Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Advancements in technology that enhance our understanding of the biology of the disease, risk-adapted therapy, and enhanced supportive care have contributed to improved survival rates. However, additional clinical management is needed to improve outcomes for patients classified as high risk at presentation (eg, T-ALL, infant ALL) and who experience relapse. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for pediatric ALL provide recommendations on the workup, diagnostic evaluation, and treatment of the disease, including guidance on supportive care, hematopoietic stem cell transplantation, and pharmacogenomics. This portion of the NCCN Guidelines focuses on the frontline and relapsed/refractory management of pediatric ALL.
Individual Disclosures for the NCCN Pediatric Acute Lymphoblastic Leukemia Panel
National Cancer Institute. SEER Cancer Statistics Review, 1975-2015: leukemia, annual incidence rates (acute lymphocytic leukemia). 2018. Available at: https://seer.cancer.gov/archive/csr/1975_2015/results_single/sect_01_table.05_2pgs.pdf. Accessed January 31, 2019.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7–34.
Esparza SD, Sakamoto KM. Topics in pediatric leukemia--acute lymphoblastic leukemia. MedGenMed 2005;7:23.
National Cancer Institute. SEER Cancer Statistics Review, 1975-2015: overview, median age at diagnosis. 2018. Available at: https://seer.cancer.gov/archive/csr/1975_2015/results_merged/topic_med_age.pdf. Accessed January 31, 2019.
National Cancer Institute. SEER Cancer Statistics Review, 1975-2015: overview, age distribution of incidence cases by site. 2018. Available at: https://seer.cancer.gov/archive/csr/1975_2015/results_merged/topic_age_dist.pdf. Accessed January 31, 2019.
Ma H, Sun H, Sun X. Survival improvement by decade of patients aged 0-14 years with acute lymphoblastic leukemia: a SEER analysis. Sci Rep 2014;4:4227.
Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood 2009;113:1408–1411.
Pulte D, Jansen L, Gondos A, et al.. Survival of adults with acute lymphoblastic leukemia in Germany and the United States. PLoS One 2014;9:e85554.
Pieters R, De Lorenzo P, Ancliffe P, et al.. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the Interfant-06 Protocol: results from an international phase III randomized study. J Clin Oncol 2019;37:2246–2256.
Faderl S, O’Brien S, Pui CH, et al.. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer 2010;116:1165–1176.
Jabbour EJ, Faderl S, Kantarjian HM. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2005;80:1517–1527.
Karimi M, Cohan N, Zareifar S, et al.. Initial presentation of childhood leukaemia with facial palsy: three case reports. BMJ Case Rep 2009;2009.
Kraigher-Krainer E, Lackner H, Sovinz P, et al.. Numb chin syndrome as initial manifestation in a child with acute lymphoblastic leukemia. Pediatr Blood Cancer 2008;51:426–428.
Swerdlow SH, Campo E, Harris NL, et al., editors. B-lymphoblastic leukaemia/lymphoma, not otherwise specified (NOS). In WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: IARC; 2017: 200.
Amin HM, Yang Y, Shen Y, et al.. Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias. Leukemia 2005;19:1567–1572.
Weinkauff R, Estey EH, Starostik P, et al.. Use of peripheral blood blasts vs bone marrow blasts for diagnosis of acute leukemia. Am J Clin Pathol 1999;111:733–740.
Swerdlow SH, Campo E, Harris NL, et al., editors. T-lymphoblastic leukaemia/lymphoma. In WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues.4th ed. Lyon, France: IARC; 2017:209 .
Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol 2016;96:447–460.
Cortelazzo S, Ferreri A, Hoelzer D, et al.. Lymphoblastic lymphoma. Crit Rev Oncol Hematol 2017;113:304–317.
Swerdlow SH, Campo E, Harris NL, et al., editors. B-lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th Ed. Lyon, France: IARC; 2017:203 .
Arber DA, Orazi A, Hasserjian R, et al.. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391–2405.
Den Boer ML, van Slegtenhorst M, De Menezes RX, et al.. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009;10:125–134.
