Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology

Authors:
Michael W. DeiningerHuntsman Cancer Institute at the University of Utah;

Search for other papers by Michael W. Deininger in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Neil P. ShahUCSF Helen Diller Family Comprehensive Cancer Center;

Search for other papers by Neil P. Shah in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jessica K. AltmanRobert H. Lurie Comprehensive Cancer Center of Northwestern University;

Search for other papers by Jessica K. Altman in
Current site
Google Scholar
PubMed
Close
 MD
,
Ellin BermanMemorial Sloan Kettering Cancer Center;

Search for other papers by Ellin Berman in
Current site
Google Scholar
PubMed
Close
 MD
,
Ravi BhatiaO'Neal Comprehensive Cancer Center at UAB;

Search for other papers by Ravi Bhatia in
Current site
Google Scholar
PubMed
Close
 MD
,
Bhavana BhatnagarThe Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute;

Search for other papers by Bhavana Bhatnagar in
Current site
Google Scholar
PubMed
Close
 DO
,
Daniel J. DeAngeloDana-Farber/Brigham and Women’s Cancer Center;

Search for other papers by Daniel J. DeAngelo in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jason GotlibStanford Cancer Institute;

Search for other papers by Jason Gotlib in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Gabriela HobbsMassachusetts General Hospital Cancer Center;

Search for other papers by Gabriela Hobbs in
Current site
Google Scholar
PubMed
Close
 MD
,
Lori ManessFred and Pamela Buffett Cancer Center;

Search for other papers by Lori Maness in
Current site
Google Scholar
PubMed
Close
 MD
,
Monica MeadUCLA Jonsson Comprehensive Cancer Center;

Search for other papers by Monica Mead in
Current site
Google Scholar
PubMed
Close
 MD
,
Leland MethenyCase Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute;

Search for other papers by Leland Metheny in
Current site
Google Scholar
PubMed
Close
 MD
,
Sanjay MohanVanderbilt-Ingram Cancer Center;

Search for other papers by Sanjay Mohan in
Current site
Google Scholar
PubMed
Close
 MD, MSCI
,
Joseph O. MooreDuke Cancer Institute;

Search for other papers by Joseph O. Moore in
Current site
Google Scholar
PubMed
Close
 MD
,
Kiran NaqviThe University of Texas MD Anderson Cancer Center;

Search for other papers by Kiran Naqvi in
Current site
Google Scholar
PubMed
Close
 MD, MPH
,
Vivian OehlerFred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance;

Search for other papers by Vivian Oehler in
Current site
Google Scholar
PubMed
Close
 MD
,
Arnel M. PalleraSt. Jude Children's Research Hospital/The University of Tennessee Health Science Center;

Search for other papers by Arnel M. Pallera in
Current site
Google Scholar
PubMed
Close
 MD
,
Mrinal PatnaikMayo Clinic Cancer Center;

Search for other papers by Mrinal Patnaik in
Current site
Google Scholar
PubMed
Close
 MD
,
Keith PratzAbramson Cancer Center at the University of Pennsylvania;

Search for other papers by Keith Pratz in
Current site
Google Scholar
PubMed
Close
 MD
,
Iskra PusicSiteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine;

Search for other papers by Iskra Pusic in
Current site
Google Scholar
PubMed
Close
 MD
,
Michal G. RoseYale Cancer Center/Smilow Cancer Hospital;

Search for other papers by Michal G. Rose in
Current site
Google Scholar
PubMed
Close
 MD
,
B. Douglas SmithThe Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins;

Search for other papers by B. Douglas Smith in
Current site
Google Scholar
PubMed
Close
 MD
,
David S. SnyderCity of Hope National Medical Center;

Search for other papers by David S. Snyder in
Current site
Google Scholar
PubMed
Close
 MD
,
Kendra L. SweetMoffitt Cancer Center;

Search for other papers by Kendra L. Sweet in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Moshe TalpazUniversity of Michigan Rogel Cancer Center;

Search for other papers by Moshe Talpaz in
Current site
Google Scholar
PubMed
Close
 MD
,
James ThompsonRoswell Park Comprehensive Cancer Center;

Search for other papers by James Thompson in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
David T. YangUniversity of Wisconsin Carbone Cancer Center; and

Search for other papers by David T. Yang in
Current site
Google Scholar
PubMed
Close
 MD
,
Kristina M. GregoryNational Comprehensive Cancer Network

Search for other papers by Kristina M. Gregory in
Current site
Google Scholar
PubMed
Close
 RN, MSN, OCN
, and
Hema SundarNational Comprehensive Cancer Network

Search for other papers by Hema Sundar in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

Chronic myeloid leukemia (CML) is defined by the presence of Philadelphia chromosome (Ph) which results from a reciprocal translocation between chromosomes 9 and 22 [t(9;22] that gives rise to a BCR-ABL1 fusion gene. CML occurs in 3 different phases (chronic, accelerated, and blast phase) and is usually diagnosed in the chronic phase. Tyrosine kinase inhibitor therapy is a highly effective first-line treatment option for all patients with newly diagnosed chronic phase CML. This manuscript discusses the recommendations outlined in the NCCN Guidelines for the diagnosis and management of patients with chronic phase CML.

