Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology

Restricted access

The NCCN Guidelines for Prostate Cancer include recommendations regarding diagnosis, risk stratification and workup, treatment options for localized disease, and management of recurrent and advanced disease for clinicians who treat patients with prostate cancer. The portions of the guidelines included herein focus on the roles of germline and somatic genetic testing, risk stratification with nomograms and tumor multigene molecular testing, androgen deprivation therapy, secondary hormonal therapy, chemotherapy, and immunotherapy in patients with prostate cancer.

Individual Disclosures for the NCCN Prostate Cancer Panel

TU1
  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7–34.

  • 2.

    Herget KA, Patel DP, Hanson HA, . Recent decline in prostate cancer incidence in the United States, by age, stage, and Gleason score. Cancer Med 2016;5:136–141.

  • 3.

    Kohler BA, Sherman RL, Howlader N, . Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Natl Cancer Inst 2015;107:djv048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Negoita S, Feuer EJ, Mariotto A, . Annual report to the nation on the status of cancer, part II: recent changes in prostate cancer trends and disease characteristics. Cancer 2018;124:2801–2814.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Moyer VA, U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2012;157:120–134.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kelly SP, Anderson WF, Rosenberg PS, . Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur Urol Focus 2017;71:195–201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67:7–30.

  • 8.

    Barocas DA, Mallin K, Graves AJ, . Effect of the USPSTF grade D recommendation against screening for prostate cancer on incident prostate cancer diagnoses in the United States. J Urol 2015;194:1587–1593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Drazer MW, Huo D, Eggener SE. National prostate cancer screening rates after the 2012 US Preventive Services Task Force recommendation discouraging prostate-specific antigen-based screening. J Clin Oncol 2015;33:2416–2423.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Etzioni R, Gulati R. Recent trends in PSA testing and prostate cancer incidence: a look at context. JAMA Oncol 2016;2:955–956.

  • 11.

    Fedewa SA, Ward EM, Brawley O, . Recent patterns of prostate-specific antigen testing for prostate cancer screening in the United States. JAMA Intern Med 2017;177:1040–1042.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Halpern JA, Shoag JE, Artis AS, . National trends in prostate biopsy and radical prostatectomy volumes following the US Preventive Services Task Force guidelines against prostate-specific antigen screening. JAMA Surg 2017;152:192–198.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Houston KA, King J, Li J, . Trends in prostate cancer incidence rates and prevalence of prostate-specific antigen screening by socioeconomic status and regions in the US, 2004-2013. J Urol 2018;199:676–682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kearns JT, Holt SK, Wright JL, . PSA screening, prostate biopsy, and treatment of prostate cancer in the years surrounding the USPSTF recommendation against prostate cancer screening. Cancer 2018;124:2733–2739.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jemal A, Fedewa SA, Ma J, . Prostate cancer incidence and PSA testing patterns in relation to USPSTF screening recommendations. JAMA 2015;314:2054–2061.

  • 16.

    Maurice MJ, Kim SP, Abouassaly R. Current status of prostate cancer diagnosis and management in the United States. JAMA Oncol 2016;2:1505–1507.

  • 17.

    Sammon JD, Abdollah F, Choueiri TK, . Prostate-specific antigen screening after 2012 US Preventive Services Task Force recommendations. JAMA 2015;314:2077–2079.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Zavaski ME, Meyer CP, Sammon JD, . Differences in prostate-specific antigen testing among urologists and primary care physicians following the 2012 USPSTF recommendations. JAMA Intern Med 2016;176:546–547.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Prostate cancer: Screening. The US Preventive Services Task Force (USPSTF); 2018. Available at: https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/prostate-cancer-screening1?ds=1&s=prostate. Accessed March 15, 2019.

  • 20.

    Albright F, Stephenson RA, Agarwal N, . Prostate cancer risk prediction based on complete prostate cancer family history. Prostate 2015;75:390–398.

  • 21.

    Bratt O, Drevin L, Akre O, . Family history and probability of prostate cancer, differentiated by risk category: a nationwide population-based study. J Natl Cancer Inst 2016;108.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Jansson F, Drevin L, Frisell T, . Concordance of non-low-risk disease among pairs of brothers with prostate cancer. J Clin Oncol 2018;36:1847–1852.