Harrison CJ, Moorman AV, Schwab C, et al.. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 2014;28:1015–1021.
Pui CH, Carroll WL, Meshinchi S, et al.. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011;29:551–565.
Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med 2004;350:1535–1548.
Moorman AV, Ensor HM, Richards SM, et al.. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 2010;11:429–438.
Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 2016;101:407–416.
Raimondi SC, Zhou Y, Mathew S, et al.. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 2003;98:2715–2722.
Moorman AV, Chilton L, Wilkinson J, et al.. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood 2010;115:206–214.
Schultz KR, Pullen DJ, Sather HN, et al.. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 2007;109:926–935.
Holmfeldt L, Wei L, Diaz-Flores E, et al.. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 2013;45:242–252.
Mühlbacher V, Zenger M, Schnittger S, et al.. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosomes Cancer 2014;53:524–536.
Behm FG, Raimondi SC, Frestedt JL, et al.. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996;87:2870–2877.
Brown P, Pieters R, Biondi A. How I treat infant leukemia. Blood 2019;133:205–214.
Hilden JM, Dinndorf PA, Meerbaum SO, et al.. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group. Blood 2006;108:441–451.
Pieters R, Schrappe M, De Lorenzo P, et al.. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007;370:240–250.
Pui CH, Chessells JM, Camitta B, et al.. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003;17:700–706.
Pui CH, Gaynon PS, Boyett JM, et al.. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002;359:1909–1915.
Fischer U, Forster M, Rinaldi A, et al.. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015;47:1020–1029.
Inukai T, Hirose K, Inaba T, et al.. Hypercalcemia in childhood acute lymphoblastic leukemia: frequent implication of parathyroid hormone-related peptide and E2A-HLF from translocation 17;19. Leukemia 2007;21:288–296.
Felice MS, Gallego MS, Alonso CN, et al.. Prognostic impact of t(1;19)/ TCF3-PBX1 in childhood acute lymphoblastic leukemia in the context of Berlin-Frankfurt-Münster-based protocols. Leuk Lymphoma 2011;52:1215–1221.
Heerema NA, Carroll AJ, Devidas M, et al.. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children’s oncology group. J Clin Oncol 2013;31:3397–3402.
Moorman AV, Robinson H, Schwab C, et al.. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J Clin Oncol 2013;31:3389–3396.
Moorman AV, Richards SM, Robinson HM, et al.. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 2007;109:2327–2330.
Aricò M, Valsecchi MG, Camitta B, et al.. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000;342:998–1006.
Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006;354:166–178.
Caye A, Beldjord K, Mass-Malo K, et al.. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 2013;98:597–601.
Mullighan CG, Miller CB, Radtke I, et al.. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008;453:110–114.
Mullighan CG, Su X, Zhang J, et al.. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360:470–480.
Boer JM, van der Veer A, Rizopoulos D, et al.. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia 2016;30:32–38.
Stanulla M, Dagdan E, Zaliova M, et al.. IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin Oncol 2018;36:1240–1249.
Clappier E, Auclerc MF, Rapion J, et al.. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia 2014;28:70–77.
Zaliova M, Zimmermannova O, Dörge P, et al.. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia 2014;28:182–185.
Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014;4:54.
Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2012;2012:389–396.
Roberts KG, Gu Z, Payne-Turner D, et al.. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol 2017;35:394–401.
van der Veer A, Waanders E, Pieters R, et al.. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013;122:2622–2629.
Harvey RC, Mullighan CG, Chen IM, et al.. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010;115:5312–5321.
Reshmi SC, Harvey RC, Roberts KG, et al.. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood 2017;129:3352–3361.
Roberts KG, Li Y, Payne-Turner D, et al.. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014;371:1005–1015.
Roberts KG, Yang YL, Payne-Turner D, et al.. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv 2017;1:1657–1671.
Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008;8:380–390.
Hernandez Tejada FN, Galvez Silva JR, Zweidler-McKay PA. The challenge of targeting notch in hematologic malignancies. Front Pediatr 2014;2:54.
O’Neil J, Grim J, Strack P, et al.. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007;204:1813–1824.
Weng AP, Ferrando AA, Lee W, et al.. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306:269–271.
