Current Status of MRI and PET in the NCCN Guidelines for Prostate Cancer

Restricted access

Prostate cancer (PCa) represents a significant source of morbidity and mortality for men in the United States, with approximately 1 in 9 being diagnosed with PCa in their lifetime. The role of imaging in the evaluation of men with PCa has evolved and currently plays a central role in diagnosis, treatment planning, and evaluation of recurrence. Appropriate use of multiparametric MRI (mpMRI) and MRI-guided transrectal ultrasound (MR-TRUS) biopsy increases the detection of clinically significant PCa while decreasing the detection of clinically insignificant PCa. This process may help patients with clinically insignificant PCa avoid the adverse effects of unnecessary therapy. In the setting of a known PCa, patients with low-grade disease can be observed using active surveillance, which often includes a combination of prostate-specific antigen (PSA) testing, serial mpMRI, and, if indicated, follow-up systematic and targeted TRUS-guided tissue sampling. mpMRI can provide important information in the posttreatment setting, but PET/CT is creating a paradigm shift in imaging standards for patients with locally recurrent and metastatic PCa. This article examines the strengths and limitations of mpMRI for initial PCa diagnosis, active surveillance, recurrent disease evaluation, and image-guided biopsies, and the use of PET/CT imaging in men with recurrent PCa. The goal of this review is to provide a rational basis for current NCCN Clinical Practice Guidelines in Oncology for PCa as they pertain to the use of these advanced imaging modalities.

Submitted December 10, 2018; accepted for publication March 29, 2019.Disclosures: Dr. Davis has disclosed that he is a consultant for Augmenix Inc. and has stock options in Pfizer Inc. Dr. Mynderse has disclosed that he receives grant/research support from Philips Healthcare Inc., and BioBot Surgical, Ltd., and is a scientific advisor for 3D Biopsy, Inc and Augmenix. Dr. Pugh has disclosed that he is a consultant for Augmenix. Dr. Lee has disclosed that he is a scientific advisor for and receives grant/research funding from Janssen. The remaining authors have disclosed that they have no financial interests, arrangement, affiliations, or commercial interests with the manufacturers of any products discussed in this article of their competitors.Correspondence: Joseph E. Ippolito, MD, PhD, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8131, St. Louis, MO 63110. Email: ippolitoj@wustl.edu
  • 1.

    Ludwig DR, Fraum TJ, Fowler KJ, . Imaging in prostate cancer: magnetic resonance imaging and beyond. Mo Med 2018;115:135–141.

  • 2.

    Mohler JL, Lee RJ, Antonarakis ES, . NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer. Version 4.2018. Accessed March 15, 2019. To view the most recent version, visit NCCN.org.

  • 3.

    Bjurlin MA, Carroll PR, Eggener S, . MRI of the prostate, standard operating procedure (SOP). Available at: https://www.auanet.org/guidelines/mri-of-the-prostate-sop. Accessed March 14, 2019.

  • 4.

    Cornford P, Bellmunt J, Bolla M, . EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017;71:630–642.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mottet N, Bellmunt J, Bolla M, . EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017;71:618–629.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Carroll PH, Mohler JL. NCCN Guidelines updates: prostate cancer and prostate cancer early detection. J Natl Compr Canc Netw 2018;16(Suppl 5):620–623.

  • 7.

    Carroll PR, Parsons JK, Andriole G, . NCCN Guidelines Insights: prostate cancer early detection, version 2.2016. J Natl Compr Canc Netw 2016;14:509–519.

  • 8.

    Salami SS, Ben-Levi E, Yaskiv O, . Risk stratification of prostate cancer utilizing apparent diffusion coefficient value and lesion volume on multiparametric MRI. J Magn Reson Imaging 2017;45:610–616.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Turkbey B, Mani H, Shah V, . Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 2011;186:1818–1824.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wysock JS, Rosenkrantz AB, Huang WC, . A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol 2014;66:343–351.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rastinehad AR, Turkbey B, Salami SS, . Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J Urol 2014;191:1749–1754.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Siddiqui MM, Rais-Bahrami S, Truong H, . Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur Urol 2013;64:713–719.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mehralivand S, Shih JH, Rais-Bahrami S, . A magnetic resonance imaging-based prediction model for prostate biopsy risk stratification. JAMA Oncol 2018;4:678–685.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Turkbey B, Mani H, Aras O, . Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology 2013;268:144–152.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dickinson L, Ahmed HU, Allen C, . Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 2011;59:477–494.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Choyke PL, Loeb S. Active surveillance of prostate cancer. Oncology (Williston Park) 2017;31:67–70.

  • 17.

    Barrett T, Haider MA. The emerging role of MRI in prostate cancer active surveillance and ongoing challenges. AJR Am J Roentgenol 2017;208:131–139.

  • 18.

    Hugosson J, Stranne J, Carlsson SV. Radical retropubic prostatectomy: a review of outcomes and side-effects. Acta Oncol 2011;50(Suppl 1):92–97.