Individual Disclosures for the NCCN Chronic Myeloid Leukemia Panel

TU1

This article was updated from the print version: the link to prescribing information for TKI therapies (under “Management of Hematologic Toxicities of TKI Therapy”) was updated with a new url.

  • Collapse
  • Expand
  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:730.

  • 2.

    Faderl S, Talpaz M, Estrov Z, et al.. The biology of chronic myeloid leukemia. N Engl J Med 1999;341:164172.

  • 3.

    Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996;88:23752384.

  • 4.

    Melo JV. BCR-ABL gene variants. Baillieres Clin Haematol 1997;10:203222.

  • 5.

    Sawyers CL. Chronic myeloid leukemia. N Engl J Med 1999;340:13301340.

  • 6.

    Radich JP, Dai H, Mao M, et al.. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006;103:27942799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jamieson CHM, Ailles LE, Dylla SJ, et al.. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657667.

  • 8.

    Mitelman F. The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma 1993; 11(sup1, Suppl 1)1115.

  • 9.

    Douet-Guilbert N, Morel F, Le Charpentier T, et al.. Interphase FISH for follow-up of Philadelphia chromosome-positive chronic myeloid leukemia treatment. Anticancer Res 2004;24:25352539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Seong DC, Kantarjian HM, Ro JY, et al.. Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosome-positive cells in patients with chronic myelogenous leukemia during treatment. Blood 1995;86:23432349.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dewald GW, Wyatt WA, Juneau AL, et al.. Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood 1998;91:33573365.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kantarjian HM, Talpaz M, Cortes J, et al.. Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res 2003;9:160166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hughes T, Deininger M, Hochhaus A, et al.. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006;108:2837.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Biernaux C, Loos M, Sels A, et al.. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995;86:31183122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bose S, Deininger M, Gora-Tybor J, et al.. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998;92:33623367.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Baccarani M, Castagnetti F, Gugliotta G, et al.. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia 2019;33:11731183.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hanfstein B, Lauseker M, Hehlmann R, et al.. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica 2014;99:14411447.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jain P, Kantarjian H, Patel KP, et al.. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood 2016;127:12691275.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Castagnetti F, Gugliotta G, Breccia M, et al.. The BCR-ABL1 transcript type influences response and outcome in Philadelphia chromosome-positive chronic myeloid leukemia patients treated frontline with imatinib. Am J Hematol 2017;92:797805.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ercaliskan A, Eskazan AE. The impact of BCR-ABL1 transcript type on tyrosine kinase inhibitor responses and outcomes in patients with chronic myeloid leukemia. Cancer 2018;124:38063818.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pfirrmann M, Evtimova D, Saussele S, et al.. No influence of BCR-ABL1 transcript types e13a2 and e14a2 on long-term survival: results in 1494 patients with chronic myeloid leukemia treated with imatinib. J Cancer Res Clin Oncol 2017;143:843850.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Verma D, Kantarjian HM, Jones D, et al.. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood 2009;114:22322235.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Arun AK, Senthamizhselvi A, Mani S, et al.. Frequency of rare BCR-ABL1 fusion transcripts in chronic myeloid leukemia patients. Int J Lab Hematol 2017;39:235242.

  • 24.

    Gong Z, Medeiros LJ, Cortes JE, et al.. Clinical and prognostic significance of e1a2 BCR-ABL1 transcript subtype in chronic myeloid leukemia. Blood Cancer J 2017;7:e583.

  • 25.

    Qin YZ, Jiang Q, Jiang H, et al.. Prevalence and outcomes of uncommon BCR-ABL1 fusion transcripts in patients with chronic myeloid leukaemia: data from a single centre. Br J Haematol 2018;182:693700.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Xue M, Wang Q, Huo L, et al.. Clinical characteristics and prognostic significance of chronic myeloid leukemia with rare BCR-ABL1 transcripts. Leuk Lymphoma 2019;60:30513057.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Verstovsek S, Lin H, Kantarjian H, et al.. Neutrophilic-chronic myeloid leukemia: low levels of p230 BCR/ABL mRNA and undetectable BCR/ABL protein may predict an indolent course. Cancer 2002;94:24162425.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Langabeer SE, McCarron SL, Kelly J, et al.. Chronic myeloid leukemia with e19a2 BCR-ABL1 transcripts and marked thrombocytosis: the role of molecular monitoring. Case Rep Hematol 2012;2012:458716.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Crampe M, Haslam K, Kelly J, et al.. Characterization of a novel variant BCR-ABL1 fusion transcript in a patient with chronic myeloid leukemia: Implications for molecular monitoring. Hematol Oncol Stem Cell Ther 2017;10:8588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Langabeer SE. Standardized molecular monitoring for variant BCR-ABL1 transcripts in chronic myeloid leukemia. Arch Pathol Lab Med 2015;139:969.

  • 31.

    Shanmuganathan N, Hughes TP. Molecular monitoring in CML: how deep? How often? How should it influence therapy? Hematology (Am Soc Hematol Educ Program) 2018;2018:168176.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Burmeister T, Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR-ABL fusion transcripts. Leuk Res 2008;32:579585.

