Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology

View More View Less
  • 1 O'Neal Comprehensive Cancer Center at UAB;
  • 2 City of Hope National Medical Center;
  • 3 Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;
  • 4 Yale Cancer Center/Smilow Cancer Hospital;
  • 5 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;
  • 6 Abramson Cancer Center at the University of Pennsylvania;
  • 7 UCSF Helen Diller Family Comprehensive Cancer Center;
  • 8 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;
  • 9 Vanderbilt-Ingram Cancer Center;
  • 10 Roswell Park Comprehensive Cancer Center;
  • 11 Moffitt Cancer Center;
  • 12 UC San Diego Moores Cancer Center;
  • 13 Robert H. Lurie Comprehensive Cancer Center of Northwestern University;
  • 14 University of Michigan Rogel Cancer Center;
  • 15 Memorial Sloan Kettering Cancer Center;
  • 16 Massachusetts General Hospital Cancer Center;
  • 17 Mayo Clinic Cancer Center;
  • 18 Stanford Cancer Institute;
  • 19 St. Jude Children's Research Hospital/The University of Tennessee Health Science Center;
  • 20 Duke Cancer Institute;
  • 21 The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;
  • 22 University of Wisconsin Carbone Cancer Center;
  • 23 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;
  • 24 University of Colorado Cancer Center;
  • 25 Fred and Pamela Buffet Cancer Center;
  • 26 Huntsman Cancer Institute at the University of Utah;
  • 27 Fox Chase Cancer Center;
  • 28 Dana-Farber Cancer Institute;
  • 29 American Brain Tumor Association; and
  • 30 National Comprehensive Cancer Network
Restricted access

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of adult CNS cancers ranging from noninvasive and surgically curable pilocytic astrocytomas to metastatic brain disease. The involvement of an interdisciplinary team, including neurosurgeons, radiation therapists, oncologists, neurologists, and neuroradiologists, is a key factor in the appropriate management of CNS cancers. Integrated histopathologic and molecular characterization of brain tumors such as gliomas should be standard practice. This article describes NCCN Guidelines recommendations for WHO grade I, II, III, and IV gliomas. Treatment of brain metastases, the most common intracranial tumors in adults, is also described.

Individual Disclosures for the NCCN Central Nervous System Cancers Panel

TU1

  • 1.

    Louis DN, Perry A, Reifenberger G, . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803820.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Yan H, Parsons DW, Jin G, . IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765773.

  • 3.

    Houillier C, Wang X, Kaloshi G, . IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 2010;75:15601566.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cancer Genome Atlas Research Network. Brat DJ, Verhaak RG, Aldape KD, . Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015;372:24812498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26061751.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Eckel-Passow JE, Lachance DH, Molinaro AM, . Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015;372:24992508.

  • 6.

    Wiestler B, Capper D, Sill M, . Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 2014;128:561571.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Weller M, Weber RG, Willscher E, . Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 2015;129:679693.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nitta M, Muragaki Y, Maruyama T, . Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection. Neurosurg Focus 2015;38:E7.

  • 9.

    Baumert BG, Hegi ME, van den Bent MJ, . Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 2016;17:15211532.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sanson M, Marie Y, Paris S, . Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009;27:41504154.

  • 11.

    Sahm F, Reuss D, Koelsche C, . Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 2014;128:551559.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pai T, Epari S, Desai S, . Histological spectrum of oligodendroglial tumors: Only a subset shows 1p/19q codeletion. Neurol India 2017;65:113120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Neumann JE, Dorostkar MM, Korshunov A, . Distinct histomorphology in molecular subgroups of glioblastomas in young patients. J Neuropathol Exp Neurol 2016;75:408414.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dubbink HJ, Atmodimedjo PN, Kros JM, . Molecular classification of anaplastic oligodendroglioma using next-generation sequencing: a report of the prospective randomized EORTC Brain Tumor Group 26951 phase III trial. Neuro-oncol 2016;18:388400.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Labussière M, Idbaih A, Wang XW, . All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 2010;74:18861890.

  • 16.

    Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 2013;125:621636.

  • 17.

    Jiao Y, Killela PJ, Reitman ZJ, . Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012;3:709722.

  • 18.

    Leeper HE, Caron AA, Decker PA, . IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 2015;6:3029530305.

