Treatment Outcomes in Chronic Myeloid Leukemia: Does One Size Fit All?

View More View Less
  • 1 Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre – University Health Network, University of Toronto, Toronto, Ontario, Canada.
Restricted access

With the success of tyrosine kinase inhibitors (TKIs) in achieving next-to-normal overall survival in chronic myeloid leukemia (CML), treatment-free remission (TFR) has become a significant goal in the management of this disease. Discontinuation of therapy is attractive to both patients and physicians because maintaining a stable BCR-ABL transcript level without therapy would imply true operational CML cure. With TFR, patients are not exposed to unknown long-term adverse effects of TKIs and common adverse effects that may affect quality of life. Several factors need to be considered before attempting TFR, because this goal is not appropriate for a significant proportion of patients with CML. Patient-related factors, CML response to therapy and its duration, monitoring capacity, patient preferences and compliance with monitoring, and economic factors influence the decision to attempt to discontinue TKIs. Unfortunately, only 50% of patients are appropriate candidates for discontinuation of treatment. Of those, another 50% maintain stable disease while off TKIs. This means that merely 25% of patients achieve TFR. Further optimization and research are required to be able to extend this treatment goal to a larger population of patients. Although TFR is attractive and desirable, this goal is not a one-size-fits-all approach, and we should continue to focus on patients with CML having a normal OS with the best quality of life possible.

Submitted March 25, 2020; accepted for publication July 23, 2020.

Disclosures: Dr. Garcia-Horton has disclosed that he has no financial interests, arrangements, affiliations, or commercial interests with the manufacturers of any products discussed in this article or their competitors. Dr. Lipton has disclosed that he receives grant/research support from Novartis, Bristol-Myers Squibb, Pfizer, and Takeda, and is a scientific adviser for Pfizer and Takeda.

Correspondence: Jeffrey H. Lipton, MD, PhD, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. Email: jeff.lipton@uhn.ca
  • 1.

    O’Brien SG, Guilhot F, Larson RA, . Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003;348:9941004. https://doi.org/10.1056/NEJMoa022457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Leukemia – Chronic Myeloid Leukemia (CML). Accessed April 30, 2020. Available at: https://seer.cancer.gov/statfacts/html/cmyl.html

  • 3.

    Hochhaus A, Saussele S, Rosti G, . Chronic myeloid leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28(Suppl 4):iv41–51.

    • Crossref
    • Export Citation
  • 4.

    Sasaki K, Strom SS, O’Brien S, . Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematol 2015;2:e186193. https://doi.org/10.1016/S2352-3026(15)00048-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bower H, Björkholm M, Dickman PW, . Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol 2016;34:28512857. https://doi.org/10.1200/JCO.2015.66.2866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hochhaus A, Larson RA, Guilhot F, . Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 2017;376:917927. https://doi.org/10.1056/NEJMoa1609324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wang Q, Jiang C, Zhang Y, . Cardiovascular mortality among chronic myeloid leukemia patients in the pre-tyrosine kinase inhibitor (TKI) and TKI eras: a Surveillance, Epidemiology and End Results (SEER) analysis. Leuk Lymphoma 2020;61:11471157. https://doi.org/10.1080/10428194.2019.1711074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Miranda MB, Lauseker M, Kraus MP, . Secondary malignancies in chronic myeloid leukemia patients after imatinib-based treatment: long-term observation in CML Study IV. Leukemia 2016;30:12551262. https://doi.org/10.1038/leu.2016.20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brunner AM, Campigotto F, Sadrzadeh H, . Trends in all-cause mortality among patients with chronic myeloid leukemia: a Surveillance, Epidemiology, and End Results database analysis. Cancer 2013;119:26202629. https://doi.org/10.1002/cncr.28106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Efficace F, Baccarani M, Breccia M, . Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population. Blood 2011;118:45544560. https://doi.org/10.1182/blood-2011-04-347575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cortes JE, Jimenez CA, Mauro MJ, . Pleural effusion in dasatinib-treated patients with chronic myeloid leukemia in chronic phase: identification and management. Clin Lymphoma Myeloma Leuk 2017;17:7882. https://doi.org/10.1016/j.clml.2016.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hehlmann R, Müller MC, Lauseker M, . Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-Study IV. J Clin Oncol 2014;32:415423. https://doi.org/10.1200/JCO.2013.49.9020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cortes JE, Saglio G, Kantarjian HM, . Final 5-year study results of DASISION: the Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients trial. J Clin Oncol 2016;34:23332340. https://doi.org/10.1200/JCO.2015.64.8899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hochhaus A, Saglio G, Hughes TP, . Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016;30:10441054. https://doi.org/10.1038/leu.2016.5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cortes JE, Gambacorti-Passerini C, Deininger MW, . Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol 2018;36:231237. https://doi.org/10.1200/JCO.2017.74.7162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cortes J, Rea D, Lipton JH. Treatment-free remission with first- and second-generation tyrosine kinase inhibitors. Am J Hematol 2019;94:346357.

