Multiple Myeloma, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 Mayo Clinic Cancer Center;
  • | 2 University of Wisconsin Carbone Cancer Center;
  • | 3 Robert H. Lurie Comprehensive Cancer of Center Northwestern University;
  • | 4 UT Southwestern Simmons Comprehensive Cancer Center;
  • | 5 Fred & Pamela Buffett Cancer Center;
  • | 6 University of Michigan Rogel Cancer Center;
  • | 7 Dana-Farber/Brigham and Women’s Cancer Center | Massachusetts General Hospital Cancer Center;
  • | 8 St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center;
  • | 9 UC San Diego Moores Cancer Center;
  • | 10 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • | 11 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • | 12 Abramson Cancer Center at the University of Pennsylvania;
  • | 13 O'Neal Comprehensive Cancer Center at UAB;
  • | 14 Roswell Park Comprehensive Cancer Center;
  • | 15 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • | 16 City of Hope National Medical Center;
  • | 17 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • | 18 Duke Cancer Institute;
  • | 19 Memorial Sloan Kettering Cancer Center;
  • | 20 UCLA Jonsson Comprehensive Cancer Center;
  • | 21 Stanford Cancer Institute;
  • | 22 UCSF Helen Diller Family Comprehensive Cancer Center;
  • | 23 Patient Advocate;
  • | 24 Moffitt Cancer Center;
  • | 25 Huntsman Cancer Institute at the University of Utah;
  • | 26 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • | 27 The University of Texas MD Anderson Cancer Center; and
  • | 28 National Comprehensive Cancer Network

Multiple myeloma is a malignant neoplasm of plasma cells that accumulate in bone marrow, leading to bone destruction and marrow failure. This manuscript discusses the management of patients with solitary plasmacytoma, smoldering multiple myeloma, and newly diagnosed multiple myeloma.

Individual Disclosures for the NCCN Multiple Myeloma Panel

TU1

  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:730.

  • 2.

    Stat Fact Sheets SEER. Myeloma. http://seer.cancer.gov/statfacts/html/mulmy.html. Accessed on October 20th, 2020.

  • 3.

    Kyle RA, Gertz MA, Witzig TE, et al.. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003;78:2133.

  • 4.

    Dispenzieri A, Kyle R, Merlini G, et al.. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23:215224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kühnemund A, Liebisch P, Bauchmüller K, et al.. ‘Light-chain escape-multiple myeloma’-an escape phenomenon from plateau phase: report of the largest patient series using LC-monitoring. J Cancer Res Clin Oncol 2009;135:477484.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Durie BG, Harousseau JL, Miguel JS, et al.. International uniform response criteria for multiple myeloma. Leukemia 2006;20:14671473.

  • 7.

    Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008;111:39413967.

  • 8.

    Paiva B, Vidriales MB, Pérez JJ, et al.. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica 2009;94:15991602.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Xiong W, Wu X, Starnes S, et al.. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 2008;112:42354246.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Drach J, Ackermann J, Fritz E, et al.. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998;92:802809.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Avet-Loiseau H, Attal M, Moreau P, et al.. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood 2007;109:34893495.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gertz MA, Lacy MQ, Dispenzieri A, et al.. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106:28372840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gutiérrez NC, Castellanos MV, Martín ML, et al.. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007;21:143150.

    • Search Google Scholar
    • Export Citation
  • 14.

    Ross FM, Chiecchio L, Dagrada G, et al.. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 2010;95:12211225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ross FM, Avet-Loiseau H, Ameye G, et al.. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 2012;97:12721277.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hanamura I, Stewart JP, Huang Y, et al.. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006;108:17241732.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Carrasco DR, Tonon G, Huang Y, et al.. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006;9:313325.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rosiñol L, Carrió A, Bladé J, et al.. Comparative genomic hybridisation identifies two variants of smoldering multiple myeloma. Br J Haematol 2005;130:729732.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dispenzieri A, Rajkumar SV, Gertz MA, et al.. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 2007;82:323341.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kumar SK, Mikhael JR, Buadi FK, et al.. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin Proc 2009;84:10951110.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749757.

    • Search Google Scholar
    • Export Citation
  • 22.