Asnafi V, Buzyn A, Le Noir S, et al.. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 2009;113:3918–3924.
Breit S, Stanulla M, Flohr T, et al.. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006;108:1151–1157.
Clappier E, Collette S, Grardel N, et al.. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 2010;24:2023–2031.
Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al.. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol 2013;31:4333–4342.
Jenkinson S, Kirkwood AA, Goulden N, et al.. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia 2016;30:39–47.
Zuurbier L, Homminga I, Calvert V, et al.. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia 2010;24:2014–2022.
Roberts KG, Reshmi SC, Harvey RC, et al.. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children’s Oncology Group. Blood 2018;132:815–824.
Harvey RC, Kang H, Roberts KG, et al.. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a Philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention. Blood 2013;122:826.
Inaba H, Azzato EM, Mullighan CG. Integration of next-generation sequencing to treat acute lymphoblastic leukemia with targetable lesions: The St. Jude Children’s Hospital approach. Front Pediatr 2017;5:258.
Pui CH, Nichols KE, Yang JJ. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat Rev Clin Oncol 2019;16:227–240.
Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 2000;355:165–169.
Smith M, Arthur D, Camitta B, et al.. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:18–24.
Vrooman LM, Blonquist TM, Harris MH, et al.. Refining risk classification in childhood B acute lymphoblastic leukemia: results of DFCI ALL Consortium Protocol 05-001. Blood Adv 2018;2:1449–1458.
Gadner H, Masera G, Schrappe M, et al.. The Eighth International Childhood Acute Lymphoblastic Leukemia Workshop (‘Ponte di legno meeting’) report: Vienna, Austria, April 27-28, 2005. Leukemia 2006;20:9–17.
Hunger SP, Loh ML, Whitlock JA, et al.. Children’s Oncology Group’s 2013 blueprint for research: acute lymphoblastic leukemia. Pediatr Blood Cancer 2013;60:957–963.
Sutcliffe MJ, Shuster JJ, Sather HN, et al.. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI standard-risk B-precursor acute lymphoblastic leukemia: a Children’s Oncology Group (COG) initiative. Leukemia 2005;19:734–740.
Romana SP, Mauchauffé M, Le Coniat M, et al.. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995;85:3662–3670.
Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2016;2016:580–588.
Patrick K, Wade R, Goulden N, et al.. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol 2014;166:421–424.
Place AE, Stevenson KE, Harris MH, et al.. Outcome of childhood T-cell acute lymphoblastic leukemia (T-ALL): results from DFCI protocol 05-001 [abstract]. J Clin Oncol 2014;32(Suppl 15):10015.
Winter SS, Dunsmore KP, Devidas M, et al.. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol 2018;36:2926–2934.
Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet 2013;381:1943–1955.
Pui CH, Campana D, Pei D, et al.. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.
Pui CH, Pei D, Sandlund JT, et al.. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371–382.
Silverman LB, Declerck L, Gelber RD, et al.. Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981-1995). Leukemia 2000;14:2247–2256.
Silverman LB, Stevenson KE, O’Brien JE, et al.. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000). Leukemia 2010;24:320–334.
Möricke A, Zimmermann M, Reiter A, et al.. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24:265–284.
Schrappe M, Reiter A, Ludwig WD, et al.. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood 2000;95:3310–3322.
Kluk MJ, Lindsley RC, Aster JC, et al.. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. J Mol Diagn 2016;18:507–515.
Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am 2015;62:61–73.
Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 2011;29:532–543.
Seibel NL. Treatment of acute lymphoblastic leukemia in children and adolescents: peaks and pitfalls. Hematology (Am Soc Hematol Educ Program) 2008;2008:374–380.
Kamps WA, Bökkerink JP, Hakvoort-Cammel FG, et al.. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991-1996). Leukemia 2002;16:1099–1111.
Möricke A, Reiter A, Zimmermann M, et al.. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 2008;111:4477–4489.
Seibel NL, Steinherz PG, Sather HN, et al.. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 2008;111:2548–2555.
Stock W, La M, Sanford B, et al.. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood 2008;112:1646–1654.
Larson RA, Dodge RK, Burns CP, et al.. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood 1995;85:2025–2037.