  • 23.

    Latham A, Srinivasan P, Kemel Y, . Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol 2019;37:286–295. JCO1800283.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Haraldsdottir S, Hampel H, Wei L, . Prostate cancer incidence in males with Lynch syndrome. Genet Med 2014;16:553–557.

  • 25.

    Ryan S, Jenkins MA, Win AK. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2014;23:437–449.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Moran A, O’Hara C, Khan S, . Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 2012;11:235–242.

  • 27.

    Mersch J, Jackson MA, Park M, . Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 2015;121:269–275.

  • 28.

    Pilié PG, Johnson AM, Hanson KL, . Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer 2017;123:3925–3932.

  • 29.

    Castro E, Goh C, Leongamornlert D, . Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment of localised prostate cancer. Eur Urol 2015;68:186–193.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Castro E, Goh C, Olmos D, . Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:1748–1757.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Na R, Zheng SL, Han M, . Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 2017;71:740–747.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Robinson D, Van Allen EM, Wu YM, . Integrative clinical genomics of advanced prostate cancer. Cell 2015;161:1215–1228.

  • 33.

    Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015;163:1011–1025.

  • 34.

    Pritchard CC, Mateo J, Walsh MF, . Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443–453.

  • 35.

    Castro E, Romero-Laorden N, Del Pozo A, . PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2019;37:490–503.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Giri VN, Obeid E, Gross L, . Inherited mutations in men undergoing multigene panel testing for prostate cancer: emerging implications for personalized prostate cancer genetic evaluation [published online May 4, 2017]. JCO Precision Oncol. doi: 10.1200/PO.16.00039

    • Search Google Scholar
    • Export Citation
  • 37.

    Giri VN, Hegarty SE, Hyatt C, . Germline genetic testing for inherited prostate cancer in practice: implications for genetic testing, precision therapy, and cascade testing. Prostate 2019;79:333–339.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Nicolosi P, Ledet E, Yang S, . Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines [published online February 7, 2019]. JAMA Oncol. doi: 10.1001/jamaoncol.2018.6760

    • Search Google Scholar
    • Export Citation
  • 39.

    Struewing JP, Hartge P, Wacholder S, . The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997;336:1401–1408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kirchhoff T, Kauff ND, Mitra N, . BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 2004;10:2918–2921.

  • 41.

    Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 1999;91:1310–1316.

  • 42.

    Agalliu I, Gern R, Leanza S, . Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 2009;15:1112–1120.

  • 43.

    Ford D, Easton DF, Bishop DT, .; Breast Cancer Linkage Consortium Risks of cancer in BRCA1-mutation carriers. Lancet 1994;343:692–695.

  • 44.

    Gallagher DJ, Gaudet MM, Pal P, . Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010;16:2115–2121.

  • 45.

    Leongamornlert D, Mahmud N, Tymrakiewicz M, .; UKGPCS Collaborators Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012;106:1697–1701.

  • 46.

    Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 2004;22:735–742.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Thompson D, Easton DF.; Breast Cancer Linkage Consortium Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002;94:1358–1365.

  • 48.

    Tulinius H, Olafsdottir GH, Sigvaldason H, . The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 2002;39:457–462.

  • 49.

    van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, .; Netherlands Collaborative Group on Hereditary Breast Cancer (HEBON) Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 2005;42:711–719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Lecarpentier J, Silvestri V, Kuchenbaecker KB, .; EMBRACE; GEMO Study Collaborators; HEBON; KConFab Investigators Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores. J Clin Oncol 2017;35:2240–2250.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Helgason H, Rafnar T, Olafsdottir HS, . Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet 2015;47:906–910.

  • 52.

    Erkko H, Xia B, Nikkilä J, . A recurrent mutation in PALB2 in Finnish cancer families. Nature 2007;446:316–319.

  • 53.

    Näslund-Koch C, Nordestgaard BG, Bojesen SE. Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the Copenhagen General Population Study. J Clin Oncol 2016;34:1208–1216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Wu Y, Yu H, Zheng SL, . A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate 2018;78:607–615.