    Hillengass J, Moulopoulos LA, Delorme S, et al.. Findings of whole body computed tomography compared with conventional skeletal survey in patients with monoclonal plasma cell disorders - a Study of the International Myeloma Working Group. Blood 2016;128:4468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hinge M, Andersen KT, Lund T, et al.. Baseline bone involvement in multiple myeloma - a prospective comparison of conventional X-ray, low-dose computed tomography, and 18flourodeoxyglucose positron emission tomography in previously untreated patients. Haematologica 2016;101:e415e418.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kröpil P, Fenk R, Fritz LB, et al.. Comparison of whole-body 64-slice multidetector computed tomography and conventional radiography in staging of multiple myeloma. Eur Radiol 2008;18:5158.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Princewill K, Kyere S, Awan O, et al.. Multiple myeloma lesion detection with whole body CT versus radiographic skeletal survey. Cancer Invest 2013;31:206211.

  • 26.

    Nanni C, Zamagni E, Farsad M, et al.. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 2006;33:525531.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Siontis B, Kumar S, Dispenzieri A, et al.. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy. Blood Cancer J 2015;5:e364.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zamagni E, Nanni C, Gay F, et al.. 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia 2016;30:417422.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hillengass J, Fechtner K, Weber MA, et al.. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 2010;28:16061610.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Merz M, Hielscher T, Wagner B, et al.. Predictive value of longitudinal whole-body magnetic resonance imaging in patients with smoldering multiple myeloma. Leukemia 2014;28:19021908.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Greipp PR, Lust JA, O’Fallon WM, et al.. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 1993;81:33823387.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kumar SK, Rajkumar SV. The multiple myelomas - current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol 2018;15:409421.

  • 33.

    Rajkumar SV, Dimopoulos MA, Palumbo A, et al.. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538e548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lakshman A, Rajkumar SV, Buadi FK, et al.. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J 2018;8:59.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Greipp PR, San Miguel J, Durie BG, et al.. International staging system for multiple myeloma. J Clin Oncol 2005;23:34123420.

  • 36.

    Palumbo A, Avet-Loiseau H, Oliva S, et al.. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol 2015;33:28632869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Knowling MA, Harwood AR, Bergsagel DE. Comparison of extramedullary plasmacytomas with solitary and multiple plasma cell tumors of bone. J Clin Oncol 1983;1:255262.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Dores GM, Landgren O, McGlynn KA, et al.. Plasmacytoma of bone, extramedullary plasmacytoma, and multiple myeloma: incidence and survival in the United States, 1992-2004. Br J Haematol 2009;144:8694.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Dimopoulos MA, Goldstein J, Fuller L, et al.. Curability of solitary bone plasmacytoma. J Clin Oncol 1992;10:587590.

  • 40.

    Hu K, Yahalom J. Radiotherapy in the management of plasma cell tumors. Oncology (Williston Park) 2000;14:101-108, 111; discussion 111-102, 115.

  • 41.

    Creach KM, Foote RL, Neben-Wittich MA, et al.. Radiotherapy for extramedullary plasmacytoma of the head and neck. Int J Radiat Oncol Biol Phys 2009;73:789794.

  • 42.

    Tournier-Rangeard L, Lapeyre M, Graff-Caillaud P, et al.. Radiotherapy for solitary extramedullary plasmacytoma in the head-and-neck region: A dose greater than 45 Gy to the target volume improves the local control. Int J Radiat Oncol Biol Phys 2006;64:10131017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Reed V, Shah J, Medeiros LJ, et al.. Solitary plasmacytomas: outcome and prognostic factors after definitive radiation therapy. Cancer 2011;117:44684474.

  • 44.

    Frassica DA, Frassica FJ, Schray MF, et al.. Solitary plasmacytoma of bone: Mayo Clinic experience. Int J Radiat Oncol Biol Phys 1989;16:4348.

  • 45.

    Ozsahin M, Tsang RW, Poortmans P, et al.. Outcomes and patterns of failure in solitary plasmacytoma: a multicenter Rare Cancer Network study of 258 patients. Int J Radiat Oncol Biol Phys 2006;64:210217.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Knobel D, Zouhair A, Tsang RW, et al.. Prognostic factors in solitary plasmacytoma of the bone: a multicenter Rare Cancer Network study. BMC Cancer 2006;6:118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Sasaki R, Yasuda K, Abe E, et al.. Multi-institutional analysis of solitary extramedullary plasmacytoma of the head and neck treated with curative radiotherapy. Int J Radiat Oncol Biol Phys 2012;82:626634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Gerry D, Lentsch EJ. Epidemiologic evidence of superior outcomes for extramedullary plasmacytoma of the head and neck. Otolaryngol Head Neck Surg 2013;148:974981.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Kato T, Tsukamoto E, Nishioka T, et al.. Early detection of bone marrow involvement in extramedullary plasmacytoma by whole-body F-18 FDG positron emission tomography. Clin Nucl Med 2000;25:870873.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Schirrmeister H, Bommer M, Buck AK, et al.. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002;29:361366.