Bostrom BC, Sensel MR, Sather HN, et al.. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 2003;101:3809–3817.
Mitchell CD, Richards SM, Kinsey SE, et al.. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 2005;129:734–745.
Pui CH. Central nervous system disease in acute lymphoblastic leukemia: prophylaxis and treatment. Hematology (Am Soc Hematol Educ Program) 2006;2006:142–146.
Möricke A, Zimmermann M, Valsecchi MG, et al.. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood 2016;127:2101–2112.
Teuffel O, Kuster SP, Hunger SP, et al.. Dexamethasone versus prednisone for induction therapy in childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Leukemia 2011;25:1232–1238.
Avramis VI, Sencer S, Periclou AP, et al.. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 2002;99:1986–1994.
Silverman LB, Blonquist TM, Hunt SK, et al.. Randomized Study of pegaspargase (SS-PEG) and calaspargase pegol (SC-PEG) in pediatric patients with newly diagnosed acute lymphoblastic leukemia or lymphoblastic lymphoma: results of DFCI ALL Consortium Protocol 11-001. Blood 2016;128:175–175.
Chrzanowska M, Kolecki P, Duczmal-Cichocka B, et al.. Metabolites of mercaptopurine in red blood cells: a relationship between 6-thioguanine nucleotides and 6-methylmercaptopurine metabolite concentrations in children with lymphoblastic leukemia. Eur J Pharm Sci 1999;8:329–334.
Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989;7:1816–1823.
Hawwa AF, Collier PS, Millership JS, et al.. Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia. Br J Clin Pharmacol 2008;66:826–837.
McLeod HL, Coulthard S, Thomas AE, et al.. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999;105:696–700.
McLeod HL, Relling MV, Crom WR, et al.. Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl 1992;18:S23–S29.
Collie-Duguid ES, Pritchard SC, Powrie RH, et al.. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999;9:37–42.
McLeod HL, Lin JS, Scott EP, et al.. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 1994;55:15–20.
Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32:651–662.
Relling MV, Schwab M, Whirl-Carrillo M, et al.. Clinical Pharmacogenetics Implementation Consortium Guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther 2019;105:1095–1105.
Bhatia S, Landier W, Shangguan M, et al.. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic leukemia: a report from the children’s oncology group. J Clin Oncol 2012;30:2094–2101.
Richards S, Pui CH, Gayon P. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2013;60:185–195.
Balduzzi A, Valsecchi MG, Uderzo C, et al.. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 2005;366:635–642.
Leung W, Campana D, Yang J, et al.. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011;118:223–230.
Eapen M, Rubinstein P, Zhang MJ, et al.. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007;369:1947–1954.
Dreyer ZE, Dinndorf PA, Camitta B, et al.. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children’s Oncology Group. J Clin Oncol 2011;29:214–222.
Mann G, Attarbaschi A, Schrappe M, et al.. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: results from the Interfant-99 Study. Blood 2010;116:2644–2650.
Biondi A, Gandemer V, De Lorenzo P, et al.. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol 2018;5:e641–e652.
Biondi A, Schrappe M, De Lorenzo P, et al.. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012;13:936–945.
Schultz KR, Bowman WP, Aledo A, et al.. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 2009;27:5175–5181.
Schultz KR, Carroll A, Heerema NA, et al.. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 2014;28:1467–1471.
Slayton WB, Schultz KR, Kairalla JA, et al.. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622. J Clin Oncol 2018;36:2306–2314.
Mullighan CG, Zhang J, Harvey RC, et al.. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2009;106:9414–9418.
Berg SL, Blaney SM, Devidas M, et al.. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 2005;23:3376–3382.
Hoelzer D. Novel antibody-based therapies for acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2011;2011:243–249.
von Stackelberg A, Locatelli F, Zugmaier G, et al.. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol 2016;34:4381–4389.
Topp MS, Kufer P, Gökbuget N, et al.. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:2493–2498.
Maude SL, Laetsch TW, Buechner J, et al.. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.