  • 19.

    Reuss DE, Sahm F, Schrimpf D, . ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 2015;129:133146.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Arita H, Narita Y, Fukushima S, . Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 2013;126:267276.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Killela PJ, Reitman ZJ, Jiao Y, . TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 2013;110:60216026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kristensen BW, Priesterbach-Ackley LP, Petersen JK, . Molecular pathology of tumors of the central nervous system. Ann Oncol 2019;30:12651278.

  • 23.

    Meyronet D, Esteban-Mader M, Bonnet C, . Characteristics of H3 K27M-mutant gliomas in adults. Neuro-oncol 2017;19:11271134.

  • 24.

    Brat DJ, Aldape K, Colman H, . cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 2020;139:603608.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Jiang H, Cui Y, Wang J, . Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget 2017;8:2035420361.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wick W, Roth P, Hartmann C, . Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro-oncol 2016;18:15291537.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cairncross JG, Wang M, Jenkins RB, . Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014;32:783790.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Everhard S, Kaloshi G, Crinière E, . MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol 2006;60:740743.

  • 29.

    Gorovets D, Kannan K, Shen R, . IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res 2012;18:24902501.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wahl M, Phillips JJ, Molinaro AM, . Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neuro-oncol 2017;19:242251.

    • Search Google Scholar
    • Export Citation
  • 31.

    Arita H, Yamasaki K, Matsushita Y, . A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 2016;4:79.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pekmezci M, Rice T, Molinaro AM, . Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol 2017;133:10011016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Möllemann M, Wolter M, Felsberg J, . Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 2005;113:379385.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hegi ME, Diserens AC, Gorlia T, . MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:9971003.

  • 35.

    Hegi ME, Diserens AC, Godard S, . Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 2004;10:18711874.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bell EH, Zhang P, Fisher BJ, . Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the NRG Oncology/RTOG 0424 trial. JAMA Oncol 2018;4:14051409.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Malmström A, Grønberg BH, Marosi C, . Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 2012;13:916926.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wick W, Platten M, Meisner C, . Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 2012;13:707715.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Khuong-Quang DA, Buczkowicz P, Rakopoulos P, . K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012;124:439447.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Sturm D, Witt H, Hovestadt V, . Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012;22:425437.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Korshunov A, Capper D, Reuss D, . Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 2016;131:137146.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Horbinski C. To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 2013;72:27.

  • 43.

    Hawkins C, Walker E, Mohamed N, . BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 2011;17:47904798.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Horbinski C, Nikiforova MN, Hagenkord JM, . Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-oncol 2012;14:777789.

  • 45.

    Penman CL, Faulkner C, Lowis SP, . Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol 2015;5:54.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, . Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 2013;37:685698.

  • 47.

    Mistry M, Zhukova N, Merico D, . BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 2015;33:10151022.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Chapman PB, Hauschild A, Robert C, .BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:25072516.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    McArthur GA, Chapman PB, Robert C, . Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 2014;15:323332.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Kaley T, Touat M, Subbiah V, . BRAF inhibition in BRAF(V600)-mutant gliomas: results from the VE-BASKET Study. J Clin Oncol 2018;36:34773484.

  • 51.

    Chang S, Zhang P, Cairncross JG, . Phase III randomized study of radiation and temozolomide versus radiation and nitrosourea therapy for anaplastic astrocytoma: results of NRG Oncology RTOG 9813. Neuro-oncol 2017;19:252258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Olar A, Wani KM, Alfaro-Munoz KD, . IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 2015;129:585596.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Hegi ME, Genbrugge E, Gorlia T, . MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: a pooled analysis of four clinical trials. Clin Cancer Res 2019;25:18091816.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Ostrom QT, Gittleman H, Xu J, . CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro-oncol 2016;18(suppl_5):v1v75.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Chang EF, Potts MB, Keles GE, . Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 2008;108:227235.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Schiff D, Van den Bent M, Vogelbaum MA, . Recent developments and future directions in adult lower-grade gliomas: Society for Neuro-Oncology (SNO) and European Association of Neuro-Oncology (EANO) consensus. Neuro-oncol 2019;21:837853.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Piepmeier J, Christopher S, Spencer D, . Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. Neurosurgery 1996;38:872879.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Afra D, Osztie E, Sipos L, . Preoperative history and postoperative survival of supratentorial low-grade astrocytomas. Br J Neurosurg 1999;13:299305.