  • 55.

    Mitra A, Fisher C, Foster CS, .; IMPACT and EMBRACE Collaborators Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 2008;98:502–507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Narod SA, Neuhausen S, Vichodez G, .; Hereditary Breast Cancer Study Group Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 2008;99:371–374.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Thorne H, Willems AJ, Niedermayr E, .; Kathleen Cunningham Consortium for Research in Familial Breast Cancer Consortium Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 2011;4:1002–1010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Tryggvadóttir L, Vidarsdóttir L, Thorgeirsson T, . Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 2007;99:929–935.

  • 59.

    Abida W, Cheng ML, Armenia J, . Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade [published online December 27, 2018]. JAMA Oncol. doi: 10.1001/jamaoncol.2018.5801

    • Search Google Scholar
    • Export Citation
  • 60.

    Zhou M High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod Pathol 2018;31(S1):S71–S79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Porter LH, Lawrence MG, Ilic D, . Systematic review links the prevalence of intraductal carcinoma of the prostate to prostate cancer risk categories. Eur Urol 2017;72:492–495.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Chua MLK, Lo W, Pintilie M, . A prostate cancer “nimbosus”: genomic instability and SChLAP1 dysregulation underpin aggression of intraductal and cribriform subpathologies. Eur Urol 2017;72:665–674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Seipel AH, Whitington T, Delahunt B, . Genetic profile of ductal adenocarcinoma of the prostate. Hum Pathol 2017;69:1–7.

  • 64.

    Böttcher R, Kweldam CF, Livingstone J, . Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer 2018;18:8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Antonarakis ES, Shaukat F, Isaacsson Velho P, . Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur Urol 2019;75:378–382.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Schweizer MT, Cheng HH, Tretiakova MS, . Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget 2016;7:82504–82510.

  • 67.

    Isaacsson Velho P, Silberstein JL, Markowski MC, . Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate 2018;78:401–407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Taylor RA, Fraser M, Livingstone J, . Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 2017;8:13671.

  • 69.

    Risbridger GP, Taylor RA, Clouston D, . Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur Urol 2015;67:496–503.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Ewing CM, Ray AM, Lange EM, . Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;366:141–149.

  • 71.

    Kote-Jarai Z, Mikropoulos C, Leongamornlert DA, .; UK Genetic Prostate Cancer Study Collaborators, and ProtecT Study Group Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol 2015;26:756–761.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Middha S, Zhang L, Nafa K, . Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data [published online October 3, 2017]. JCO Precis Oncol. doi: 10.1200/PO.17.00084

    • Search Google Scholar
    • Export Citation
  • 73.

    Guedes LB, Antonarakis ES, Schweizer MT, . MSH2 loss in primary prostate cancer. Clin Cancer Res 2017;23:6863–6874.

  • 74.

    Hempelmann JA, Lockwood CM, Konnick EQ, . Microsatellite instability in prostate cancer by PCR or next-generation sequencing. J Immunother Cancer 2018;6:29.

  • 75.

    D’Amico AV, Whittington R, Malkowicz SB, . Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J Clin Oncol 1999;17:168–172.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    D’Amico AV, Whittington R, Malkowicz SB, . Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era. Cancer 2002;95:281–286.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    D’Amico AV, Whittington R, Malkowicz SB, . Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998;280:969–974.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Epstein JI, Egevad L, Amin MB, .; Grading Committee The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 2016;40:244–252.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Epstein JI, Zelefsky MJ, Sjoberg DD, . A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 2016;69:428–435.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Loeb S, Folkvaljon Y, Robinson D, . Evaluation of the 2015 Gleason grade groups in a nationwide population-based cohort. Eur Urol 2016;69:1135–1141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Ham WS, Chalfin HJ, Feng Z, . New prostate cancer grading system predicts long-term survival following surgery for Gleason score 8-10 prostate cancer. Eur Urol 2017;71:907–912.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Delahunt B, Egevad L, Srigley JR, . Validation of International Society of Urological Pathology (ISUP) grading for prostatic adenocarcinoma in thin core biopsies using TROG 03.04 ‘RADAR’ trial clinical data. Pathology 2015;47:520–525.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Mathieu R, Moschini M, Beyer B, . Prognostic value of the new Grade Groups in Prostate Cancer: a multi-institutional European validation study. Prostate Cancer Prostatic Dis 2017;20:197–202.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Leapman MS, Cowan JE, Simko J, . Application of a prognostic Gleason grade grouping system to assess distant prostate cancer outcomes. Eur Urol 2017;71:750–759.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    He J, Albertsen PC, Moore D, . Validation of a contemporary five-tiered Gleason grade grouping using population-based data. Eur Urol 2017;71:760–763.