  • 51.

    Nanni C, Rubello D, Zamagni E, et al.. 18F-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo 2008;22:513517.

  • 52.

    Kyle RA, Remstein ED, Therneau TM, et al.. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 2007;356:25822590.

  • 53.

    Mateos MV, Hernández MT, Giraldo P, et al.. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 2013;369:438447.

  • 54.

    Mateos MV, Hernández MT, Giraldo P, et al.. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): long-term follow-up of a randomised, controlled, phase 3 trial. Lancet Oncol 2016;17:11271136.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Lonial S, Jacobus S, Fonseca R, et al.. Randomized Trial of Lenalidomide Versus Observation in Smoldering Multiple Myeloma. J Clin Oncol 2020;38:11261137.

  • 56.

    San Miguel J, Mateos M-V, Gonzalez V, et al.. Updated risk stratification model for smoldering multiple myeloma (SMM) incorporating the revised IMWG diagnostic criteria. J Clin Oncol 2019;37(15_suppl):80008000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Reeder CB, Reece DE, Kukreti V, et al.. Once- versus twice-weekly bortezomib induction therapy with CyBorD in newly diagnosed multiple myeloma. Blood 2010;115:34163417.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Moreau P, Pylypenko H, Grosicki S, et al.. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 2011;12:431440.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Arnulf B, Pylypenko H, Grosicki S, et al.. Updated survival analysis of a randomized phase III study of subcutaneous versus intravenous bortezomib in patients with relapsed multiple myeloma. Haematologica 2012;97:19251928.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    FDA Safety Information. Accessed November 4, 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202714s025lbl.pdf

  • 61.

    Mateos MV, Nahi H, Legiec W, et al.. Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol 2020;7:e370e380.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Richardson PG, Weller E, Lonial S, et al.. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010;116:679686.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Roussel M, Lauwers-Cances V, Robillard N, et al.. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myélome. J Clin Oncol 2014;32:27122717.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Kumar S, Flinn I, Richardson PG, et al.. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 2012;119:43754382.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Durie BGM, Hoering A, Abidi MH, et al.. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 2017;389:519527.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Durie BGM, Hoering A, Sexton R, et al.. Longer term follow-up of the randomized phase III trial SWOG S0777: bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood Cancer J 2020;10:53.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Kumar SK, Jacobus SJ, Cohen AD, et al.. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2020;21:13171330.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Okazuka K, Ishida T, Nashimoto J, et al.. The efficacy and safety of modified bortezomib-lenalidomide-dexamethasone in transplant-eligible patients with newly diagnosed multiple myeloma. Eur J Haematol 2020;104:110115.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Reeder CB, Reece DE, Kukreti V, et al.. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia 2009;23:13371341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Knop S, Liebisch P, Wandt H, et al.. Bortezomib, IV cyclophosphamide, and dexamethasone (VelCD) as induction therapy in newly diagnosed multiple myeloma: Results of an interim analysis of the German DSMM Xia trial. J Clin Oncol 2009;27:85168516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Reeder CB, Reece DE, Kukreti V, et al.. Long-term survival with cyclophosphamide, bortezomib and dexamethasone induction therapy in patients with newly diagnosed multiple myeloma. Br J Haematol 2014;167:563565.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Jakubowiak AJ, Dytfeld D, Griffith KA, et al.. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood 2012;120:18011809.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Korde N, Zingone A, Kwok M, et al.. Phase II clinical and correlative study of carfilzomib, lenalidomide, and dexamethasone (CRd) in newly diagnosed multiple myeloma (MM) patients. [abstract] Blood 2012;120:732. (Abstract 732)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Korde N, Zingone A, Kwok M, et al.. Phase II clinical and correlative study of carfilzomib, lenalidomide, and dexamethasone followed by lenalidomide extended dosing (CRD-R) induces high rates of MRD negativity in newly diagnosed multiple myeloma (MM) patients. [Abstract] Blood 2013;122:538538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Zimmerman T, Raje NS, Vij R, et al.. Final results of a phase 2 trial of extended treatment (tx) with carfilzomib (CFZ), lenalidomide (LEN), and dexamethasone (KRd) plus autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma (NDMM). Blood 2016;128:675675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Voorhees PM, Kaufman JL, Laubach J, et al.. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood 2020;136:936945.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Kumar SK, Berdeja JG, Niesvizky R, et al.. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol 2014;15:15031512.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Facon T, Venner CP, Bahlis NJ, et al.. Ixazomib Plus LenalidomideDexamethasone (IRd) vs PlaceboRd for Newly Diagnosed Multiple Myeloma (NDMM) Patients Not Eligible for Autologous Stem Cell Transplant: The Double-Blind, Placebo-Controlled, Phase 3 TOURMALINE-MM2 Trial [Abstract]. Abstract MM-347 presented at Society of Hematologic Oncology (SOHO) Eighth Annual Meeting 2020.