  • 17.

    Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood 2016;128:1723. https://doi.org/10.1182/blood-2016-01-694265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma 2006;47:17. https://doi.org/10.1080/10428190500407996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lee MS, Kantarjian H, Talpaz M, . Detection of minimal residual disease by polymerase chain reaction in Philadelphia chromosome-positive chronic myelogenous leukemia following interferon therapy. Blood 1992;79:19201923. https://doi.org/10.1182/blood.V79.8.1920.1920

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mahon FX, Delbrel X, Cony-Makhoul P, . Follow-up of complete cytogenetic remission in patients with chronic myeloid leukemia after cessation of interferon alfa. J Clin Oncol 2002;20:214220. https://doi.org/10.1200/JCO.2002.20.1.214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sokal JE, Cox EB, Baccarani M, . Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 1984;63:789799. https://doi.org/10.1182/blood.V63.4.789.789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pfirrmann M, Baccarani M, Saussele S, . Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 2016;30:4856. https://doi.org/10.1038/leu.2015.261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Baccarani M, Abruzzese E, Accurso V, . Managing chronic myeloid leukemia for treatment-free remission: a proposal from the GIMEMA CML WP. Blood Adv 2019;3:42804290. https://doi.org/10.1182/bloodadvances.2019000865

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Fabarius A, Leitner A, Hochhaus A, . Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood 2011;118:67606768. https://doi.org/10.1182/blood-2011-08-373902

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Luatti S, Castagnetti F, Marzocchi G, . Additional chromosomal abnormalities in Philadelphia-positive clone: adverse prognostic influence on frontline imatinib therapy: a GIMEMA working party on CML analysis. Blood 2012;120:761767. https://doi.org/10.1182/blood-2011-10-384651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wang W, Cortes JE, Tang G, . Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood 2016;127:27422750. https://doi.org/10.1182/blood-2016-01-690230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Alhuraiji A, Kantarjian H, Boddu P, . Prognostic significance of additional chromosomal abnormalities at the time of diagnosis in patients with chronic myeloid leukemia treated with frontline tyrosine kinase inhibitors. Am J Hematol 2018;93:8490. https://doi.org/10.1002/ajh.24943

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Castagnetti F, Gugliotta G, Baccarani M, . Differences among young adults, adults and elderly chronic myeloid leukemia patients. Ann Oncol 2015;26:185192. https://doi.org/10.1093/annonc/mdu490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Radich JP, Deininger M, Abboud CN, . NCCN Clinical Practice Guidelines in Oncology: Chronic Myeloid Leukemia, Version 1.2019. Accessed August 12, 2020. To view the most recent version, visit NCCN.org

  • 30.

    Hochhaus A, Baccarani M, Silver RT, . European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020;34:966984. https://doi.org/10.1038/s41375-020-0776-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rea D, Ame S, Berger M, . Discontinuation of tyrosine kinase inhibitors in chronic myeloid leukemia: recommendations for clinical practice from the French Chronic Myeloid Leukemia Study Group. Cancer 2018;124:29562963. https://doi.org/10.1002/cncr.31411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Saglio G, Gale RP. Prospects for achieving treatment-free remission in chronic myeloid leukaemia. Br J Haematol 2020;190:318–327. https://doi.org/10.1111/bjh.16506

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Clark RE, Polydoros F, Apperley JF, . De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol 2019;6:e375383. https://doi.org/10.1016/S2352-3026(19)30094-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Benjamini O, Kantarjian H, Rios MB, . Patient-driven discontinuation of tyrosine kinase inhibitors: single institution experience. Leuk Lymphoma 2014;55:28792886. https://doi.org/10.3109/10428194.2013.831092

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Saussele S, Richter J, Guilhot J, . Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol 2018;19:747757. https://doi.org/10.1016/S1470-2045(18)30192-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hanfstein B, Shlyakhto V, Lauseker M, . Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia 2014;28:19881992. https://doi.org/10.1038/leu.2014.153

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Marin D, Ibrahim AR, Lucas C, . Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol 2012;30:232238. https://doi.org/10.1200/JCO.2011.38.6565

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Shanmuganathan N, Branford S, Pagani I, . Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment-free remission [published online September 1, 2020]. Blood. doi.org/10.1182/blood.2020005514

    • Search Google Scholar
    • Export Citation
  • 39.