  • 59.

    Gallo P, Cecchi PC, Locatelli F, . Pleomorphic xanthoastrocytoma: long-term results of surgical treatment and analysis of prognostic factors. Br J Neurosurg 2013;27:759764.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Giannini C, Scheithauer BW, Burger PC, . Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer 1999;85:20332045.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Ida CM, Rodriguez FJ, Burger PC, . Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol 2015;25:575586.

  • 62.

    Varshneya K, Sarmiento JM, Nuño M, . A national perspective of adult gangliogliomas. J Clin Neurosci 2016;30:6570.

  • 63.

    Tahiri Elousrouti L, Lamchahab M, Bougtoub N, . Subependymal giant cell astrocytoma (SEGA): a case report and review of the literature. J Med Case Reports 2016;10:35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Roth J, Roach ES, Bartels U, . Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol 2013;49:439444.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Adriaensen ME, Schaefer-Prokop CM, Stijnen T, . Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 2009;16:691696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Goh S, Butler W, Thiele EA. Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 2004;63:14571461.

  • 67.

    Skalicky AM, Rentz AM, Liu Z, . The burden of subependymal giant cell astrocytomas associated with tuberous sclerosis complex: results of a patient and caregiver survey. J Child Neurol 2015;30:563569.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics 2010;41:199208.

  • 69.

    Sun P, Kohrman M, Liu J, . Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin 2012;28:657663.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Berhouma M, Dubourg J, Messerer M. Neurology: Letter to the editor. Re: Sun P, Kohrman M, Liu J et al. Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin 2012;28:657-63. Curr Med Res Opin 2012;28:15711572., author reply 1572–1573.

    • Search Google Scholar
    • Export Citation
  • 71.

    Wen P, Stein A, van den Bent M, . ACTR-30. Updated efficacy and safety of dabrafenib plus trametinib in patients with recurrent/refractory BRAF V600E–mutated high-grade glioma (HGG) and low-grade glioma (LGG). Neuro-oncol 2019;21(Supplement_6):vi19vi20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Brown NF, Carter T, Kitchen N, . Dabrafenib and trametinib in BRAFV600E mutated glioma. CNS Oncol 2017;6:291296.

  • 73.

    Marks AM, Bindra RS, DiLuna ML, . Response to the BRAF/MEK inhibitors dabrafenib/trametinib in an adolescent with a BRAF V600E mutated anaplastic ganglioglioma intolerant to vemurafenib. Pediatr Blood Cancer 2018;65:e26969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Franz DN, Belousova E, Sparagana S, . Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013;381:125132.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Franz DN, Belousova E, Sparagana S, . Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol 2014;15:15131520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Wahl M, Chang SM, Phillips JJ, . Probing the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in gliomas: A phase 2 study of everolimus for recurrent adult low-grade gliomas. Cancer 2017;123:46314639.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Ebrahimi-Fakhari D, Franz DN. Pharmacological treatment strategies for subependymal giant cell astrocytoma (SEGA). Expert Opin Pharmacother 2020;21:13291336.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Ostrom QT, Cioffi G, Gittleman H, . CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro-oncol 2019;21(Suppl 5):v1v100.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Pignatti F, van den Bent M, Curran D, . Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 2002;20:20762084.

  • 80.

    Daniels TB, Brown PD, Felten SJ, . Validation of EORTC prognostic factors for adults with low-grade glioma: a report using intergroup 86-72-51. Int J Radiat Oncol Biol Phys 2011;81:218224.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Lo SS, Cho KH, Hall WA, . Does the extent of surgery have an impact on the survival of patients who receive postoperative radiation therapy for supratentorial low-grade gliomas? Int J Cancer 2001; 96(S1, Suppl)7178.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Shaw E, Arusell R, Scheithauer B, . Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 2002;20:22672276.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Lo SS, Hall WA, Cho KH, . Radiation dose response for supratentorial low-grade glioma--institutional experience and literature review. J Neurol Sci 2003;214:4348.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Shaw EG, Berkey B, Coons SW, . Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg 2008;109:835841.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Jackson RJ, Fuller GN, Abi-Said D, . Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-oncol 2001;3:193200.