    • Crossref
    • Export Citation
  • 79.

    Sonneveld P, Schmidt-Wolf IG, van der Holt B, et al.. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. J Clin Oncol 2012;30:29462955.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Bringhen S, Petrucci MT, Larocca A, et al.. Carfilzomib, cyclophosphamide, and dexamethasone in patients with newly diagnosed multiple myeloma: a multicenter, phase 2 study. Blood 2014;124:6369.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Bringhen S, D’Agostino M, De Paoli L, et al.. Phase 1/2 study of weekly carfilzomib, cyclophosphamide, dexamethasone in newly diagnosed transplant-ineligible myeloma. Leukemia 2018;32:979985.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Bringhen S, Mina R, Petrucci MT, et al.. Once-weekly versus twice-weekly carfilzomib in patients with newly diagnosed multiple myeloma: a pooled analysis of two phase I/II studies. Haematologica 2019;104:16401647.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Boccia RV, Bessudo A, Agajanian R, et al.. A multicenter, open-label, phase 1b study of carfilzomib, cyclophosphamide, and dexamethasone in newly diagnosed multiple myeloma patients (CHAMPION-2). Clin Lymphoma Myeloma Leuk 2017;17:433437.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Kumar SK, Buadi FK, LaPlant B, et al.. Phase 1/2 trial of ixazomib, cyclophosphamide and dexamethasone in patients with previously untreated symptomatic multiple myeloma. Blood Cancer J 2018;8:70.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Dimopoulos MA, Grosicki S, Jędrzejczak WW, et al.. All-oral ixazomib, cyclophosphamide, and dexamethasone for transplant-ineligible patients with newly diagnosed multiple myeloma. Eur J Cancer 2019;106:8998.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Cavo M, Tacchetti P, Patriarca F, et al.. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 2010;376:20752085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Kaufman JL, Nooka A, Vrana M, et al.. Bortezomib, thalidomide, and dexamethasone as induction therapy for patients with symptomatic multiple myeloma: a retrospective study. Cancer 2010;116:31433151.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Rosiñol L, Oriol A, Teruel AI, et al.. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood 2012;120:15891596.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Moreau P, Hulin C. Bortezomib, thalidomide and dexamethasone (VTD) is superior to bortezomib, cyclophosphamide and dexamethasone (VCD) prior to autologous stem cell transplantation for patients with de novo multiple myeloma. Results of the prospective IFM 2013-04 trial. Blood 2015;126:393393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Kumar SK, Lacy MQ, Hayman SR, et al.. Lenalidomide, cyclophosphamide and dexamethasone (CRd) for newly diagnosed multiple myeloma: results from a phase 2 trial. Am J Hematol 2011;86:640645.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Pawlyn C, Brioli A, Gregory W, et al.. Lenalidomide combined with cyclophosphamide and dexamethasone is effective and well tolerated induction treatment of newly diagnosed myeloma patients of all ages. Blood 2013;122:540540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Moreau P, Attal M, Hulin C, et al.. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 2019;394:2938.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Yimer H, Melear J, Faber E, et al.. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma: LYRA study. Br J Haematol 2019;185:492502.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Barlogie B, Anaissie E, van Rhee F, et al.. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007;138:176185.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    O’Donnell EK, Laubach JP, Yee AJ, et al.. A phase 2 study of modified lenalidomide, bortezomib and dexamethasone in transplant-ineligible multiple myeloma. Br J Haematol 2018;182:222230.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Facon T, Kumar S, Plesner T, et al.. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med 2019;380:21042115.