  • 33.

    Bennour A, Ouahchi I, Moez M, et al.. Comprehensive analysis of BCR/ABL variants in chronic myeloid leukemia patients using multiplex RT-PCR. Clin Lab 2012;58:433439.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mir R, Ahmad I, Javid J, et al.. Simple multiplex RT-PCR for identifying common fusion BCR-ABL transcript types and evaluation of molecular response of the a2b2 and a2b3 transcripts to Imatinib resistance in north Indian chronic myeloid leukemia patients. Indian J Cancer 2015;52:314318.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Pagani IS, Dang P, Saunders VA, et al.. Clinical utility of genomic DNA Q-PCR for the monitoring of a patient with atypical e19a2 BCR-ABL1 transcripts in chronic myeloid leukemia [published online June 6, 2020]. Leuk Lymphoma,doi: 10.1080/10428194.2020.1772476

    • Search Google Scholar
    • Export Citation
  • 36.

    Petiti J, Lo Iacono M, Dragani M, et al.. Novel multiplex droplet digital PCR assays to mnitor minimal residual disease in chronic myeloid leukemia patients showing atypical BCR-ABL1 transcripts. J Clin Med 2020;9:1457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Cortes JE, Talpaz M, Giles F, et al.. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood 2003;101:37943800.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    O’Dwyer ME, Mauro MJ, Blasdel C, et al.. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood 2004;103:451455.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wang W, Cortes JE, Lin P, et al.. Clinical and prognostic significance of 3q26.2 and other chromosome 3 abnormalities in CML in the era of tyrosine kinase inhibitors. Blood 2015;126:16991706.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wang W, Tang G, Cortes JE, et al.. Chromosomal rearrangement involving 11q23 locus in chronic myelogenous leukemia: a rare phenomenon frequently associated with disease progression and poor prognosis. J Hematol Oncol 2015;8:32.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Wang W, Cortes JE, Tang G, et al.. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood 2016;127:27422750.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Verma D, Kantarjian H, Shan J, et al.. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer 2010;116:26732681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Fabarius A, Kalmanti L, Dietz CT, et al.. Impact of unbalanced minor route versus major route karyotypes at diagnosis on prognosis of CML. Ann Hematol 2015;94:20152024.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Fabarius A, Leitner A, Hochhaus A, et al.. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood 2011;118:67606768.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Alhuraiji A, Kantarjian H, Boddu P, et al.. Prognostic significance of additional chromosomal abnormalities at the time of diagnosis in patients with chronic myeloid leukemia treated with frontline tyrosine kinase inhibitors. Am J Hematol 2018;93:8490.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Bumm T, Müller C, Al-Ali H-K, et al.. Emergence of clonal cytogenetic abnormalities in Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003;101:19411949.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Feldman E, Najfeld V, Schuster M, et al.. The emergence of Ph-, trisomy -8+ cells in patients with chronic myeloid leukemia treated with imatinib mesylate. Exp Hematol 2003;31:702707.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Medina J, Kantarjian H, Talpaz M, et al.. Chromosomal abnormalities in Philadelphia chromosome-negative metaphases appearing during imatinib mesylate therapy in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase. Cancer 2003;98:19051911.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Terre C, Eclache V, Rousselot P, et al.. Report of 34 patients with clonal chromosomal abnormalities in Philadelphia-negative cells during imatinib treatment of Philadelphia-positive chronic myeloid leukemia. Leukemia 2004;18:13401346.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Deininger MW, Cortes J, Paquette R, et al.. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer 2007;110:15091519.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Jabbour E, Kantarjian HM, Abruzzo LV, et al.. Chromosomal abnormalities in Philadelphia chromosome negative metaphases appearing during imatinib mesylate therapy in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Blood 2007;110:29912995.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Vignetti M, Fazi P, Cimino G, et al.. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood 2007;109:36763678.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Fabarius A, Haferlach C, Müller MC, et al.. Dynamics of cytogenetic aberrations in Philadelphia chromosome positive and negative hematopoiesis during dasatinib therapy of chronic myeloid leukemia patients after imatinib failure. Haematologica 2007;92:834837.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Baldazzi C, Luatti S, Marzocchi G, et al.. Emergence of clonal chromosomal abnormalities in Philadelphia negative hematopoiesis in chronic myeloid leukemia patients treated with nilotinib after failure of imatinib therapy. Leuk Res 2009;33:e218e220.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Wang H, Jin J, Wang Y, et al.. Clonal chromosomal abnormalities in Philadelphia-negative cells in chronic myeloid leukemia patients treated with nilotinib used in first-line therapy. Ann Hematol 2013;92:16251632.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Ni H, Sun X, Xu Y, et al.. Clinical implications of clonal chromosomal abnormalities in Philadelphia negative cells in CML patients after treated with tyrosine kinase inhibitors. Cancer Genet 2019;238:4449.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Sheng G, Xue M, Wang Q, et al.. Occurrence of chromosomal abnormalities in Philadelphia chromosome-negative metaphases in patients with chronic-phase chronic myeloid leukemia undergoing TKI treatments. Leuk Lymphoma 2019;60:35033511.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Issa GC, Kantarjian HM, Gonzalez GN, et al.. Clonal chromosomal abnormalities appearing in Philadelphia chromosome-negative metaphases during CML treatment. Blood 2017;130:20842091.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Karimata K, Masuko M, Ushiki T, et al.. Myelodysplastic syndrome with Ph negative monosomy 7 chromosome following transient bone marrow dysplasia during imatinib treatment for chronic myeloid leukemia. Intern Med 2011;50:481485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Navarro JT, Feliu E, Grau J, et al.. Monosomy 7 with severe myelodysplasia developing during imatinib treatment of Philadelphia-positive chronic myeloid leukemia: two cases with a different outcome. Am J Hematol 2007;82:849851.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Bidet A, Dulucq S, Smol T, et al.. Poor prognosis of chromosome 7 clonal aberrations in Philadelphia-negative metaphases and relevance of potential underlying myelodysplastic features in chronic myeloid leukemia. Haematologica 2019;104:11501155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Soverini S, De Benedittis C, Castagnetti F, et al.. In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants. BMC Cancer 2016;16:572.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Kizilors A, Crisà E, Lea N, et al.. Effect of low-level BCR-ABL1 kinase domain mutations identified by next-generation sequencing in patients with chronic myeloid leukaemia: a population-based study. Lancet Haematol 2019;6:e276e284.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Soverini S, Abruzzese E, Bocchia M, et al.. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol 2019;12:131.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Soverini S, Bavaro L, De Benedittis C, et al.. Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study. Blood 2020;135:534541.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Sokal JE, Cox EB, Baccarani M, et al.. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 1984;63:789799.