  • 86.

    Villena Martín M, Pena Pardo FJ, Jiménez Aragón F, . Metabolic targeting can improve the efficiency of brain tumor biopsies. Semin Oncol 2020;47:148154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Brown TJ, Bota DA, van Den Bent MJ, . Management of low-grade glioma: a systematic review and meta-analysis. Neurooncol Pract 2019;6:249258.

  • 88.

    Yang K, Nath S, Koziarz A, . Biopsy versus subtotal versus gross total resection in patients with low-grade glioma: a systematic review and meta-analysis. World Neurosurg 2018;120:e762e775.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Tang S, Liao J, Long Y. Comparative assessment of the efficacy of gross total versus subtotal total resection in patients with glioma: a meta-analysis. Int J Surg 2019;63:9097.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    McGirt MJ, Chaichana KL, Attenello FJ, . Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 2008;63:700707., author reply 707–708.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Jakola AS, Myrmel KS, Kloster R, . Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 2012;308:18811888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Berger MS, Deliganis AV, Dobbins J, . The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 1994;74:17841791.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Kiliç T, Ozduman K, Elmaci I, . Effect of surgery on tumor progression and malignant degeneration in hemispheric diffuse low-grade astrocytomas. J Clin Neurosci 2002;9:549552.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Roelz R, Strohmaier D, Jabbarli R, . Residual tumor volume as best outcome predictor in low grade glioma - a nine-years near-randomized survey of surgery vs biopsy. Sci Rep 2016;6:32286.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Karim AB, Maat B, Hatlevoll R, . A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 1996;36:549556.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    van den Bent MJ, Afra D, de Witte O, . Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 2005;366:985990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Gorlia T, Wu W, Wang M, . New validated prognostic models and prognostic calculators in patients with low-grade gliomas diagnosed by central pathology review: a pooled analysis of EORTC/RTOG/NCCTG phase III clinical trials. Neuro-oncol 2013;15:15681579.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Shaw EG, Wang M, Coons SW, . Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol 2012;30:30653070.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Buckner JC, Shaw EG, Pugh SL, . Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016;374:13441355.

  • 100.

    Bell EH, Zhang P, Shaw EG, . Comprehensive genomic analysis in NRG Oncology/RTOG 9802: a phase III trial of radiation versus radiation plus procarbazine, lomustine (CCNU), and vincristine in high-risk low-grade glioma. J Clin Oncol 2020;JCO1902983:JCO1902983.

    • Search Google Scholar
    • Export Citation
  • 101.

    Fisher BJ, Hu C, Macdonald DR, . Phase 2 study of temozolomide-based chemoradiation therapy for high-risk low-grade gliomas: preliminary results of Radiation Therapy Oncology Group 0424. Int J Radiat Oncol Biol Phys 2015;91:497504.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Navarria P, Pessina F, Cozzi L, . Can advanced new radiation therapy technologies improve outcome of high grade glioma (HGG) patients? analysis of 3D-conformal radiotherapy (3DCRT) versus volumetric-modulated arc therapy (VMAT) in patients treated with surgery, concomitant and adjuvant chemo-radiotherapy. BMC Cancer 2016;16:362.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Ding M, Newman F, Chen C, . Dosimetric comparison between 3DCRT and IMRT using different multileaf collimators in the treatment of brain tumors. Med Dosim 2009;34:18.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Shaw EG, Daumas-Duport C, Scheithauer BW, . Radiation therapy in the management of low-grade supratentorial astrocytomas. J Neurosurg 1989;70:853861.

  • 105.

    Indelicato DJ, Rotondo RL, Uezono H, . Outcomes following proton therapy for pediatric low-grade glioma. Int J Radiat Oncol Biol Phys 2019;104:149156.

  • 106.

    Nahed BV, Redjal N, Brat DJ, . Management of patients with recurrence of diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015;125:609630.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Ramakrishna R, Hebb A, Barber J, . Outcomes in reoperated low-grade gliomas. Neurosurgery 2015;77:175184., discussion 184.

  • 108.

    Smith JS, Chang EF, Lamborn KR, . Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 2008;26:13381345.

  • 109.