  • 97.

    Zepeda JHV, Duggan P, et al.. Cyclophosphamide, bortezomib and dexamethasone (CyBORD) is a feasible and active regimen for non-transplant eligible multiple myeloma patients [Abstract}. Blood 2014;124:57515751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Zonder JA, Crowley J, Hussein MA, et al.. Superiority of lenalidomide (Len) plus high-dose dexamethasone (HD) compared with HD alone as treatment of newly-diagnosed multiple myeloma (NDMM): Results of the randomized, double-blinded, placebo-controlled SWOG Trial S0232. [abstract] Blood 2007;110:77. (Abstract 77)

    • Search Google Scholar
    • Export Citation
  • 99.

    Rajkumar SV, Jacobus S, Callander NS, et al.. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 2010;11:2937.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Benboubker L, Dimopoulos MA, Dispenzieri A, et al.. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med 2014;371:906917.

  • 101.

    Attal M, Lauwers-Cances V, Marit G, et al.. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012;366:17821791.

  • 102.

    McCarthy PL, Owzar K, Hofmeister CC, et al.. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med 2012;366:17701781.

  • 103.

    Usmani SZ, Sexton R, Hoering A, et al.. Second malignancies in total therapy 2 and 3 for newly diagnosed multiple myeloma: influence of thalidomide and lenalidomide during maintenance. Blood 2012;120:15971600.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Palumbo A, Bringhen S, Kumar SK, et al.. Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data. Lancet Oncol 2014;15:333342.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Dimopoulos MA, Cheung MC, Roussel M, et al.. Impact of renal impairment on outcomes with lenalidomide and dexamethasone treatment in the FIRST trial, a randomized, open-label phase 3 trial in transplant-ineligible patients with multiple myeloma. Haematologica 2016;101:363370.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Hulin C, Belch A, Shustik C, et al.. Updated outcomes and impact of age with lenalidomide and low-dose dexamethasone or melphalan, prednisone, and thalidomide in the randomized, phase III FIRST trial. J Clin Oncol 2016;34:36093617.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Dytfeld D, Jasielec J, Griffith KA, et al.. Carfilzomib, lenalidomide, and low-dose dexamethasone in elderly patients with newly diagnosed multiple myeloma. Haematologica 2014;99:e162e164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Korde N, Roschewski M, Zingone A, et al.. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol 2015;1:746754.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Mateos MV, Dimopoulos MA, Cavo M, et al.. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N Engl J Med 2018;378:518528.

  • 110.

    Niesvizky R, Flinn IW, Rifkin R, et al.. Community-based phase IIIB trial of three UPFRONT bortezomib-based myeloma regimens. J Clin Oncol 2015;33:39213929.

  • 111.

    Niesvizky R, Flinn IW, Rifkin R, et al.. Efficacy and safety of three bortezomib-based combinations in elderly, newly diagnosed multiple myeloma patients: Results from all randomized patients in the community-based, phase 3b UPFRONT study. [abstract] Blood 2011;•••:118. (Abstract 478)

    • Search Google Scholar
    • Export Citation
  • 112.

    Rajkumar SV. Multiple myeloma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 2011;86:5765.

  • 113.

    Palumbo A, Rajkumar SV, San Miguel JF, et al.. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol 2014;32:587600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Kumar S, Paiva B, Anderson KC, et al.. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17:e328e346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Attal M, Harousseau JL, Stoppa AM, et al.. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myélome. N Engl J Med 1996;335:9197.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Child JA, Morgan GJ, Davies FE, et al.. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003;348:18751883.

  • 117.

    Barlogie B, Kyle RA, Anderson KC, et al.. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006;24:929936.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Moreau P, Facon T, Attal M, et al.. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myélome 9502 randomized trial. Blood 2002;99:731735.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Fermand JP, Katsahian S, Divine M, et al.. High-dose therapy and autologous blood stem-cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: long-term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol 2005;23:92279233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Palumbo A, Cavallo F, Gay F, et al.. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 2014;371:895905.

  • 121.