Maloney K, Devidas M, Mattano LA, et al.. Excellent event free (EFS) and overall survival (OS) for children with standard risk acute lymphoblastic leukemia (SR ALL) despite the absence of a significant impact on outcome with the addition of an intensified consolidation: results of Children’s Oncology Group (COG) AALL0331 [abstract]. Blood 2013;122:837.
Angiolillo A, Schore RJ, Kairalla JA, et al.. Excellent outcomes with reduced frequency of vincristine and dexamethasone pulses in children with National Cancer Institute (NCI) standard-risk B acute lymphoblastic leukemia (SR B-ALL): a report from Children’s Oncology Group (COG) Study AALL0932 [abstract]. Blood 2019;134 (Suppl 1):824.
Angiolillo A, Schore R, Devidas M, et al.. Intensification of oral methotrexate is not superior to standard methotrexate dosing during maintenance in children with National Cancer Institute (NCI) Standard-Risk B Acute Lymphoblastic Leukemia (SR B-ALL): a report from Children’s Oncology Group (COG) Study AALL0932 [abstract]. Blood 2017;130:140.
Larsen EC, Devidas M, Chen S, et al.. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group study AALL0232. J Clin Oncol 2016;34:2380–2388.
Borowitz MJ, Wood BL, Devidas M, et al.. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood 2015;126:964–971.
Burke MJ, Salzer WL, Devidas M, et al.. Replacing cyclophosphamide/cytarabine/mercaptopurine with cyclophosphamide/etoposide during consolidation/delayed intensification does not improve outcome for pediatric B-cell acute lymphoblastic leukemia: a report from the COG. Haematologica 2019;104:986–992.
Salzer WL, Burke MJ, Devidas M, et al.. Toxicity associated with intensive postinduction therapy incorporating clofarabine in the very high-risk stratum of patients with newly diagnosed high-risk B-lymphoblastic leukemia: A report from the Children’s Oncology Group study AALL1131. Cancer 2018;124:1150–1159.
Tasian SK, Assad A, Hunter DS, et al.. A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (INCB18424-269/AALL1521): dose-finding results from the part 1 safety phase [abstract]. Blood 2018;132(Suppl 1):555.
Dreier T, Lorenczewski G, Brandl C, et al.. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002;100:690–697.
Hoffmann P, Hofmeister R, Brischwein K, et al.. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005;115:98–104.
Topp MS, Gökbuget N, Zugmaier G, et al.. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012;120:5185–5187.
Gökbuget N, Dombret H, Bonifacio M, et al.. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018;131:1522–1531.
Kantarjian H, Stein A, Gökbuget N, et al.. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017;376:836–847.
Topp MS, Gökbuget N, Stein AS, et al.. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015;16:57–66.
Topp MS, Gökbuget N, Zugmaier G, et al.. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32:4134–4140.
McNeer JL, Devidas M, Dai Y, et al.. Hematopoietic stem-cell transplantation does not improve the poor outcome of children with hypodiploid acute lymphoblastic leukemia: a report from Children’s Oncology Group. J Clin Oncol 2019;37:780–789.
Mullighan CG, Jeha S, Pei D, et al.. Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood 2015;126:2896–2899.
Nachman JB, Heerema NA, Sather H, et al.. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 2007;110:1112–1115.
Pui CH, Rebora P, Schrappe M, et al.. Outcome of children with hypodiploid acute lymphoblastic leukemia: a retrospective multinational study. J Clin Oncol 2019;37:770–779.
Ko RH, Ji L, Barnette P, et al.. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010;28:648–654.
Parker C, Krishnan S, Hamadeh L, et al.. Outcomes of patients with childhood B-cell precursor acute lymphoblastic leukaemia with late bone marrow relapses: long-term follow-up of the ALLR3 open-label randomised trial. Lancet Haematol 2019;6:e204–e216.
Sun W, Malvar J, Sposto R, et al.. Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia 2018;32:2316–2325.
Parker C, Waters R, Leighton C, et al.. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010;376:2009–2017.
Tallen G, Ratei R, Mann G, et al.. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010;28:2339–2347.