    Etienne G, Guilhot J, Rea D, . Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol 2017;35:298305. https://doi.org/10.1200/JCO.2016.68.2914

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ross DM, Branford S, Seymour JF, . Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 2013;122:515522. https://doi.org/10.1182/blood-2013-02-483750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Shah NP, García-Gutiérrez V, Jiménez-Velasco A, . Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk Lymphoma 2020;61:650659.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kumagai T, Nakaseko C, Nishiwaki K, . Dasatinib cessation after deep molecular response exceeding 2 years and natural killer cell transition during dasatinib consolidation. Cancer Sci 2018;109:182192. https://doi.org/10.1111/cas.13430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Okada M, Imagawa J, Tanaka H, . Final 3-year results of the dasatinib discontinuation trial in patients with chronic myeloid leukemia who received dasatinib as a second-line treatment. Clin Lymphoma Myeloma Leuk 2018;18:353360.e1. https://doi.org/10.1016/j.clml.2018.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Nagafuji K, Matsumura I, Shimose T, . Cessation of nilotinib in patients with chronic myelogenous leukemia who have maintained deep molecular responses for 2 years: a multicenter phase 2 trial, Stop Nilotinib (NILSt). Int J Hematol 2019;110:675682. https://doi.org/10.1007/s12185-019-02736-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hochhaus A, Masszi T, Giles FJ, . Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia 2017;31:15251531. https://doi.org/10.1038/leu.2017.63

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hughes TP, Boquimpani C, Takahashi N, . ENESTop 192-week results: treatment-free remission (TFR) in patients (pts) with chronic myeloid leukemia in chronic phase (CML-CP) after stopping second-line (2L) nilotinib (NIL) [abstract]. J Clin Oncol 2019;37(Suppl):Abstract 7005.

    • Search Google Scholar
    • Export Citation
  • 47.

    Harrington P, Radia D, de Lavallade H. What are the considerations for tyrosine kinase inhibitor discontinuation in chronic-phase chronic myeloid leukemia? Expert Rev Hematol 2020;13:213222. https://doi.org/10.1080/17474086.2020.1717944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Mahon FX. Treatment-free remission in CML: who, how, and why? Hematology Am Soc Hematol Educ Program 2017;2017:102109. https://doi.org/10.1182/asheducation-2017.1.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Hahn EA, Glendenning GA, Sorensen MV, . Quality of life in patients with newly diagnosed chronic phase chronic myeloid leukemia on imatinib versus interferon alfa plus low-dose cytarabine: results from the IRIS study. J Clin Oncol 2003;21:21382146. https://doi.org/10.1200/JCO.2003.12.154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Efficace F, Cannella L. The value of quality of life assessment in chronic myeloid leukemia patients receiving tyrosine kinase inhibitors. Hematology Am Soc Hematol Educ Program 2016;2016:170179. https://doi.org/10.1182/asheducation-2016.1.170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Park JS, Lee SE, Jeong SH, . Change of health-related profiles after imatinib cessation in chronic phase chronic myeloid leukemia patients. Leuk Lymphoma 2016;57:341347. https://doi.org/10.3109/10428194.2015.1049166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Richter J, Söderlund S, Lübking A, . Musculoskeletal pain in patients with chronic myeloid leukemia after discontinuation of imatinib: a tyrosine kinase inhibitor withdrawal syndrome? J Clin Oncol 2014;32:28212823. https://doi.org/10.1200/JCO.2014.55.6910

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Berger MG, Pereira B, Rousselot P, . Longer treatment duration and history of osteoarticular symptoms predispose to tyrosine kinase inhibitor withdrawal syndrome. Br J Haematol 2019;187:337346. https://doi.org/10.1111/bjh.16083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Saglio G, Sharf G, Almeida A, . Considerations for treatment-free remission in patients with chronic myeloid leukemia: a joint patient-physician perspective. Clin Lymphoma Myeloma Leuk 2018;18:375379. https://doi.org/10.1016/j.clml.2018.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Law AD, Dong Hwan Kim D, Lipton JH. Pregnancy: part of life in chronic myelogenous leukemia. Leuk Lymphoma 2017;58:280287. https://doi.org/10.1080/10428194.2016.1201571