    Harousseau JL, Attal M, Avet-Loiseau H, et al.. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol 2010;28:46214629.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Cavo M, Pantani L, Petrucci MT, et al.. Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood 2012;120:919.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Attal M, Lauwers-Cances V, Hulin C, et al.. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med 2017;376:13111320.

  • 124.

    Attal M, Harousseau JL, Facon T, et al.. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003;349:24952502.

  • 125.

    Cavo M, Tosi P, Zamagni E, et al.. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol 2007;25:24342441.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Sonneveld P, van der Holt B, Segeren C, et al.. Intensive versus double intensive therapy in untreated multiple myeloma: Updated analysis of the randomized phase III study HOVON 24 MM. [abstract] Blood 2004;104:948. (Abstract 948)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Mai EK, Benner A, Bertsch U, et al.. Single versus tandem high-dose melphalan followed by autologous blood stem cell transplantation in multiple myeloma: long-term results from the phase III GMMG-HD2 trial. Br J Haematol 2016;173:731741.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Barlogie B, Attal M, Crowley J, et al.. Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the intergroupe francophone du myelome, southwest oncology group, and university of arkansas for medical sciences. J Clin Oncol 2010;28:12091214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Stadtmauer A, Pasquini M, Blackwell B, et al.. Comparison of autologous hematopoietic cell transplant (autoHCT), bortezomib, lenalidomide (Len) and dexamethasone (RVD) consolidation with Len maintenance (ACM), tandem auto-HCT with Len maintenance (TAM) and AutoHCT with Len maintenance (AM) for up-front treatment of patients with Multiple Myeloma (MM): Primary results from the randomized phase III trial of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0702 – StaMINA Trial). Presented at the 2016 ASH Annual Meeting; December 3–6, 2016; San Diego, California.

    • Crossref
    • Export Citation
  • 130.

    Petrucci T, Raimondo FD, Zamagni E, et al.. Upfront single versus double autologous stem cell transplantation for newly diagnosed multiple myeloma: An intergroup, multicenter, phase III study of the European Myeloma Network (EMN02/HO95 MM Trial. Presented at the 2016 ASH Annual Meeting; December 3–6, 2016; San Diego, California.

  • 131.

    Stadtmauer EA, Pasquini MC, Blackwell B, et al.. Autologous transplantation, consolidation, and maintenance therapy in multiple myeloma: results of the BMT CTN 0702 Trial. J Clin Oncol 2019;37:589597.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Cook G, Liakopoulou E, Pearce R, et al.. Factors influencing the outcome of a second autologous stem cell transplant (ASCT) in relapsed multiple myeloma: a study from the British Society of Blood and Marrow Transplantation Registry. Biol Blood Marrow Transplant 2011;17:16381645.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Olin RL, Vogl DT, Porter DL, et al.. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant 2009;43:417422.

  • 134.

    Burzynski JA, Toro JJ, Patel RC, et al.. Toxicity of a second autologous peripheral blood stem cell transplant in patients with relapsed or recurrent multiple myeloma. Leuk Lymphoma 2009;50:14421447.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Alvares CL, Davies FE, Horton C, et al.. The role of second autografts in the management of myeloma at first relapse. Haematologica 2006;91:141142.

  • 136.

    Fenk R, Liese V, Neubauer F, et al.. Predictive factors for successful salvage high-dose therapy in patients with multiple myeloma relapsing after autologous blood stem cell transplantation. Leuk Lymphoma 2011;52:14551462.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Cook G, Williams C, Brown JM, et al.. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:874885.

    • Search Google Scholar
    • Export Citation
  • 138.

    Cook G, Ashcroft AJ, Cairns DA, et al.. The effect of salvage autologous stem-cell transplantation on overall survival in patients with relapsed multiple myeloma (final results from BSBMT/UKMF Myeloma X Relapse [Intensive]): a randomised, open-label, phase 3 trial. Lancet Haematol 2016;3:e340e351.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Kumar S, Mahmood ST, Lacy MQ, et al.. Impact of early relapse after auto-SCT for multiple myeloma. Bone Marrow Transplant 2008;42:413420.

  • 140.