  • 86.

    Pompe RS, Davis-Bondarenko H, Zaffuto E, . Population-based validation of the 2014 ISUP Gleason grade groups in patients treated with radical prostatectomy, brachytherapy, external beam radiation, or no local treatment. Prostate 2017;77:686–693.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Reese AC, Pierorazio PM, Han M, . Contemporary evaluation of the National Comprehensive Cancer Network prostate cancer risk classification system. Urology 2012;80:1075–1079.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Muralidhar V, Chen MH, Reznor G, . Definition and validation of “favorable high-risk prostate cancer”: implications for personalizing treatment of radiation-managed patients. Int J Radiat Oncol Biol Phys 2015;93:828–835.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Gandaglia G, Karnes RJ, Sivaraman A, . Are all grade group 4 prostate cancers created equal? Implications for the applicability of the novel grade grouping. Urol Oncol 2017;35:461.e7–461.e14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Dinh KT, Muralidhar V, Mahal BA, . Occult high-risk disease in clinically low-risk prostate cancer with ≥50% positive biopsy cores: should national guidelines stop calling them low-risk? Urology 2016;87:125–132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Dinh KT, Mahal BA, Ziehr DR, . Incidence and predictors of upgrading and up staging among 10,000 contemporary patients with low risk prostate cancer. J Urol 2015;194:343–349.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Zumsteg ZS, Spratt DE, Pei I, . A new risk classification system for therapeutic decision making with intermediate-risk prostate cancer patients undergoing dose-escalated external-beam radiation therapy. Eur Urol 2013;64:895–902.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Johns Hopkins Medicine. The Partin Tables. Available at: https://www.hopkinsmedicine.org/brady-urology-institute/specialties/conditions-and-treatments/prostate-cancer/fighting-prostate-cancer/partin-table.html Accessed April 11, 2019.

    • Export Citation
  • 94.

    Makarov DV, Trock BJ, Humphreys EB, . Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2005. Urology 2007;69:1095–1101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Borque Á, Rubio-Briones J, Esteban LM, . Implementing the use of nomograms by choosing threshold points in predictive models: 2012 updated Partin Tables vs a European predictive nomogram for organ-confined disease in prostate cancer. BJU Int 2014;113:878–886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Tosoian JJ, Chappidi M, Feng Z, . Prediction of pathological stage based on clinical stage, serum prostate-specific antigen, and biopsy Gleason score: Partin tables in the contemporary era. BJU Int 2017;119:676–683.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Kattan MW, Eastham JA, Wheeler TM, . Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol 2003;170:1792–1797.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Leyh-Bannurah SR, Dell’Oglio P, Tian Z, . A proposal of a new nomogram for predicting upstaging in contemporary D’Amico low-risk prostate cancer patients. World J Urol 2017;35:189–197.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Wong LM, Neal DE, Finelli A, . Evaluation of models predicting insignificant prostate cancer to select men for active surveillance of prostate cancer. Prostate Cancer Prostatic Dis 2015;18:137–143.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Memorial Sloan-Kettering Cancer Center Prostate Cancer Nomograms. Available at: http://www.mskcc.org/mskcc/html/10088.cfm. Accessed June 11, 2018.

    • Export Citation
  • 101.