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Abruzzese E, Trawinska MM, Perrotti AP, . Tyrosine kinase inhibitors and pregnancy. Mediterr J Hematol Infect Dis 2014;6:e2014028. https://doi.org/10.4084/mjhid.2014.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Goldberg S, Hamarman S. Patients with chronic myelogenous leukemia may not want to discontinue tyrosine kinase inhibitor therapy [abstract]. Blood 2015;126:Abstract 1584. https://doi.org/10.1182/blood.V126.23.1584.1584

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Villemagne Sanchez LA, O’Callaghan C, Gough K, . Patient perceptions of treatment-free remission in chronic myeloid leukemia. Leuk Lymphoma 2018;59:406415. https://doi.org/10.1080/10428194.2017.1337114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Sanford D, Kyle R, Lazo-Langner A, . Patient preferences for stopping tyrosine kinase inhibitors in chronic myeloid leukemia. Curr Oncol 2014;21:e241–249.

    • Crossref
    • Export Citation
  • 60.

    Breccia M, Efficace F, Sica S, . Adherence and future discontinuation of tyrosine kinase inhibitors in chronic phase chronic myeloid leukemia: a patient-based survey on 1133 patients. Leuk Res 2015;39:10551059. https://doi.org/10.1016/j.leukres.2015.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Legros L, Nicolini FE, Etienne G, . Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia. Cancer 2017;123:44034410. https://doi.org/10.1002/cncr.30885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Kim DDH BL, Forrest DL, . Second attempt of TKI discontinuation with dasatinib for treatment-free remission after failing first attempt with imatinib: Treatment-Free Remission Accomplished By Dasatinib (TRAD) trial [abstract]. Blood 2018;132(Suppl 1):Abstract 787.

    • Crossref
    • Export Citation
  • 63.

    Yamamoto C, Nakashima H, Ikeda T, . Analysis of the cost-effectiveness of treatment strategies for CML with incorporation of treatment discontinuation. Blood Adv 2019;3:32663277. https://doi.org/10.1182/bloodadvances.2019000745

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Shih YT, Cortes JE, Kantarjian HM. Treatment value of second-generation BCR-ABL1 tyrosine kinase inhibitors compared with imatinib to achieve treatment-free remission in patients with chronic myeloid leukaemia: a modelling study. Lancet Haematol 2019;6:e398408. https://doi.org/10.1016/S2352-3026(19)30087-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Elias F, Gebran A, Said C, . Budget impact of treatment-free remission in treating chronic-phase Philadelphia-positive chronic myeloid leukemia in Lebanon. J Glob Oncol 2019;5:17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Ritchie EK, Latremouille-Viau D, Guerin A, . Tyrosine kinase inhibitor therapy treatment and discontinuation in patients with chronic myeloid leukemia in chronic phase in the United States: a clinical practice perspective. Leuk Lymphoma 2019;60:14761484. https://doi.org/10.1080/10428194.2018.1538510

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Goldberg SL, Cortes JE, Gambacorti-Passerini C, . First-line treatment selection and early monitoring patterns in chronic phase-chronic myeloid leukemia in routine clinical practice: SIMPLICITY. Am J Hematol 2017;92:12141223. https://doi.org/10.1002/ajh.24887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Goldberg SL, Akard LP, Dugan MJ, . Barriers to physician adherence to evidence-based monitoring guidelines in chronic myelogenous leukemia. J Oncol Pract 2015;11:e398404. https://doi.org/10.1200/JOP.2014.001099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Saußele S, Richter J, Hochhaus A, . The concept of treatment-free remission in chronic myeloid leukemia. Leukemia 2016;30:16381647. https://doi.org/10.1038/leu.2016.115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Dela Cruz JP, Staszewski H. A single center retrospective analysis of adherence to molecular monitoring guidelines in patients with chronic myeloid leukemia [abstract]. Blood 2016;128:Abstract 2365. https://doi.org/10.1182/blood.V128.22.2365.2365

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Shanmuganathan N, Braley JA, Yong ASM, . Modeling the safe minimum frequency of molecular monitoring for CML patients attempting treatment-free remission. Blood 2019;134:8589. https://doi.org/10.1182/blood.2019000120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Fassoni AC, Baldow C, Roeder I, . Reduced tyrosine kinase inhibitor dose is predicted to be as effective as standard dose in chronic myeloid leukemia: a simulation study based on phase III trial data. Haematologica 2018;103:18251834. https://doi.org/10.3324/haematol.2018.194522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 744 744 744
PDF Downloads 290 290 290
EPUB Downloads 0 0 0