    Vangsted AJ, Klausen TW, Andersen NF, et al.. Improved survival of multiple myeloma patients with late relapse after high-dose treatment and stem cell support, a population-based study of 348 patients in Denmark in 1994-2004. Eur J Haematol 2010;85:209216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Kumar SK, Dispenzieri A, Fraser R, et al.. Early relapse after autologous hematopoietic cell transplantation remains a poor prognostic factor in multiple myeloma but outcomes have improved over time. Leukemia 2018;32:986995.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Kastritis E, Roussou M, Eleutherakis-Papaiakovou E, et al.. Early relapse after autologous transplant is associated with very poor survival and identifies an ultra-high-risk group of patients with myeloma. Clin Lymphoma Myeloma Leuk 2020;20:445452.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Bygrave C, Pawlyn C, Davies F, et al.. Early relapse after high-dose melphalan autologous stem cell transplant predicts inferior survival and is associated with high disease burden and genetically high-risk disease in multiple myeloma. Br J Haematol 2020;bjh.16793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Auner HW, Szydlo R, Rone A, et al.. Salvage autologous stem cell transplantation for multiple myeloma relapsing or progressing after up-front autologous transplantation. Leuk Lymphoma 2013;54:22002204.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Jimenez-Zepeda VH, Mikhael J, Winter A, et al.. Second autologous stem cell transplantation as salvage therapy for multiple myeloma: impact on progression-free and overall survival. Biol Blood Marrow Transplant 2012;18:773779.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Sellner L, Heiss C, Benner A, et al.. Autologous retransplantation for patients with recurrent multiple myeloma: a single-center experience with 200 patients. Cancer 2013;119:24382446.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Shah N, Ahmed F, Bashir Q, et al.. Durable remission with salvage second autotransplants in patients with multiple myeloma. Cancer 2012;118:35493555.

  • 148.

    Kyle RA. High-dose therapy in multiple myeloma and primary amyloidosis: an overview. Semin Oncol 1999;26:7483.

  • 149.

    Kumar A, Loughran T, Alsina M, et al.. Management of multiple myeloma: a systematic review and critical appraisal of published studies. Lancet Oncol 2003;4:293304.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Hahn T, Wingard JR, Anderson KC, et al.. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of multiple myeloma: an evidence-based review. Biol Blood Marrow Transplant 2003;9:437.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Zeiser R, Bertz H, Spyridonidis A, et al.. Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant 2004;34:923928.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    van de Donk NW, Kröger N, Hegenbart U, et al.. Prognostic factors for donor lymphocyte infusions following non-myeloablative allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant 2006;37:11351141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 153.

    Lokhorst HM, Wu K, Verdonck LF, et al.. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 2004;103:43624364.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Lokhorst HM, Schattenberg A, Cornelissen JJ, et al.. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000;18:30313037.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Lokhorst HM, Schattenberg A, Cornelissen JJ, et al.. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997;90:42064211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Salama M, Nevill T, Marcellus D, et al.. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000;26:11791184.

  • 157.

    Tricot G, Vesole DH, Jagannath S, et al.. Graft-versus-myeloma effect: proof of principle. Blood 1996;87:11961198.

  • 158.

    Ayuk F, Shimoni A, Nagler A, et al.. Efficacy and toxicity of low-dose escalating donor lymphocyte infusion given after reduced intensity conditioning allograft for multiple myeloma. Leukemia 2004;18:659662.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Paiva B, Vidriales MB, Cerveró J, et al.. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008;112:40174023.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Rawstron AC, Child JA, de Tute RM, et al.. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 2013;31:25402547.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Putkonen M, Kairisto V, Juvonen V, et al.. Depth of response assessed by quantitative ASO-PCR predicts the outcome after stem cell transplantation in multiple myeloma. Eur J Haematol 2010;85:416423.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Holstein SA, Jung SH, Richardson PG, et al.. Updated analysis of CALGB (Alliance) 100104 assessing lenalidomide versus placebo maintenance after single autologous stem-cell transplantation for multiple myeloma: a randomised, double-blind, phase 3 trial. Lancet Haematol 2017;4:e431e442.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    McCarthy PL, Holstein SA, Petrucci MT, et al.. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol 2017;35:32793289.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Kneppers E, van der Holt B, Kersten MJ, et al.. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial. Blood 2011;118:24132419.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Alsina M, Becker PS, Zhong X, et al.. Lenalidomide maintenance for high-risk multiple myeloma after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014;20:11831189.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Palumbo A, Hajek R, Delforge M, et al.. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 2012;366:17591769.

  • 167.

    Singh P, Kumar SK, LaPlant BR, et al.. Lenalidomide maintenance therapy in multiple myeloma: a meta-analysis of randomized trials. Blood 2013;122:407407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 168.