  • 67.

    Hasford J, Pfirrmann M, Hehlmann R, et al.. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. J Natl Cancer Inst 1998;90:850858.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Pfirrmann M, Baccarani M, Saussele S, et al.. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 2016;30:4856.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Hochhaus A, Larson RA, Guilhot F, et al.. Long-term outcomes of imatinib treatment of chronic myeloid leukemia. N Engl J Med 2017;376:917927.

  • 70.

    Cortes JE, Saglio G, Kantarjian HM, et al.. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol 2016;34:23332340.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Hochhaus A, Saglio G, Hughes TP, et al.. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016;30:10441054.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Cortes JE, Gambacorti-Passerini C, Deininger MW, et al.. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol 2018;36:231237.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Baccarani M, Druker BJ, Branford S, et al.. Long-term response to imatinib is not affected by the initial dose in patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: final update from the Tyrosine Kinase Inhibitor Optimization and Selectivity (TOPS) study. Int J Hematol 2014;99:616624.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Deininger MW, Kopecky KJ, Radich JP, et al.. Imatinib 800 mg daily induces deeper molecular responses than imatinib 400 mg daily: results of SWOG S0325, an intergroup randomized PHASE II trial in newly diagnosed chronic phase chronic myeloid leukaemia. Br J Haematol 2014;164:223232.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Hehlmann R, Lauseker M, Saußele S, et al.. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia 2017;31:23982406.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Hoffmann VS, Hasford J, Deininger M, et al.. Systematic review and meta-analysis of standard-dose imatinib vs. high-dose imatinib and second generation tyrosine kinase inhibitors for chronic myeloid leukemia. J Cancer Res Clin Oncol 2017;143:13111318.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Quintás-Cardama A, Han X, Kantarjian H, et al.. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood 2009;114:261263.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Hughes TP, Laneuville P, Rousselot P, et al.. Incidence, outcomes, and risk factors of pleural effusion in patients receiving dasatinib therapy for Philadelphia chromosome-positive leukemia. Haematologica 2019;104:93101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Porkka K, Khoury HJ, Paquette RL, et al.. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer 2010;116:377386.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Montani D, Bergot E, Günther S, et al.. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012;125:21282137.

  • 81.

    Orlandi EM, Rocca B, Pazzano AS, et al.. Reversible pulmonary arterial hypertension likely related to long-term, low-dose dasatinib treatment for chronic myeloid leukaemia. Leuk Res 2012;36:e4e6.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Cirmi S, El Abd A, Letinier L, et al.. Cardiovascular toxicity of tyrosine kinase inhibitors used in chronic myeloid leukemia: an analysis of the FDA adverse event reporting system database (FAERS). Cancers (Basel) 2020;12:826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Naqvi K, Jabbour E, Skinner J, et al.. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer 2020;126:6775.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Bergeron A, Réa D, Levy V, et al.. Lung abnormalities after dasatinib treatment for chronic myeloid leukemia: a case series. Am J Respir Crit Care Med 2007;176:814818.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Serpa M, Sanabani SS, Bendit I, et al.. Efficacy and tolerability after unusually low doses of dasatinib in chronic myeloid leukemia patients intolerant to standard-dose dasatinib therapy. Clin Med Insights Oncol 2010;4:155162.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Efficace F, Baccarani M, Breccia M, et al.. Chronic fatigue is the most important factor limiting health-related quality of life of chronic myeloid leukemia patients treated with imatinib. Leukemia 2013;27:15111519.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Berman E, Nicolaides M, Maki RG, et al.. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006;354:20062013.