    Uppstrom TJ, Singh R, Hadjigeorgiou GF, . Repeat surgery for recurrent low-grade gliomas should be standard of care. Clin Neurol Neurosurg 2016;151:1823.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Kesari S, Schiff D, Drappatz J, . Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin Cancer Res 2009;15:330337.

  • 111.

    Nicholson HS, Kretschmar CS, Krailo M, . Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer 2007;110:15421550.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Soffietti R, Rudà R, Bradac GB, . PCV chemotherapy for recurrent oligodendrogliomas and oligoastrocytomas. Neurosurgery 1998;43:10661073.

  • 113.

    Moghrabi A, Friedman HS, Ashley DM, . Phase II study of carboplatin (CBDCA) in progressive low-grade gliomas. Neurosurg Focus 1998;4:e3.

  • 114.

    Brandes AA, Basso U, Vastola F, . Carboplatin and teniposide as third-line chemotherapy in patients with recurrent oligodendroglioma or oligoastrocytoma: a phase II study. Ann Oncol 2003;14:17271731.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Triebels VH, Taphoorn MJ, Brandes AA, . Salvage PCV chemotherapy for temozolomide-resistant oligodendrogliomas. Neurology 2004;63:904906.

  • 116.

    van den Bent MJ, Smits M, Kros JM, . Diffuse infiltrating oligodendroglioma and astrocytoma. J Clin Oncol 2017;35:23942401.

  • 117.

    van den Bent MJ, Baumert B, Erridge SC, . Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 2017;390:16451653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Perry JR, Laperriere N, O’Callaghan CJ, . Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 2017;376:10271037.

  • 119.

    Stupp R, Mason WP, van den Bent MJ, . Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987996.

  • 120.

    Acharya S, Robinson CG, Michalski JM, . Association of 1p/19q codeletion and radiation necrosis in adult cranial gliomas after proton or photon therapy. Int J Radiat Oncol Biol Phys 2018;101:334343.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Wen PY, Weller M, Lee EQ, . Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020. Accessed August 26, 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32328653

  • 122.

    Arevalo OD, Soto C, Rabiei P, . Assessment of glioblastoma response in the era of bevacizumab: longstanding and emergent challenges in the imaging evaluation of pseudoresponse. Front Neurol 2019;10:460.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Li XZ, Li YB, Cao Y, . Prognostic implications of resection extent for patients with glioblastoma multiforme: a meta-analysis. J Neurosurg Sci 2017;61:631639.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Beiko J, Suki D, Hess KR, . IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro-oncol 2014;16:8191.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Molinaro AM, Hervey-Jumper S, Morshed RA, . Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 2020;6:495503.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Barker FG II, Chang SM, Gutin PH, . Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 1998;42:709720., discussion 720–723.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Park JK, Hodges T, Arko L, . Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 2010;28:38383843.

  • 128.

    Kristiansen K, Hagen S, Kollevold T, . Combined modality therapy of operated astrocytomas grade III and IV. Confirmation of the value of postoperative irradiation and lack of potentiation of bleomycin on survival time: a prospective multicenter trial of the Scandinavian Glioblastoma Study Group. Cancer 1981;47:649652.

    • Search Google Scholar
    • Export Citation
  • 129.

    Walker MD, Alexander E, Jr., Hunt WE, . Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 1978;49:333343.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Cabrera AR, Kirkpatrick JP, Fiveash JB, . Radiation therapy for glioblastoma: executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract Radiat Oncol 2016;6:217225.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Roa W, Brasher PM, Bauman G, . Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 2004;22:15831588.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Roa W, Kepka L, Kumar N, . International Atomic Energy Agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 2015;33:41454150.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Finazzi T. One week of radiotherapy for glioblastoma: a noninferiority trial? J Clin Oncol 2016;34:2192.

  • 134.

    Kim H, Leiby BE, Shi W. Too little, too soon: short-course radiotherapy in elderly patients with glioblastoma. J Clin Oncol 2016;34:21912192.

  • 135.

    Stupp R, Hegi ME, Mason WP, .. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10:459466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    van den Bent MJ, Carpentier AF, Brandes AA, . Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 2006;24:27152722.