    Punnen S, Freedland SJ, Presti JC, Jr., . Multi-institutional validation of the CAPRA-S score to predict disease recurrence and mortality after radical prostatectomy. Eur Urol 2014;65:1171–1177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Stephenson AJ, Scardino PT, Eastham JA, . Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst 2006;98:715–717.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Stephenson AJ, Kattan MW, Eastham JA, . Prostate cancer-specific mortality after radical prostatectomy for patients treated in the prostate-specific antigen era. J Clin Oncol 2009;27:4300–4305.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Graefen M, Haese A, Pichlmeier U, . A validated strategy for side specific prediction of organ confined prostate cancer: a tool to select for nerve sparing radical prostatectomy. J Urol 2001;165:857–863.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Ohori M, Kattan MW, Koh H, . Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol 2004;171:1844–1849., discussion 1849.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Steuber T, Graefen M, Haese A, . Validation of a nomogram for prediction of side specific extracapsular extension at radical prostatectomy. J Urol 2006;175:939–944., discussion 944.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Briganti A, Chun FK, Salonia A, . A nomogram for staging of exclusive nonobturator lymph node metastases in men with localized prostate cancer. Eur Urol 2007;51:112–119; discussion 119–120.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Cagiannos I, Karakiewicz P, Eastham JA, . A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 2003;170:1798–1803.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Gandaglia G, Fossati N, Zaffuto E, . Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur Urol 2017;72:632–640.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Gandaglia G, Ploussard G, Valerio M, . A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies. Eur Urol 2019;75:506–514.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Kattan MW, Potters L, Blasko JC, . Pretreatment nomogram for predicting freedom from recurrence after permanent prostate brachytherapy in prostate cancer. Urology 2001;58:393–399.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Potters L, Morgenstern C, Calugaru E, . 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol 2008; 179(5, Suppl)S20–S24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Potters L, Roach M III, Davis BJ, . Postoperative nomogram predicting the 9-year probability of prostate cancer recurrence after permanent prostate brachytherapy using radiation dose as a prognostic variable. Int J Radiat Oncol Biol Phys 2010;76:1061–1065.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Zelefsky MJ, Kattan MW, Fearn P, . Pretreatment nomogram predicting ten-year biochemical outcome of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer. Urology 2007;70:283–287.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Lee SJ, Lindquist K, Segal MR, . Development and validation of a prognostic index for 4-year mortality in older adults. JAMA 2006;295:801–808.

  • 116.

    Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 1999;17:1499–1507.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Ondracek RP, Kattan MW, Murekeyisoni C, . Validation of the Kattan nomogram for prostate cancer recurrence after radical prostatectomy. J Natl Compr Canc Netw 2016;14:1395–1401.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Tendulkar RD, Agrawal S, Gao T, . Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol 2016;34:3648–3654.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Dearnaley DP, Khoo VS, Norman AR, . Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 1999;353:267–272.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Khoo VS. Radiotherapeutic techniques for prostate cancer, dose escalation and brachytherapy. Clin Oncol (R Coll Radiol) 2005;17:560–571.

  • 121.

    D’Amico AV, Cote K, Loffredo M, . Determinants of prostate cancer-specific survival after radiation therapy for patients with clinically localized prostate cancer. J Clin Oncol 2002;20:4567–4573.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Dell’Oglio P, Suardi N, Boorjian SA, . Predicting survival of men with recurrent prostate cancer after radical prostatectomy. Eur J Cancer 2016;54:27–34.

  • 123.

    Abdollah F, Karnes RJ, Suardi N, . Predicting survival of patients with node-positive prostate cancer following multimodal treatment. Eur Urol 2014;65:554–562.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    D’Amico AV, Moul JW, Carroll PR, . Surrogate end point for prostate cancer-specific mortality after radical prostatectomy or radiation therapy. J Natl Cancer Inst 2003;95:1376–1383.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Committee on the Review of Omics-based Tests for Predicting Patient Outcomes in Clinical Trials, Institute of Medicine Evolution of translational omics, lessons learned and the path forward. 2012. Available at: https://www.ncbi.nlm.nih.gov/books/NBK202165/. Accessed June 11, 2018.

    • PubMed
    • Export Citation
  • 126.

