822590.

  • 60.

    Pérez-Persona E, Vidriales MB, Mateo G, et al. . New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007;110:25862592.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Dispenzieri A, Kyle RA, Katzmann JA, et al. . Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 2008;111:785789.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Lakshman A, Rajkumar SV, Buadi FK, et al. . Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J 2018;8:59.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    San Miguel J, Mateos MV, Gonzalez V, et al. . Updated risk stratification model for smoldering multiple myeloma (SMM) incorporating the revised IMWG diagnostic criteria [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 8000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Neben K, Jauch A, Hielscher T, et al. . Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol 2013;31:43254332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Rajkumar SV, Gupta V, Fonseca R, et al. . Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia 2013;27:17381744.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Chng WJ, Huang GF, Chung TH, et al. . Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011;25:10261035.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Shou Y, Martelli ML, Gabrea A, et al. . Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000;97:228233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Dhodapkar MV, Sexton R, Waheed S, et al. . Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood 2014;123:7885.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Fernández de Larrea C, Isola I, Pereira A, et al. . Evolving M-protein pattern in patients with smoldering multiple myeloma: impact on early progression. Leukemia 2018;32:14271434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Ravi P, Kumar S, Larsen JT, et al. . Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma. Blood Cancer J 2016;6:e454.

  • 71.

    Wu V, Moshier E, Leng S, et al. . Risk stratification of smoldering multiple myeloma: predictive value of free light chains and group-based trajectory modeling. Blood Adv 2018;2:14701479.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Rajkumar SV, Landgren O, Mateos MV. Smoldering multiple myeloma. Blood 2015;125:30693075.

  • 73.

    Dhodapkar MV, Geller MD, Chang DH, et al. . A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 2003;197:16671676.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Dhodapkar MV, Krasovsky J, Osman K, et al. . Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 2003;198:17531757.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Dhodapkar MV. MGUS to myeloma: a mysterious gammopathy of underexplored significance. Blood 2016;128:25992606.

  • 76.

    Zavidij O, Haradhvala NJ, Mouhieddine TH, et al. . Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nature Cancer 2020;1:493506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Bailur JK, McCachren SS, Doxie DB, et al. . Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight 2019;5:e127807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Chang DH, Liu N, Klimek V, et al. . Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 2006;108:618621.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Galustian C, Meyer B, Labarthe MC, et al. . The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 2009;58:10331045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Lagrue K, Carisey A, Morgan DJ, et al. . Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood 2015;126:5060.

  • 81.

    Krämer I, Engelhardt M, Fichtner S, et al. . Lenalidomide enhances myeloma-specific T-cell responses in vivo and in vitro. OncoImmunology 2016;5:e1139662.

  • 82.

    Mateos MV, Hernández MT, Giraldo P, et al. . Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 2013;369:438447.

  • 83.

    Lonial S, Jacobus S, Fonseca R, et al. . Randomized trial of lenalidomide versus observation in smoldering multiple myeloma. J Clin Oncol 2020;38:11261137.

  • 84.

    Adams HC III, Stevenaert F, Krejcik J, et al. . High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action. Cytometry A 2018;95:279–289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    de Weers M, Tai YT, van der Veer MS, et al. . Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011;186:18401848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Krejcik J, Casneuf T, Nijhof IS, et al. . Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016;128:384394.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Overdijk MB, Verploegen S, Bögels M, et al. . Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 2015;7:311321.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Landgren CO, Chari A, Cohen YC, et al. . Daratumumab monotherapy for patients with intermediate-risk or high-risk smoldering multiple myeloma: a randomized, open-label, multicenter, phase 2 study (CENTAURUS). Leukemia 2020;34:18401852.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Munshi NC, Avet-Loiseau H, Rawstron AC, et al. . Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol 2017;3:2835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Perrot A, Lauwers-Cances V, Corre J, et al. . Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 2018;132:24562464.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Paiva B, Puig N, Cedena MT, et al. . Measurable residual disease by next-generation flow cytometry in multiple myeloma. J Clin Oncol 2020;38:784792.

  • 92.

    Korde N, Roschewski M, Zingone A, et al. . Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol 2015;1:746754.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Mateos MV, Martinez-Lopez J, Rodriguez Otero P, et al. . Curative strategy (GEM-CESAR) for high-risk smoldering myeloma (SMM): carfilzomib, lenalidomide and dexamethasone (KRd) as induction followed by HDT-ASCT, consolidation with Krd and maintenance with Rd [abstract]. Blood 2019;134(Suppl 1):Abstract 781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Joseph NS, Dhodapkar MV, Lonial S. The role of early intervention in high-risk smoldering myeloma. Am Soc Clin Oncol Educ Book 2020;40:19.

  • 95.

    Hillengass J, Usmani S, Rajkumar SV, et al. . International Myeloma Working Group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol 2019;20:e302e312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Kumar SK, Callander NS, Adekola K et al. . NCCN Clinical Practice Guidelines in Oncology: Multiple Myeloma. Version 3.2021. Accessed October 20, 2020. To view the most recent version, visit NCCN.org

  • 97.

    Dimopoulos MA, Sonneveld P, Leung N, et al. . International Myeloma Working Group recommendations for the diagnosis and management of myeloma-related renal impairment. J Clin Oncol 2016;34:15441557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Ghobrial IM, Badros AZ, Vredenburgh JJ, et al. . Phase II trial of combination of elotuzumab, lenalidomide, and dexamethasone in high-risk smoldering multiple myeloma [abstract]. Blood 2016;128:Abstract 976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Bustoros M, Nadeem O, Sperling AS, et al. Phase II trial of the combination of ixazomib, lenalidomide, and dexamethasone in high-risk smoldering multiple myeloma. Blood 2019;134(Suppl):Abstract 580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Manasanch EE, Jagannath S, Lee HC, et al. . A multicenter phase II single arm trial of isatuximab in patients with high risk smoldering multiple myeloma (HRSMM) [abstract]. Blood 2019;134(Suppl):Abstract 3116.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2259 2259 64
PDF Downloads 1600 1600 50
EPUB Downloads 0 0 0