    • Search Google Scholar
    • Export Citation
  • 137.

    van den Bent MJ, Brandes AA, Taphoorn MJ, . Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013;31:344350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Cairncross G, Berkey B, Shaw E, . Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006;24:27072714.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Cairncross G, Wang M, Shaw E, . Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013;31:337343.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Jaeckle KA, Ballman KV, van den Bent M, . CODEL: phase III study of RT, RT + temozolomide (TMZ), or TMZ for newly-diagnosed 1p/19q codeleted oligodendroglioma. Analysis from the initial study design. Neuro Oncol Accessed August 26, 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32678879

    • Crossref
    • Export Citation
  • 141.

    van den Bent MJ, Erridge SC, Vogelbaum MA, . Second interim and first molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion. ASCO 2019. Accessed August 26, 2020. Available at: https://meetinglibrary.asco.org/record/173361/abstract

  • 142.

    Clarke JL, Iwamoto FM, Sul J, . Randomized phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J Clin Oncol 2009;27:38613867.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Gilbert MR, Wang M, Aldape KD, . Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 2013;31:40854091.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Stupp R, Hegi ME, Gorlia T, . Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:11001108.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Nabors LB, Fink KL, Mikkelsen T, . Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. Neuro-oncol 2015;17:708717.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Blumenthal DT, Gorlia T, Gilbert MR, . Is more better? The impact of extended adjuvant temozolomide in newly diagnosed glioblastoma: a secondary analysis of EORTC and NRG Oncology/RTOG. Neuro-oncol 2017;19:11191126.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Balana C, Vaz MA, Sepulveda JM, . A phase II randomized, multicenter, open-label trial of continuing adjuvant temozolomide beyond six cycles in patients with glioblastoma (GEINO 14-01) [published online April 24, 2020]. Neuro Oncol, doi: 10.1093/neuonc/noaa107 https://www.ncbi.nlm.nih.gov/pubmed/32328662

    • Search Google Scholar
    • Export Citation
  • 148.

    Glas M, Happold C, Rieger J, . Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol 2009;27:12571261.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Herrlinger U, Rieger J, Koch D, . Phase II trial of lomustine plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed glioblastoma: UKT-03. J Clin Oncol 2006;24:44124417.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Herrlinger U, Tzaridis T, Mack F, .. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 2019;393:678688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Weller J, Tzaridis T, Mack F, . Health-related quality of life and neurocognitive functioning with lomustine-temozolomide versus temozolomide in patients with newly diagnosed, MGMT-methylated glioblastoma (CeTeG/NOA-09): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2019;20:14441453.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Stupp R, Taillibert S, Kanner AA, . Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 2015;314:25352543.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Stupp R, Taillibert S, Kanner A, . Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 2017;318:23062316.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Taphoorn MJB, Dirven L, Kanner AA, . Influence of treatment with tumor-treating fields on health-related quality of life of patients with newly diagnosed glioblastoma: a secondary analysis of a randomized clinical trial. JAMA Oncol 2018;4:495504.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Chamberlain MC. Treatment of patients with newly diagnosed glioblastoma. JAMA 2016;315:2348.

  • 156.

    Sampson JH. Alternating electric fields for the treatment of glioblastoma. JAMA 2015;314:25112513.

  • 157.

    Perry JR, Rizek P, Cashman R, . Temozolomide rechallenge in recurrent malignant glioma by using a continuous temozolomide schedule: the “rescue” approach. Cancer 2008;113:21522157.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Brandes AA, Tosoni A, Amistà P, . How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology 2004;63:12811284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 159.

    Reithmeier T, Graf E, Piroth T, . BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors. BMC Cancer 2010;10:30.

  • 160.

    Wick W, Puduvalli VK, Chamberlain MC, . Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 2010;28:11681174.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Taal W, Oosterkamp HM, Walenkamp AM, . Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 2014;15:943953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162.

    Friedman HS, Prados MD, Wen PY, . Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009;27:47334740.

  • 163.

    Wick W, Gorlia T, Bendszus M, . Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 2017;377:19541963.

  • 164.

    Ameratunga M, Pavlakis N, Wheeler H, . Anti-angiogenic therapy for high-grade glioma. Cochrane Database Syst Rev 2018;11:CD008218.

  • 165.

    Wick W, Weller M, van den Bent M, . Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 2010;28:e188e189., author reply e190–e192.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Kaley T, Nolan C, Carver A, . Bevacizumab for acute neurologic deterioration in patients with glioblastoma. CNS Oncol 2013;2:413418.