  • 88.

    Berman E, Girotra M, Cheng C, et al.. Effect of long term imatinib on bone in adults with chronic myelogenous leukemia and gastrointestinal stromal tumors. Leuk Res 2013;37:790794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Tsao AS, Kantarjian H, Cortes J, et al.. Imatinib mesylate causes hypopigmentation in the skin. Cancer 2003;98:24832487.

  • 90.

    Aleem A. Hypopigmentation of the skin due to imatinib mesylate in patients with chronic myeloid leukemia. Hematol Oncol Stem Cell Ther 2009;2:358361.

  • 91.

    Sakurai M, Kikuchi T, Karigane D, et al.. Renal dysfunction and anemia associated with long-term imatinib treatment in patients with chronic myelogenous leukemia. Int J Hematol 2019;109:292298.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Aichberger KJ, Herndlhofer S, Schernthaner G-H, et al.. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol 2011;86:533539.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Tefferi A, Letendre L. Nilotinib treatment-associated peripheral artery disease and sudden death: yet another reason to stick to imatinib as front-line therapy for chronic myelogenous leukemia. Am J Hematol 2011;86:610611.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Giles FJ, Mauro MJ, Hong F, et al.. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia 2013;27:13101315.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Assunção PM, Lana TP, Delamain MT, et al.. Cardiovascular risk and cardiovascular events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Clin Lymphoma Myeloma Leuk 2019;19:162166.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Caocci G, Mulas O, Bonifacio M, et al.. Recurrent arterial occlusive events in patients with chronic myeloid leukemia treated with second- and third-generation tyrosine kinase inhibitors and role of secondary prevention. Int J Cardiol 2019;288:124127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Tokuhira M, Kimura Y, Sugimoto K, et al.. Efficacy and safety of nilotinib therapy in patients with newly diagnosed chronic myeloid leukemia in the chronic phase. Med Oncol 2018;35:38.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Quintas-Cardama A, Kantarjian H, O’Brien S, et al.. Granulocyte-colony-stimulating factor (filgrastim) may overcome imatinib-induced neutropenia in patients with chronic-phase chronic myelogenous leukemia. Cancer 2004;100:25922597.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Quintás-Cardama A, De Souza Santos FP, Kantarjian H, et al.. Dynamics and management of cytopenias associated with dasatinib therapy in patients with chronic myeloid leukemia in chronic phase after imatinib failure. Cancer 2009;115:39353943.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Santos FP, Alvarado Y, Kantarjian H, et al.. Long-term prognostic impact of the use of erythropoietic-stimulating agents in patients with chronic myeloid leukemia in chronic phase treated with imatinib. Cancer 2011;117:982991.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Reinhold U, Hennig E, Leiblein S, et al.. FISH for BCR-ABL on interphases of peripheral blood neutrophils but not of unselected white cells correlates with bone marrow cytogenetics in CML patients treated with imatinib. Leukemia 2003;17:19251929.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Fugazza G, Miglino M, Bruzzone R, et al.. Cytogenetic and fluorescence in situ hybridization monitoring in Ph+ Chronic Myeloid Leukemia patients treated with imatinib mesylate. J Exp Clin Cancer Res 2004;23:295299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Landstrom AP, Ketterling RP, Knudson RA, et al.. Utility of peripheral blood dual color, double fusion fluorescent in situ hybridization for BCR/ABL fusion to assess cytogenetic remission status in chronic myeloid leukemia. Leuk Lymphoma 2006;47:20552061.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Testoni N, Marzocchi G, Luatti S, et al.. Chronic myeloid leukemia: a prospective comparison of interphase fluorescence in situ hybridization and chromosome banding analysis for the definition of complete cytogenetic response: a study of the GIMEMA CML WP. Blood 2009;114:49394943.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Lima L, Bernal-Mizrachi L, Saxe D, et al.. Peripheral blood monitoring of chronic myeloid leukemia during treatment with imatinib, second-line agents, and beyond. Cancer 2011;117:12451252.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Hughes TP, Hochhaus A, Branford S, et al.. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 2010;116:37583765.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Akard LP, Cortes JE, Albitar M, et al.. Correlations between cytogenetic and molecular monitoring among patients with newly diagnosed chronic myeloid leukemia in chronic phase: post hoc analyses of the Rationale and Insight for Gleevec High-Dose Therapy study. Arch Pathol Lab Med 2014;138:11861192.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Branford S, Cross NCP, Hochhaus A, et al.. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 2006;20:19251930.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Cross NC. Standardisation of molecular monitoring for chronic myeloid leukaemia. Best Pract Res Clin Haematol 2009;22:355365.

  • 110.

    Cross NC, White HE, Müller MC, et al.. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012;26:21722175.

  • 111.