Raetz EA, Borowitz MJ, Devidas M, et al.. Reinduction platform for children with first marrow relapse of acute lymphoblastic Leukemia: A Children’s Oncology Group Study[corrected]. [corrected] J Clin Oncol 2008;26:3971–3978.
Horton TM, Lu X, O'Brien MM, et al.. Bortezomib reinduction therapy to improve response rates in pediatric ALL in first relapse: A Children’s Oncology Group (COG) study (AALL07P1) [abstract]. J Clin Oncol 2013;31 (Suppl 15):Abstract 10003.
Horton TM, Whitlock JA, Lu X, et al.. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children’s Oncology Group. Br J Haematol 2019;186:274–285.
Messinger Y, Gaynon P, Raetz E, et al.. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer 2010;55:254–259.
Messinger YH, Gaynon PS, Sposto R, et al.. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 2012;120:285–290.
Jeha S, Gandhi V, Chan KW, et al.. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood 2004;103:784–789.
Jeha S, Gaynon PS, Razzouk BI, et al.. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol 2006;24:1917–1923.
Hijiya N, Thomson B, Isakoff MS, et al.. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood 2011;118:6043–6049.
Miano M, Pistorio A, Putti MC, et al.. Clofarabine, cyclophosphamide and etoposide for the treatment of relapsed or resistant acute leukemia in pediatric patients. Leuk Lymphoma 2012;53:1693–1698.
Frey NV, Luger SM. How I treat adults with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia. Blood 2015;126:589–596.
Montillo M, Tedeschi A, Centurioni R, et al.. Treatment of relapsed adult acute lymphoblastic leukemia with fludarabine and cytosine arabinoside followed by granulocyte colony-stimulating factor (FLAG-GCSF). Leuk Lymphoma 1997;25:579–583.
Specchia G, Pastore D, Carluccio P, et al.. FLAG-IDA in the treatment of refractory/relapsed adult acute lymphoblastic leukemia. Ann Hematol 2005;84:792–795.
Yavuz S, Paydas S, Disel U, et al.. IDA-FLAG regimen for the therapy of primary refractory and relapse acute leukemia: a single-center experience. Am J Ther 2006;13:389–393.
Gabriel MA, O’Brien TA, Tapp H, et al.. Fludarabine, idarubicin and high dose cytarabine (FLAG-IDA) followed by allogeneic transplantation: a Successful strategy for remission re-induction in high risk pediatric patients with relapsed, refractory and secondary acute leukemias [abstract]. Blood 2006;108:3145.
Harris RE, Sather HN, Feig SA. High-dose cytosine arabinoside and L-asparaginase in refractory acute lymphoblastic leukemia: the Children’s Cancer Group experience. Med Pediatr Oncol 1998;30:233–239.
Topp MS, Goekbuget N, Zugmaier G, et al.. Anti-CD19 BiTE blinatumomab induces high complete remission rate in adult patients with relapsed B-precursor ALL: updated results of an ongoing phase II trial. Blood 2011;118:252–252.
Topp MS, Goekbuget N, Stein AS, et al.. Confirmatory open-label, single-arm, multicenter phase 2 study of the BiTE antibody blinatumomab in patients (pts) with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL). J Clin Oncol 2014;32(15_suppl):7005–7005.
U.S. Food and Drug Administration. Prescribing information. Blincyto® (blinatumomab) injection. 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125557s013lbl.pdf. Accessed August 18, 2019.
Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol 2013;5(Suppl 1):5–11.
Brentjens RJ, Davila ML, Riviere I, et al.. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177ra38.
Grupp SA, Kalos M, Barrett D, et al.. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–1518.
Grupp SA, Maude SL, Rives S, et al.. Updated analysis of the efficacy and safety of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory (r/r) Acute Lymphoblastic Leukemia. Blood 2018;132(Supplement 1):895.
June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med 2018;379:64–73.
Hollyman D, Stefanski J, Przybylowski M, et al.. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32:169–180.
Davila ML, Riviere I, Wang X, et al.. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25.
Park JH, Rivière I, Gonen M, et al.. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378:449–459.