  • 167.

    Lombardi G, De Salvo GL, Brandes AA, . Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2019;20:110119.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Brem H, Piantadosi S, Burger PC, . Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995;345:10081012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    McGirt MJ, Brem H. Carmustine wafers (Gliadel) plus concomitant temozolomide therapy after resection of malignant astrocytoma: growing evidence for safety and efficacy. Ann Surg Oncol 2010;17:17291731.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Stupp R, Wong ET, Kanner AA, . NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 2012;48:21922202.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Kazmi F, Soon YY, Leong YH, . Re-irradiation for recurrent glioblastoma (GBM): a systematic review and meta-analysis. J Neurooncol 2019;142:7990.

  • 172.

    Mohammadi AM, Sullivan TB, Barnett GH, . Use of high-field intraoperative magnetic resonance imaging to enhance the extent of resection of enhancing and nonenhancing gliomas. Neurosurgery 2014;74:339348.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Coburger J, Wirtz CR. Fluorescence guided surgery by 5-ALA and intraoperative MRI in high grade glioma: a systematic review. J Neurooncol 2019;141:533546.

  • 174.

    Panageas KS, Iwamoto FM, Cloughesy TF, . Initial treatment patterns over time for anaplastic oligodendroglial tumors. Neuro-oncol 2012;14:761767.

  • 175.

    Brandes AA, Nicolardi L, Tosoni A, . Survival following adjuvant PCV or temozolomide for anaplastic astrocytoma. Neuro-oncol 2006;8:253260.

  • 176.

    Levin VA, Silver P, Hannigan J, . Superiority of post-radiotherapy adjuvant chemotherapy with CCNU, procarbazine, and vincristine (PCV) over BCNU for anaplastic gliomas: NCOG 6G61 final report. Int J Radiat Oncol Biol Phys 1990;18:321324.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Minniti G, Scaringi C, Lanzetta G, . Standard (60 Gy) or short-course (40 Gy) irradiation plus concomitant and adjuvant temozolomide for elderly patients with glioblastoma: a propensity-matched analysis. Int J Radiat Oncol Biol Phys 2015;91:109115.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Brandes AA, Franceschi E, Tosoni A, . MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 2008;26:21922197.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Ellingson BM, Chung C, Pope WB, . Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 2017;134:495504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 180.

    Tsien C, Galbán CJ, Chenevert TL, . Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 2010;28:22932299.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Fink J, Born D, Chamberlain MC. Pseudoprogression: relevance with respect to treatment of high-grade gliomas. Curr Treat Options Oncol 2011;12:240252

  • 182.

    Perry JR, Bélanger K, Mason WP, . Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 2010;28:20512057.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Weller M, Tabatabai G, Kästner B, . MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 2015;21:20572064.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Yung WK, Albright RE, Olson J, . A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000;83:588593.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Prados M, Rodriguez L, Chamberlain M, . Treatment of recurrent gliomas with 1,3-bis(2-chloroethyl)-1-nitrosourea and alpha-difluoromethylornithine. Neurosurgery 1989;24:806809.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Chamberlain MC, Johnston S. Bevacizumab for recurrent alkylator-refractory anaplastic oligodendroglioma. Cancer 2009;115:17341743.

  • 187.

    Chamberlain MC, Johnston S. Salvage chemotherapy with bevacizumab for recurrent alkylator-refractory anaplastic astrocytoma. J Neurooncol 2009;91:359367.

  • 188.

    Norden AD, Young GS, Setayesh K, . Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008;70:779787.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    Cloughesy T, Prados MD, Mikkelsen T. A phase 2 randomized non-comparative clinical trial of the effect of bevacizumab alone or in combination with irinotecan on 6-month progression free survival in recurrent refractory glioblastoma. [abstract] J Clin Oncol 2008;26(Suppl 15):2010b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 190.

    Kreisl TN, Kim L, Moore K, . Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009;27:740745.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Vredenburgh JJ, Desjardins A, Herndon JE II, . Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13:12531259.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Carvalho BF, Fernandes AC, Almeida DS, . Second-line chemotherapy in recurrent glioblastoma: a 2-cohort study. Oncol Res Treat 2015;38:348354.

  • 193.