  • 19

    Gaziev G, Wadhwa K, Barrett T, . Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int 2016;117:80–86.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lee DH, Koo KC, Lee SH, . Low-risk prostate cancer patients without visible tumor (T1c) on multiparametric MRI could qualify for active surveillance candidate even if they did not meet inclusion criteria of active surveillance protocol. Jpn J Clin Oncol 2013;43:553–558.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Abd-Alazeez M, Ahmed HU, Arya M, . Can multiparametric magnetic resonance imaging predict upgrading of transrectal ultrasound biopsy results at more definitive histology? Urol Oncol 2014;32:741–747.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dianat SS, Carter HB, Pienta KJ, . Magnetic resonance-invisible versus magnetic resonance-visible prostate cancer in active surveillance: a preliminary report on disease outcomes. Urology 2015;85:147–153.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Simmons LAM, Kanthabalan A, Arya M, . The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br J Cancer 2017;116:1159–1165.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ahmed HU, El-Shater Bosaily A, Brown LC, . Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389:815–822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kasivisvanathan V, Rannikko AS, Borghi M, . MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 2018;378:1767–1777.

  • 26.

    Cooperberg MR, Carroll PR, Klotz L. Active surveillance for prostate cancer: progress and promise. J Clin Oncol 2011;29:3669–3676.

  • 27.

    Xia J, Trock BJ, Cooperberg MR, . Prostate cancer mortality following active surveillance versus immediate radical prostatectomy. Clin Cancer Res 2012;18:5471–5478.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Klotz L, Vesprini D, Sethukavalan P, . Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol 2015;33:272–277.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dall’Era MA, Albertsen PC, Bangma C, . Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol 2012;62:976–983.

  • 30.

    Moore CM, Giganti F, Albertsen P, . Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations: a report of a European School of Oncology Task Force. Eur Urol 2017;71:648–655.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Caglic I, Hansen NL, Slough RA, . Evaluating the effect of rectal distension on prostate multiparametric MRI image quality. Eur J Radiol 2017;90:174–180.

  • 32.

    Weinreb JC, Barentsz JO, Choyke PL, . PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol 2016;69:16–40.

  • 33.

    Caglic I, Barrett T. Optimising prostate mpMRI: prepare for success [published online January 2, 2019]. Clin Radiol, doi: 10.1016/j.crad.2018.12.003

    • Search Google Scholar
    • Export Citation
  • 34.

    Rosenkrantz AB, Kim S, Campbell N, . Transition zone prostate cancer: revisiting the role of multiparametric MRI at 3 T. AJR Am J Roentgenol 2015;204:W266–272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Tan N, Margolis DJ, Lu DY, . Characteristics of detected and missed prostate cancer foci on 3-T multiparametric MRI using an endorectal coil correlated with whole-mount thin-section histopathology. AJR Am J Roentgenol 2015;205:W87–92.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Le JD, Tan N, Shkolyar E, . Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol 2015;67:569–576.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sonn GA, Fan RE, Ghanouni P, . Prostate magnetic resonance imaging interpretation varies substantially across radiologists [published online December 6, 2017]. Eur Urol Focus, doi: 10.1016/j.euf.2017.11.010

    • Search Google Scholar
    • Export Citation
  • 38.

    Piert M, Shankar PR, Montgomery J, . Accuracy of tumor segmentation from multi-parametric prostate MRI and 18F-choline PET/CT for focal prostate cancer therapy applications. EJNMMI Res 2018;8:23.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Meyer C, Ma B, Kunju LP, .. Challenges in accurate registration of 3-D medical imaging and histopathology in primary prostate cancer. EJNMMI Res 2013;40(Suppl 1):S72–78.

    • Search Google Scholar
    • Export Citation
  • 40.

    De Silva T, Fenster A, Bax J, . Quantification of prostate deformation due to needle insertion during TRUS-guided biopsy: comparison of hand-held and mechanically stabilized systems. Med Phys 2011;38:1718–1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Collins GN, Raab GM, Hehir M, . Reproducibility and observer variability of transrectal ultrasound measurements of prostatic volume. Ultrasound Med Biol 1995;21:1101–1105.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Zalesky M, Stejskal J, Adamcova V, . Inter-individual variability in MRI/TRUS fusion targeted biopsies in a first biopsy setting: bicentric prospective study. Eur Urol Suppl 2018;17:e712–713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Schouten MG, van der Leest M, Pokorny M, . Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur Urol 2017;71:896–903.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Russo F, Regge D, Armando E, . Detection of prostate cancer index lesions with multiparametric magnetic resonance imaging (mp-MRI) using whole-mount histological sections as the reference standard. BJU Int 2016;118:84–94.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Radtke JP, Schwab C, Wolf MB, . Multiparametric magnetic resonance imaging (MRI) and MRI-transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur Urol 2016;70:846–853.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Baco E, Ukimura O, Rud E, . Magnetic resonance imaging-transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur Urol 2015;67:787–794.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Pepe P, Garufi A, Priolo G, . Transperineal versus transrectal MRI/TRUS fusion targeted biopsy: detection rate of clinically significant prostate cancer. Clin Genitourin Cancer 2017;15:e33–36.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Bratan F, Niaf E, Melodelima C, . Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 2013;23:2019–2029.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Rosenkrantz AB, Mendrinos S, Babb JS, . Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 2012;187:2032–2038.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Panebianco V, Barchetti G, Simone G, . Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur Urol 2018;74:48–54.