Shah BD, Wierda WG, Schiller GJ, et al.. Updated results from ZUMA-3, a phase 1/2 study of KTE-C19 chimeric antigen receptor (CAR) T cell therapy, in adults with high-burden relapsed/refractory acute lymphoblastic leukemia (R/R ALL). J Clin Oncol 2017;35(15_suppl):3024–3024.
Grupp SA, Frey NV, Aplenc R, et al.. T cells engineered with a chimeric antigen receptor (CAR) targeting CD19 (CTL019) produce significant in vivo proliferation, complete responses and long-term persistence without GVHD in children and adults with relapsed, refractory ALL. Blood 2013;122:67.
Maude SL, Frey N, Shaw PA, et al.. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371:1507–1517.
Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 2016;127:3321–3330.
Neelapu SS, Tummala S, Kebriaei P, et al.. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 2018;15:47–62.
Lee DW, Santomasso BD, Locke FL, et al.. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019;25:625–638.
Mahadeo KM, Khazal SJ, Abdel-Azim H, et al.. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol 2018;16:45–63.
Kantarjian H, Thomas D, Jorgensen J, et al.. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012;13:403–411.
Kantarjian HM, DeAngelo DJ, Stelljes M, et al.. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016;375:740–753.
Bhojwani D, Sposto R, Shah NN, et al.. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2019;33:884–892.
Duval M, Klein JP, He W, et al.. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol 2010;28:3730–3738.
Oliansky DM, Camitta B, Gaynon P, et al.. Role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of pediatric acute lymphoblastic leukemia: update of the 2005 evidence-based review. Biol Blood Marrow Transplant 2012;18:505–522.
Hunger SP, Saha V, Devidas M, et al.. CA180-372: An international collaborative phase 2 trial of dasatinib and chemotherapy in pediatric patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2017;130 (Suppl 1):98.
Jeha S, Coustan-Smith E, Pei D, et al.. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer 2014;120:1514–1519.
Aricò M, Schrappe M, Hunger SP, et al.. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 2010;28:4755–4761.
Fielding AK, Rowe JM, Richards SM, et al.. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood 2009;113:4489–4496.
Champagne MA, Capdeville R, Krailo M, et al.. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood 2004;104:2655–2660.
Martinelli G, Boissel N, Chevallier P, et al.. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol 2017;35:1795–1802.
Assi R, Kantarjian H, Short NJ, et al.. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk 2017;17:897–901.
Giebel S, Czyz A, Ottmann O, et al.. Use of tyrosine kinase inhibitors to prevent relapse after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a position statement of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Cancer 2016;122:2941–2951.
Ishida Y, Terasako K, Oshima K, et al.. Dasatinib followed by second allogeneic hematopoietic stem cell transplantation for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia after the first transplantation. Int J Hematol 2010;92:542–546.
Millot F, Cividin M, Brizard F, et al.. Successful second allogeneic stem cell transplantation in second remission induced by dasatinib in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer 2009;52:891–892.
Winter SS, Dunsmore KP, Devidas M, et al.. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer 2015;62:1176–1183.
Dunsmore KP, Winter S, Devidas M, et al.. COG AALL0434: A randomized trial testing nelarabine in newly diagnosed t-cell malignancy [abstract]. J Clin Oncol 2018;36(15_suppl):10500.
Schrauder A, Reiter A, Gadner H, et al.. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 2006;24:5742–5749.
DeAngelo DJ, Yu D, Johnson JL, et al.. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 2007;109:5136–5142.
Whitlock J, dalla Pozza L, Goldberg JM, et al.. Nelarabine in combination with etoposide and cyclophosphamide is active in first relapse of childhood T-acute lymphocytic leukemia (T-ALL) and T-lymphoblastic lymphoma (T-LL). Blood 2014;124:795.
Harrison G, Richards S, Lawson S, et al.. Comparison of allogeneic transplant versus chemotherapy for relapsed childhood acute lymphoblastic leukaemia in the MRC UKALL R1 trial. Ann Oncol 2000;11:999–1006.
Ramakers-van Woerden NL, Beverloo HB, Veerman AJ, et al.. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia 2004;18:521–529.
Stam RW, den Boer ML, Meijerink JP, et al.. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003;101:1270–1276.