    Branford S, Fletcher L, Cross NC, et al.. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 2008;112:33303338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Guérin A, Chen L, Dea K, et al.. Association between regular molecular monitoring and tyrosine kinase inhibitor therapy adherence in chronic myelogenous leukemia in the chronic phase. Curr Med Res Opin 2014;30:13451352.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Hanfstein B, Müller MC, Hehlmann R, et al.. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia 2012;26:20962102.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Marin D, Ibrahim AR, Lucas C, et al.. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol 2012;30:232238.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Neelakantan P, Gerrard G, Lucas C, et al.. Combining BCR-ABL1 transcript levels at 3 and 6 months in chronic myeloid leukemia: implications for early intervention strategies. Blood 2013;121:27392742.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Nazha A, Kantarjian H, Jain P, et al.. Assessment at 6 months may be warranted for patients with chronic myeloid leukemia with no major cytogenetic response at 3 months. Haematologica 2013;98:16861688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Branford S, Yeung DT, Parker WT, et al.. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood 2014;124:511518.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Hanfstein B, Shlyakhto V, Lauseker M, et al.. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia 2014;28:19881992.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Iriyama N, Fujisawa S, Yoshida C, et al.. Shorter halving time of BCR-ABL1 transcripts is a novel predictor for achievement of molecular responses in newly diagnosed chronic-phase chronic myeloid leukemia treated with dasatinib: Results of the D-first study of Kanto CML study group. Am J Hematol 2015;90:282287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Hochhaus A, O’Brien SG, Guilhot F, et al.. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009;23:10541061.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Jabbour E, Kantarjian H, O’Brien S, et al.. The achievement of an early complete cytogenetic response is a major determinant for outcome in patients with early chronic phase chronic myeloid leukemia treated with tyrosine kinase inhibitors. Blood 2011;118:45414546., quiz 4759.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Druker BJ, Guilhot F, O’Brien SG, et al.. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:24082417.

  • 123.

    Press RD, Galderisi C, Yang R, et al.. A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response. Clin Cancer Res 2007;13:61366143.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    de Lavallade H, Apperley JF, Khorashad JS, et al.. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol 2008;26:33583363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125.

    Marin D, Milojkovic D, Olavarria E, et al.. European LeukemiaNet criteria for failure or suboptimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor. Blood 2008;112:44374444.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Jabbour E, Kantarjian HM, O’Brien S, et al.. Front-line therapy with second-generation tyrosine kinase inhibitors in patients with early chronic phase chronic myeloid leukemia: what is the optimal response? J Clin Oncol 2011;29:42604265.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Hehlmann R, Müller MC, Lauseker M, et al.. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol 2014;32:415423.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Saussele S, Hehlmann R, Fabarius A, et al.. Defining therapy goals for major molecular remission in chronic myeloid leukemia: results of the randomized CML Study IV. Leukemia 2018;32:12221228.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Cervantes F, López-Garrido P, Montero MI, et al.. Early intervention during imatinib therapy in patients with newly diagnosed chronic-phase chronic myeloid leukemia: a study of the Spanish PETHEMA group. Haematologica 2010;95:13171324.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Kantarjian H, Cortes J. Considerations in the management of patients with Philadelphia chromosome-positive chronic myeloid leukemia receiving tyrosine kinase inhibitor therapy. J Clin Oncol 2011;29:15121516.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Hochhaus A, Baccarani M, Silver RT, et al.. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020;34:966984.

  • 132.

    Shah NP, Rousselot P, Schiffer C, et al.. Dasatinib in imatinib-resistant or -intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol 2016;91:869874.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Giles FJ, le Coutre PD, Pinilla-Ibarz J, et al.. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia 2013;27:107112.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Gambacorti-Passerini C, Cortes JE, Lipton JH, et al.. Safety and efficacy of second-line bosutinib for chronic phase chronic myeloid leukemia over a five-year period: final results of a phase I/II study. Haematologica 2018;103:12981307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Cortes JE, Kim D-W, Pinilla-Ibarz J, et al.. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood 2018;132:393404.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Kantarjian HM, Talpaz M, O’Brien S, et al.. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 2003;101:473475.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Marin D, Goldman JM, Olavarria E, et al.. Transient benefit only from increasing the imatinib dose in CML patients who do not achieve complete cytogenetic remissions on conventional doses. Blood 2003;102:27022703., author reply 2703–2704.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Jabbour E, Kantarjian HM, Jones D, et al.. Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood 2009;113:21542160.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Kantarjian HM, Larson RA, Guilhot F, et al.. Efficacy of imatinib dose escalation in patients with chronic myeloid leukemia in chronic phase. Cancer 2009;115:551560.

  • 140.