  • 51.

    Branger N, Maubon T, Traumann M, . Is negative multiparametric magnetic resonance imaging really able to exclude significant prostate cancer? The real-life experience. BJU Int 2017;119:449–455.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Mottet N, Bellmunt J, Bolla M, . EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2011;59:572–583.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Cha D, Kim CK, Park SY, . Evaluation of suspected soft tissue lesion in the prostate bed after radical prostatectomy using 3T multiparametric magnetic resonance imaging. Magn Reson Imaging 2015;33:407–412.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Kitajima K, Hartman RP, Froemming AT, . Detection of local recurrence of prostate cancer after radical prostatectomy using endorectal coil MRI at 3 T: addition of dwi and dynamic contrast enhancement to T2-weighted MRI. AJR Am J Roentgenol 2015;205:807–816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Stish BJ, Pisansky TM, Harmsen WS, . Improved metastasis-free and survival outcomes with early salvage radiotherapy in men with detectable prostate-specific antigen after prostatectomy for prostate cancer. J Clin Oncol 2016;34:3864–3871.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Lecouvet FE, El Mouedden J, Collette L, . Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 2012;62:68–75.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Padhani AR, Lecouvet FE, Tunariu N, . METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 2017;71:81–92.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Harisinghani MG, Barentsz J, Hahn PF, . Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491–2499.

  • 59.

    Hövels AM, Heesakkers RA, Adang EM, . The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 2008;63:387–395.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Fraum TJ, Ludwig DR, Kim EH, . Prostate cancer PET tracers: essentials for the urologist. Can J Urol 2018;25:9371–9383.

  • 61.

    Jadvar H, Desai B, Ji L, . Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 2012;37:637–643.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Spratt DE, Gavane S, Tarlinton L, . Utility of FDG-PET in clinical neuroendocrine prostate cancer. Prostate 2014;74:1153–1159.

  • 63.

    Decision Memo for Positron Emission Tomography (FDG) for Solid Tumors (CAG-00181R4). CMS.gov website. Available at: https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=263. Accessed March 14, 2019.

  • 64.

    Kulshrestha RK, Vinjamuri S, England A, . The role of 18F-sodium fluoride PET/CT bone scans in the diagnosis of metastatic bone disease from breast and prostate cancer. J Nucl Med Technol 2016;44:217–222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Tateishi U, Morita S, Taguri M, . A meta-analysis of (18)F-fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med 2010;24:523–531.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Ost P, Reynders D, Decaestecker K, . Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol 2018;36:446–453.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Kitajima K, Murphy RC, Nathan MA, . Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 2014;55:223–232.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Evans JD, Jethwa KR, Ost P, . Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol 2018;8:28–39.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Graziani T, Ceci F, Castellucci P, . (11)C-choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging 2016;43:1971–1979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Giovacchini G, Picchio M, Coradeschi E, . Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2010;37:301–309.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Mitchell CR, Lowe VJ, Rangel LJ, . Operational characteristics of (11)c-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol 2013;189:1308–1313.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Parker WP, Davis BJ, Park SS, . Identification of site-specific recurrence following primary radiation therapy for prostate cancer using C-11 choline positron emission tomography/computed tomography: a nomogram for predicting extrapelvic disease. Eur Urol 2017;71:340–348.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Roach M 3rd, Hanks G, Thames H Jr, . Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006;65:965–974.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Nanni C, Zanoni L, Pultrone C, . (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 2016;43:1601–1610.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Muhleman MCJ, Ahmed J, Stock R, . Clinical experience with 18F-fluciclovine (Axumin) in prostate cancer patients with a rising PSA after primary treatment. J Nucl Med 2018;59(Suppl 1):1487.

    • Search Google Scholar
    • Export Citation
  • 76.

    Schuster DM, Nieh PT, Jani AB, . Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 2014;191:1446–1453.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Odewole OA, Tade FI, Nieh PT, . Recurrent prostate cancer detection with anti-3-[(18)F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging 2016;43:1773–1783.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Bach-Gansmo T, Nanni C, Nieh PT, . Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine (18F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol 2017;197:676–683.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Suzuki H, Inoue Y, Fujimoto H, . Diagnostic performance and safety of NMK36 (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid)-PET/CT in primary prostate cancer: multicenter phase IIb clinical trial. Jpn J Clin Oncol 2016;46:152–162.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Bouchelouche K, Turkbey B, Choyke PL. PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med 2016;46:522–535.

  • 81.

    Giesel FL, Knorr K, Spohn F, . Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med 2019;60:362–368.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Calais J, Fendler WP, Herrmann K, . Comparison of 68Ga-PSMA-11 and 18F-fluciclovine PET/CT in a case series of 10 patients with prostate cancer recurrence. J Nucl Med 2018;59:789–794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Schwenck J, Rempp H, Reischl G, . Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging 2017;44:92–101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1628 1628 148
PDF Downloads 588 588 42
EPUB Downloads 0 0 0