    Hayes DF. From genome to bedside: are we lost in translation? Breast 2013;22(Suppl 2):S22–S26.

  • 127.

    Hayes DF. OMICS-based personalized oncology: if it is worth doing, it is worth doing well! BMC Med 2013;11:221.

  • 128.

    Maurice MJ, Abouassaly R, Kim SP, . Contemporary nationwide patterns of active surveillance use for prostate cancer. JAMA Intern Med 2015;175:1569–1571.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Womble PR, Montie JE, Ye Z, .; Michigan Urological Surgery Improvement Collaborative Contemporary use of initial active surveillance among men in Michigan with low-risk prostate cancer. Eur Urol 2015;67:44–50.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Cher ML, Dhir A, Auffenberg GB, .; Michigan Urological Surgery Improvement Collaborative Appropriateness criteria for active surveillance of prostate cancer. J Urol 2017;197:67–74.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Bishoff JT, Freedland SJ, Gerber L, . Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol 2014;192:409–414.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Cuzick J, Swanson GP, Fisher G, .; Transatlantic Prostate Group Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol 2011;12:245–255.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Cuzick J, Berney DM, Fisher G, .; Transatlantic Prostate Group Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 2012;106:1095–1099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    Freedland SJ, Gerber L, Reid J, . Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys 2013;86:848–853.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Klein EA, Cooperberg MR, Carroll PR. Reply to Yuri Tolkach, Markus Kuczyk, Florian Imkamp’s letter to the editor re: Eric A. Klein, Matthew R. Cooperberg, Cristina Magi-Galluzzi, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur urol 2014;66:550-60. Eur Urol 2014;66:e117–e118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Zhao SG, Chang SL, Spratt DE, . Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol 2016;17:1612–1620.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Sinnott JA, Peisch SF, Tyekucheva S, . Prognostic utility of a new mRNA expression signature of Gleason score. Clin Cancer Res 2017;23:81–87.

  • 138.

    Van Den Eeden SK, Lu R, Zhang N, . A biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease. Eur Urol 2018;73:129–138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Kim HL, Li P, Huang HC, . Validation of the Decipher Test for predicting adverse pathology in candidates for prostate cancer active surveillance [published online December 12, 2018]. Prostate Cancer Prostatic Dis. doi: 10.1038/s41391-018-0101-6

    • Search Google Scholar
    • Export Citation
  • 140.

    Spratt DE, Zhang J, Santiago-Jiménez M, . Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J Clin Oncol 2018;36:581–590.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Hu JC, Tosoian JJ, Qi J, . Clinical utility of gene expression classifiers in men with newly diagnosed prostate cancer [published online, October 19, 2018]. JCO Precis Oncol. doi: 10.1200/PO.18.00163

    • Search Google Scholar
    • Export Citation
  • 142.

    Lu-Yao GL, Albertsen PC, Moore DF, . Fifteen-year survival outcomes following primary androgen-deprivation therapy for localized prostate cancer. JAMA Intern Med 2014;174:1460–1467.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Potosky AL, Haque R, Cassidy-Bushrow AE, . Effectiveness of primary androgen-deprivation therapy for clinically localized prostate cancer. J Clin Oncol 2014;32:1324–1330.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    McLeod DG, Iversen P, See WA, .; Casodex Early Prostate Cancer Trialists’ Group Bicalutamide 150 mg plus standard care vs standard care alone for early prostate cancer. BJU Int 2006;97:247–254.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    McLeod DG, See WA, Klimberg I, . The bicalutamide 150 mg early prostate cancer program: findings of the North American trial at 7.7-year median followup. J Urol 2006;176:75–80.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Klotz L, O’Callaghan C, Ding K, . Nadir testosterone within first year of androgen-deprivation therapy (ADT) predicts for time to castration-resistant progression: a secondary analysis of the PR-7 trial of intermittent versus continuous ADT. J Clin Oncol 2015;33:1151–1156.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Trachtenberg J, Gittleman M, Steidle C, .; Abarelix Study Group A phase 3, multicenter, open label, randomized study of abarelix versus leuprolide plus daily antiandrogen in men with prostate cancer. J Urol 2002;167:1670–1674.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Loblaw DA, Virgo KS, Nam R, .; American Society of Clinical Oncology Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 2007;25:1596–1605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149.

    Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet 2000;355:1491–1498.

    • Search Google Scholar
    • Export Citation
  • 150.

    Samson DJ, Seidenfeld J, Schmitt B, . Systematic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer 2002;95:361–376.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Laufer M, Denmeade SR, Sinibaldi VJ, . Complete androgen blockade for prostate cancer: what went wrong? J Urol 2000;164:3–9.

  • 152.

    Dijkstra S, Witjes WP, Roos EP, . The AVOCAT study: bicalutamide monotherapy versus combined bicalutamide plus dutasteride therapy for patients with locally advanced or metastatic carcinoma of the prostate-a long-term follow-up comparison and quality of life analysis. Springerplus 2016;5:653.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Kolinsky M, de Bono JS. The ongoing challenges of targeting the androgen receptor. Eur Urol 2016;69:841–843.

  • 154.

    Albertsen PC, Klotz L, Tombal B, . Cardiovascular morbidity associated with gonadotropin releasing hormone agonists and an antagonist. Eur Urol 2014;65:565–573.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Sun M, Choueiri TK, Hamnvik OP, . Comparison of gonadotropin-releasing hormone agonists and orchiectomy: effects of androgen-deprivation therapy. JAMA Oncol 2016;2:500–507.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Duchesne GM, Woo HH, Bassett JK, . Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol 2016;17:727–737.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Duchesne GM, Woo HH, King M, . Health-related quality of life for immediate versus delayed androgen-deprivation therapy in patients with asymptomatic, non-curable prostate cancer (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol 2017;18:1192–1201.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Hussain M, Tangen CM, Higano C, .; Southwest Oncology Group Trial 9346 (INT-0162) Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J Clin Oncol 2006;24:3984–3990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 159.

    Labrie F, Dupont A, Belanger A, . Flutamide eliminates the risk of disease flare in prostatic cancer patients treated with a luteinizing hormone-releasing hormone agonist. J Urol 1987;138:804–806.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Schulze H, Senge T. Influence of different types of antiandrogens on luteinizing hormone-releasing hormone analogue-induced testosterone surge in patients with metastatic carcinoma of the prostate. J Urol 1990;144:934–941.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    ZYTIGA® (abiraterone acetate) tablets. Janssen Biotech, Inc., Horsham, PA. 2018. Available at https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/202379s025lbl.pdf, Accessed March 15, 2019

    • Search Google Scholar
    • Export Citation
  • 162.

    Fizazi K, Tran N, Fein L, .; LATITUDE Investigators Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017;377:352–360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Chi KN, Protheroe A, Rodríguez-Antolín A, . Patient-reported outcomes following abiraterone acetate plus prednisone added to androgen deprivation therapy in patients with newly diagnosed metastatic castration-naive prostate cancer (LATITUDE): an international, randomised phase 3 trial. Lancet Oncol 2018;19:194–206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    James ND, de Bono JS, Spears MR, .; STAMPEDE Investigators Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017;377:338–351.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Szmulewitz RZ, Peer CJ, Ibraheem A, . Prospective international randomized phase II study of low-dose abiraterone with food versus standard dose abiraterone in castration-resistant prostate cancer. J Clin Oncol 2018;36:1389–1395.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Holzbeierlein J, Lal P, LaTulippe E, . Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 2004;164:217–227.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Mohler JL, Gregory CW, Ford OH III, . The androgen axis in recurrent prostate cancer. Clin Cancer Res 2004;10:440–448.

  • 168.

    Small EJ, Halabi S, Dawson NA, . Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 2004;22:1025–1033.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Oh WK, Kantoff PW, Weinberg V, . Prospective, multicenter, randomized phase II trial of the herbal supplement, PC-SPES, and diethylstilbestrol in patients with androgen-independent prostate cancer. J Clin Oncol 2004;22:3705–3712.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Turo R, Smolski M, Esler R, . Diethylstilboestrol for the treatment of prostate cancer: past, present and future. Scand J Urol 2014;48:4–14.