    Yeung DT, Osborn MP, White DL, et al.. TIDEL-II: first-line use of imatinib in CML with early switch to nilotinib for failure to achieve time-dependent molecular targets. Blood 2015;125:915923.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Cortes JE, De Souza CA, Ayala M, et al.. Switching to nilotinib versus imatinib dose escalation in patients with chronic myeloid leukaemia in chronic phase with suboptimal response to imatinib (LASOR): a randomised, open-label trial. Lancet Haematol 2016;3:e581e591.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Cortes JE, Khoury HJ, Kantarjian HM, et al.. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am J Hematol 2016;91:12061214.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    García-Gutiérrez V, Milojkovic D, Hernandez-Boluda JC, et al.. Safety and efficacy of bosutinib in fourth-line therapy of chronic myeloid leukemia patients. Ann Hematol 2019;98:321330.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Jain P, Kantarjian H, Boddu PC, et al.. Analysis of cardiovascular and arteriothrombotic adverse events in chronic-phase CML patients after frontline TKIs. Blood Adv 2019;3:851861.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Caocci G, Mulas O, Abruzzese E, et al.. Arterial occlusive events in chronic myeloid leukemia patients treated with ponatinib in the real-life practice are predicted by the Systematic Coronary Risk Evaluation (SCORE) chart. Hematol Oncol 2019;37:296302.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Casavecchia G, Galderisi M, Novo G, et al.. Early diagnosis, clinical management, and follow-up of cardiovascular events with ponatinib. Heart Fail Rev 2020;25:447456.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Cortes JE, Kantarjian H, Shah NP, et al.. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 2012;367:20752088.

  • 148.

    Dorer DJ, Knickerbocker RK, Baccarani M, et al.. Impact of dose intensity of ponatinib on selected adverse events: Multivariate analyses from a pooled population of clinical trial patients. Leuk Res 2016;48:8491.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Iurlo A, Cattaneo D, Orofino N, et al.. Low-dose ponatinib in intolerant chronic myeloid leukemia patients: a safe and effective option. Clin Drug Investig 2018;38:475476.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Garg RJ, Kantarjian H, O’Brien S, et al.. The use of nilotinib or dasatinib after failure to 2 prior tyrosine kinase inhibitors: long-term follow-up. Blood 2009;114:43614368.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Cortes J, Lipton JH, Rea D, et al.. Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood 2012;120:25732580.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Cortes J, Digumarti R, Parikh PM, et al.. Phase 2 study of subcutaneous omacetaxine mepesuccinate for chronic-phase chronic myeloid leukemia patients resistant to or intolerant of tyrosine kinase inhibitors. Am J Hematol 2013;88:350354.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    van Leeuwen RW, van Gelder T, Mathijssen RH, et al.. Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 2014;15:e315e326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154.

    Osorio S, Escudero-Vilaplana V, Gómez-Centurión I, et al.. Drug-to-drug interactions of tyrosine kinase inhibitors in chronic myeloid leukemia patients. Is it a real problem? Ann Hematol 2018;97:20892098.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Noens L, van Lierde M-A, De Bock R, et al.. Prevalence, determinants, and outcomes of nonadherence to imatinib therapy in patients with chronic myeloid leukemia: the ADAGIO study. Blood 2009;113:54015411.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Marin D, Bazeos A, Mahon F-X, et al.. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol 2010;28:23812388.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Ibrahim AR, Eliasson L, Apperley JF, et al.. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood 2011;117:37333736.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Wu EQ, Guerin A, Yu AP, et al.. Retrospective real-world comparison of medical visits, costs, and adherence between nilotinib and dasatinib in chronic myeloid leukemia. Curr Med Res Opin 2010;26:28612869.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Yood MU, Oliveria SA, Cziraky M, et al.. Adherence to treatment with second-line therapies, dasatinib and nilotinib, in patients with chronic myeloid leukemia. Curr Med Res Opin 2012;28:213219.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Quintás-Cardama A, Cortés JE, Kantarjian H. Practical management of toxicities associated with tyrosine kinase inhibitors in chronic myeloid leukemia. Clin Lymphoma Myeloma 2008;8(Suppl 3):S82S88.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Cornelison M, Jabbour EJ, Welch MA. Managing side effects of tyrosine kinase inhibitor therapy to optimize adherence in patients with chronic myeloid leukemia: the role of the midlevel practitioner. J Support Oncol 2012;10:1424.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Cortes JE, Lipton JH, Miller CB, et al.. Evaluating the impact of a switch to nilotinib on imatinib-related chronic low-grade adverse events in patients with CML-CP: the ENRICH Study. Clin Lymphoma Myeloma Leuk 2016;16:286296.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Kim DW, Saussele S, Williams LA, et al.. Outcomes of switching to dasatinib after imatinib-related low-grade adverse events in patients with chronic myeloid leukemia in chronic phase: the DASPERSE study. Ann Hematol 2018;97:13571367.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Hiwase D, Tan P, D’Rozario J, et al.. Efficacy and safety of nilotinib 300 mg twice daily in patients with chronic myeloid leukemia in chronic phase who are intolerant to prior tyrosine kinase inhibitors: results from the phase IIIb ENESTswift study. Leuk Res 2018;67:109115.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Thomas J, Wang L, Clark RE, et al.. Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004;104:37393745.

  • 166.

    Mahon FX, Hayette S, Lagarde V, et al.. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 2008;68:98099816.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Hegedus C, Ozvegy-Laczka C, Apáti A, et al.. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol 2009;158:11531164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Picard S, Titier K, Etienne G, et al.. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007;109:34963499.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Larson RA, Druker BJ, Guilhot F, et al.. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 2008;111:40224028.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Bouchet S, Titier K, Moore N, et al.. Therapeutic drug monitoring of imatinib in chronic myeloid leukemia: experience from 1216 patients at a centralized laboratory. Fundam Clin Pharmacol 2013;27:690697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 171.