    Schmidt F, Fischer J, Herrlinger U, . PCV chemotherapy for recurrent glioblastoma. Neurology 2006;66:587589.

  • 194.

    Barnholtz-Sloan JS, Sloan AE, Davis FG, . Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004;22:28652872.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Schouten LJ, Rutten J, Huveneers HA, . Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002;94:26982705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 196.

    Fox BD, Cheung VJ, Patel AJ, . Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 2011;22:16.

  • 197.

    Gould J. Breaking down the epidemiology of brain cancer. Nature 2018;561:S40S41.

  • 198.

    Maher EA, Mietz J, Arteaga CL, . Brain metastasis: opportunities in basic and translational research. Cancer Res 2009;69:60156020.

  • 199.

    Lin NU, Bellon JR, Winer EP. CNS metastases in breast cancer. J Clin Oncol 2004;22:36083617.

  • 200.

    Eichler AF, Loeffler JS. Multidisciplinary management of brain metastases. Oncologist 2007;12:884898.

  • 201.

    Mahajan A, Ahmed S, McAleer MF, . Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol 2017;18:10401048.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 202.

    Churilla TM, Chowdhury IH, Handorf E, . Comparison of local control of brain metastases with stereotactic radiosurgery vs surgical resection: a secondary analysis of a randomized clinical trial. JAMA Oncol 2019;5:243247. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30419088.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Ewend MG, Morris DE, Carey LA, . Guidelines for the initial management of metastatic brain tumors: role of surgery, radiosurgery, and radiation therapy. J Natl Compr Canc Netw 2008;6:505513., quiz 514.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 204.

    Patchell RA, Tibbs PA, Walsh JW, . A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990;322:494500.

  • 205.

    Vecht CJ, Haaxma-Reiche H, Noordijk EM, . Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 1993;33:583590.

  • 206.

    Mintz AH, Kestle J, Rathbone MP, . A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 1996;78:14701476.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Suh JH. Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 2010;362:11191127.

  • 208.

    Aoyama H, Shirato H, Tago M, . Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 2006;295:24832491.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 209.

    Brown PD, Jaeckle K, Ballman KV, . Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 2016;316:401409.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 210.

    Chang EL, Wefel JS, Hess KR, . Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 2009;10:10371044.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 211.

    Kocher M, Soffietti R, Abacioglu U, . Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 2011;29:134141.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 212.

    Yamamoto M, Serizawa T, Shuto T, . Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 2014;15:387395.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 213.

    Bhatnagar AK, Flickinger JC, Kondziolka D, . Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys 2006;64:898903.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    Banfill KE, Bownes PJ, St Clair SE, . Stereotactic radiosurgery for the treatment of brain metastases: impact of cerebral disease burden on survival. Br J Neurosurg 2012;26:674678.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 215.

    Chang WS, Kim HY, Chang JW, . Analysis of radiosurgical results in patients with brain metastases according to the number of brain lesions: is stereotactic radiosurgery effective for multiple brain metastases? J Neurosurg 2010; 113(Special_Supplement, Suppl)7378.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 216.

    Farris M, McTyre ER, Cramer CK, . Brain metastasis velocity: a novel prognostic metric predictive of overall survival and freedom from whole-brain radiation therapy after distant brain failure following upfront radiosurgery alone. Int J Radiat Oncol Biol Phys 2017;98:131141.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 217.

    Karlsson B, Hanssens P, Wolff R, . Thirty years’ experience with gamma knife surgery for metastases to the brain. J Neurosurg 2009;111:449457.

  • 218.

    Kased N, Binder DK, McDermott MW, . Gamma knife radiosurgery for brain metastases from primary breast cancer. Int J Radiat Oncol Biol Phys 2009;75:11321140.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 219.

    Rusthoven CG, Yamamoto M, Bernhardt D, . Evaluation of first-line radiosurgery vs whole-brain radiotherapy for small cell lung cancer brain metastases: the FIRE-SCLC Cohort Study. JAMA Oncol 2020;6:10281037.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 220.

    Hanson PW, Elaimy AL, Lamoreaux WT, . A concise review of the efficacy of stereotactic radiosurgery in the management of melanoma and renal cell carcinoma brain metastases. World J Surg Oncol 2012;10:176.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 221.

    Hunter GK, Suh JH, Reuther AM