    Musto P, Anderson KC, Attal M, et al.. Second primary malignancies in multiple myeloma: an overview and IMWG consensus. Ann Oncol 2017;28:228245.

  • 169.

    Mellqvist UH, Gimsing P, Hjertner O, et al.. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood 2013;121:46474654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 170.

    Dimopoulos MA, Gay F, Schjesvold F, et al.. Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 2019;393:253264.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Berenson JR, Lichtenstein A, Porter L, et al.. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. J Clin Oncol 1998;16:593602.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Berenson JR, Lichtenstein A, Porter L, et al.. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 1996;334:488493.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Major P, Lortholary A, Hon J, et al.. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558567.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Zervas K, Verrou E, Teleioudis Z, et al.. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: a single-centre experience in 303 patients. Br J Haematol 2006;134:620623.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Morgan GJ, Davies FE, Gregory WM, et al.. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 2010;376:19891999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 176.

    Jackson GH, Morgan GJ, Davies FE, et al.. Osteonecrosis of the jaw and renal safety in patients with newly diagnosed multiple myeloma: Medical Research Council Myeloma IX Study results. Br J Haematol 2014;166:109117.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Morgan GJ, Davies FE, Gregory WM, et al.. Long-term follow-up of MRC Myeloma IX trial: survival outcomes with bisphosphonate and thalidomide treatment. Clin Cancer Res 2013;19:60306038.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Mhaskar R, Redzepovic J, Wheatley K, et al.. Bisphosphonates in multiple myeloma: a network meta-analysis. Cochrane Database Syst Rev 2012;5:CD003188.

    • Search Google Scholar
    • Export Citation
  • 179.

    Himelstein AL, Foster JC, Khatcheressian JL, et al.. Effect of longer-interval vs standard dosing of zoledronic acid on skeletal events in patients with bone metastases: a randomized clinical trial. JAMA 2017;317:4858.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Raje N, Terpos E, Willenbacher W, et al.. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol 2018;19:370381.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Resende Salgado L, Chang S, Ru M, et al.. Utilization patterns of single fraction radiation therapy for multiple myeloma. Clin Lymphoma Myeloma Leuk 2019;19:e238e246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 182.

    Major PP, Coleman RE. Zoledronic acid in the treatment of hypercalcemia of malignancy: results of the international clinical development program. Semin Oncol 2001; 28(2, Suppl 6)1724.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Pecherstorfer M, Steinhauer EU, Rizzoli R, et al.. Efficacy and safety of ibandronate in the treatment of hypercalcemia of malignancy: a randomized multicentric comparison to pamidronate. Support Care Cancer 2003;11:539547.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Lindsley H, Teller D, Noonan B, et al.. Hyperviscosity syndrome in multiple myeloma. A reversible, concentration-dependent aggregation of the myeloma protein. Am J Med 1973;54:682688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Ludwig H, Fritz E, Kotzmann H, et al.. Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med 1990;322:16931699.

  • 186.

    Osterborg A, Boogaerts MA, Cimino R, et al.. Recombinant human erythropoietin in transfusion-dependent anemic patients with multiple myeloma and non-Hodgkin’s lymphoma--a randomized multicenter study. Blood 1996;87:26752682.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Palumbo A, Rajkumar SV, Dimopoulos MA, et al.. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008;22:414423.

  • 188.

    Ikhlaque N, Seshadri V, Kathula S, et al.. Efficacy of prophylactic warfarin for prevention of thalidomide-related deep venous thrombosis. Am J Hematol 2006;81:420422.

  • 189.

    Baz R, Li L, Kottke-Marchant K, et al.. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma. Mayo Clin Proc 2005;80:15681574.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Mateos MV. Management of treatment-related adverse events in patients with multiple myeloma. Cancer Treat Rev 2010;36(Suppl 2):S24S32.

  • 191.

    Siegel D, Martin T, Nooka A, et al.. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica 2013;98:17531761.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Chanan-Khan A, Sonneveld P, Schuster MW, et al.. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol 2008;26:47844790.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Mateos MV, Hernández JM, Hernández MT, et al.. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 2006;108:21652172.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Richardson PG, Sonneveld P, Schuster MW, et al.. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352:24872498.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18336 17334 1543
PDF Downloads 11822 11342 1486
EPUB Downloads 0 0 0