    White DL, Radich J, Soverini S, et al.. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica 2012;97:907914.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Giannoudis A, Davies A, Lucas CM, et al.. Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood 2008;112:33483354.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Hiwase DK, Saunders V, Hewett D, et al.. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 2008;14:38813888.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Davies A, Jordanides NE, Giannoudis A, et al.. Nilotinib concentration in cell lines and primary CD34(+) chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia 2009;23:19992006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    White DL, Saunders VA, Dang P, et al.. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006;108:697704.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Branford S, Rudzki Z, Walsh S, et al.. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003;102:276283.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Soverini S, Martinelli G, Rosti G, et al.. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol 2005;23:41004109.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Nicolini FE, Corm S, QH, et al.. Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 2006;20:10611066.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Soverini S, Colarossi S, Gnani A, et al.. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 2006;12:73747379.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Khorashad JS, de Lavallade H, Apperley JF, et al.. Finding of kinase domain mutations in patients with chronic phase chronic myeloid leukemia responding to imatinib may identify those at high risk of disease progression. J Clin Oncol 2008;26:48064813.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Soverini S, Gnani A, Colarossi S, et al.. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood 2009;114:21682171.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Nicolini FE, Hayette S, Corm S, et al.. Clinical outcome of 27 imatinib mesylate-resistant chronic myelogenous leukemia patients harboring a T315I BCR-ABL mutation. Haematologica 2007;92:12381241.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Jabbour E, Kantarjian H, Jones D, et al.. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood 2008;112:5355.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Soverini S, Colarossi S, Gnani A, et al.. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 2007;92:401404.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Jabbour E, Kantarjian HM, Jones D, et al.. Characteristics and outcome of chronic myeloid leukemia patients with F317L BCR-ABL kinase domain mutation after therapy with tyrosine kinase inhibitors. Blood 2008;112:48394842.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Müller MC, Cortes JE, Kim D-W, et al.. Dasatinib treatment of chronic-phase chronic myeloid leukemia: analysis of responses according to preexisting BCR-ABL mutations. Blood 2009;114:49444953.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Hughes T, Saglio G, Branford S, et al.. Impact of baseline BCR-ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase. J Clin Oncol 2009;27:42044210.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Naqvi K, Cortes JE, Luthra R, et al.. Characteristics and outcome of chronic myeloid leukemia patients with E255K/V BCR-ABL kinase domain mutations. Int J Hematol 2018;107:689695.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    Khoury HJ, Cortes JE, Kantarjian HM, et al.. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood 2012;119:34033412.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Khorashad JS, Kelley TW, Szankasi P, et al.. BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood 2013;121:489498.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Zabriskie MS, Eide CA, Tantravahi SK, et al.. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell 2014;26:428442.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Deininger MW, Hodgson JG, Shah NP, et al.. Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients. Blood 2016;127:703712.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Soverini S, Branford S, Nicolini FE, et al.. Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Leuk Res 2014;38:1020.

  • 194.

    Grossmann V, Kohlmann A, Zenger M, et al.. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia 2011;25:557560.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Schmidt M, Rinke J, Schäfer V, et al.. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 2014;28:22922299.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 196.

    Soverini S, de Benedittis C, Mancini M, et al.. Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia. Clin Lymphoma Myeloma Leuk 2015;15(Suppl):S120S128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    Kim T, Tyndel MS, Kim HJ, et al.. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood 2017;129:3847.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 198.

    Togasaki E, Takeda J, Yoshida K, et al.. Frequent somatic mutations in epigenetic regulators in newly diagnosed chronic myeloid leukemia. Blood Cancer J 2017;7:e559.

  • 199.

    Branford S, Wang P, Yeung DT, et al.. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 2018;132:948961.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Branford S, Kim DDH, Apperley JF, et al.. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia 2019;33:18351850.

  • 201.

    Adnan Awad S, Kankainen M, Ojala T, et al.. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv 2020;4:546559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 202.

    Branford S, Rudzki Z, Parkinson I, et al.. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood 2004;104:29262932.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Wang L, Knight K, Lucas C, et al.. The role of serial BCR-ABL transcript monitoring in predicting the emergence of BCR-ABL kinase mutations in imatinib-treated patients with chronic myeloid leukemia. Haematologica 2006;91:235239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 204.

    Kantarjian HM, Shan J, Jones D, et al.. Significance of increasing levels of minimal residual disease in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in complete cytogenetic response. J Clin Oncol 2009;27:36593663.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 205.

    Marin D, Khorashad JS, Foroni L, et al.. Does a rise in the BCR-ABL1 transcript level identify chronic phase CML patients responding to imatinib who have a high risk of cytogenetic relapse? Br J Haematol 2009;145:373375.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 206.

    Press RD, Willis SG, Laudadio J, et al.. Determining the rise in BCR-ABL RNA that optimally predicts a kinase domain mutation in patients with chronic myeloid leukemia on imatinib. Blood 2009;114:25982605.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Mahon FX, Réa D, Guilhot J, et al.. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010;11:10291035.