Background: Although high-cost (HC) patients make up a small proportion of patients, they account for most health system costs. However, little is known about HC patients with cancer or whether some of their care could potentially be prevented. This analysis sought to characterize HC patients with cancer and quantify the costs of preventable acute care (emergency department visits and inpatient hospitalizations). Methods: This analysis examined a population-based sample of all HC patients in Ontario in 2013. HC patients were defined as those above the 90th percentile of the cost distribution; all other patients were defined as non–high-cost (NHC). Patients with cancer were identified through the Ontario Cancer Registry. Sociodemographic and clinical characteristics were examined and the costs of preventable acute care for both groups by category of visit/condition were estimated using validated algorithms. Results: Compared with NHC patients with cancer (n=369,422), HC patients with cancer (n=187,770) were older (mean age 70 vs 65 years), more likely to live in low-income neighborhoods (19% vs 16%), sicker, and more likely to live in long-term care homes (8% vs 0%). Although most patients from both cohorts tended to be diagnosed with breast, prostate, or colorectal cancer, those with multiple myeloma or pancreatic or liver cancers were overrepresented among the HC group. Moreover, HC patients were more likely to have advanced cancer at diagnosis and be in the initial or terminal phase of treatment compared with NHC patients. Among HC patients with cancer, 9% of spending stemmed from potentially preventable/avoidable acute care, whereas for NHC patients, this spending was approximately 30%. Conclusions: HC patients with cancer are a unique subpopulation. Given the type of care they receive, there seems to be limited scope to prevent acute care spending among this patient group. To reduce costs, other strategies, such as making hospital care more efficient and generating less costly encounters involving chemotherapy, should be explored.
Submitted January 8, 2019; accepted for publication July 26, 2019.
Author contributions: Study concept and design: de Oliveira, Chan, Earle, Krahn, Mittmann. Data acquisition: Cheng. Data analysis and interpretation: All authors. Project management: de Oliveira. Manuscript preparation: de Oliveira. Critical revision: Cheng, Chan, Earle, Krahn, Mittmann.
Disclosures: The authors have not received any financial consideration from any person or organization to support the preparation, analysis, results, or discussion of this article.
Funding and disclaimers: This study was conducted with the support of Cancer Care Ontario (CCO) through funding provided by the Government of Ontario. Parts of this material are based on data and information provided by CCO. The opinions, results, view, and conclusions reported in this article are those of the authors and do not necessarily reflect those of CCO. No endorsement by CCO is intended or should be inferred. This study was also supported by the Institute for Clinical Evaluative Sciences (ICES), which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC). The opinions, results, and conclusions reported in this article are those of the authors and are independent from the funding sources. No endorsement by ICES or the Ontario MOHLTC is intended or should be inferred. Parts of this material are based on data and/or information compiled and provided by the Canadian Institute for Health Information (CIHI). However, the analyses, conclusions, opinions, and statements expressed in the material are those of the author(s), and not necessarily those of CIHI.