  • 171.

    Ockrim JL, Lalani EN, Laniado ME, . Transdermal estradiol therapy for advanced prostate cancer--forward to the past? J Urol 2003;169:1735–1737.

  • 172.

    Langley RE, Cafferty FH, Alhasso AA, . Cardiovascular outcomes in patients with locally advanced and metastatic prostate cancer treated with luteinising-hormone-releasing-hormone agonists or transdermal oestrogen: the randomised, phase 2 MRC PATCH trial (PR09). Lancet Oncol 2013;14:306–316.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Gilbert DC, Duong T, Kynaston HG, . Quality-of-life outcomes from the Prostate Adenocarcinoma: TransCutaneous Hormones (PATCH) trial evaluating luteinising hormone-releasing hormone agonists versus transdermal oestradiol for androgen suppression in advanced prostate cancer. BJU Int 2017;119:667–675.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    de Bono JS, Logothetis CJ, Molina A, .; COU-AA-301 Investigators Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011;364:1995–2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 175.

    Fizazi K, Scher HI, Molina A, .; COU-AA-301 Investigators Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2012;13:983–992.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Logothetis CJ, Basch E, Molina A, . Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol 2012;13:1210–1217.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Ryan CJ, Smith MR, de Bono JS, .; COU-AA-302 Investigators Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368:138–148.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Ryan CJ, Smith MR, Fizazi K, .; COU-AA-302 Investigators Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2015;16:152–160.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    YONSA® (abiraterone acetate) tablets, for oral use. Sun Pharmaceutical Industries, Inc., Cranbury, NJ. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210308s000lbl.pdf. Accessed March 15, 2019

    • Search Google Scholar
    • Export Citation
  • 180.

    Hussaini A, Olszanski AJ, Stein CA, . Impact of an alternative steroid on the relative bioavailability and bioequivalence of a novel versus the originator formulation of abiraterone acetate. Cancer Chemother Pharmacol 2017;80:479–486.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Goldwater R, Hussaini A, Bosch B, . Comparison of a novel formulation of abiraterone acetate vs The originator formulation in healthy male subjects: two randomized, open-label, crossover studies. Clin Pharmacokinet 2017;56:803–813.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Stein CA, Levin R, Given R, . Randomized phase 2 therapeutic equivalence study of abiraterone acetate fine particle formulation vs originator abiraterone acetate in patients with metastatic castration-resistant prostate cancer: the STAAR study. Urol Oncol 2018;36:81.e9–81.e16.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Attard G, Reid AH, A’Hern R, . Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol 2009;27:3742–3748.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Attard G, Reid AH, de Bono JS. Abiraterone acetate is well tolerated without concomitant use of corticosteroids. J Clin Oncol 2010;28:e560–e561, author reply e562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 185.

    Reid AH, Attard G, Danila DC, . Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J Clin Oncol 2010;28:1489–1495.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Scher HI, Fizazi K, Saad F, .; AFFIRM Investigators Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367:1187–1197.

  • 187.

    Fizazi K, Scher HI, Miller K, . Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet Oncol 2014;15:1147–1156.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    XTANDI® (enzalutamide) capsules, for oral use. Astellas Pharma US, Inc., Northbrook, IL. 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203415Orig1s014lbl.pdf. Accessed March 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 189.

    Beer TM, Armstrong AJ, Rathkopf DE, .; PREVAIL Investigators Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371:424–433.

  • 190.

    Beer TM, Armstrong AJ, Rathkopf D, . Enzalutamide in men with chemotherapy-naive metastatic castration-resistant prostate cancer: extended analysis of the phase 3 PREVAIL study. Eur Urol 2017;71:151–154.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Shore ND, Chowdhury S, Villers A, . Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol 2016;17:153–163.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Penson DF, Armstrong AJ, Concepcion R, . Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J Clin Oncol 2016;34:2098–2106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Hussain M, Fizazi K, Saad F, . Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2018;378:2465–2474.

  • 194.

    Tombal B, Saad F, Penson D, . Patient-reported outcomes following enzalutamide or placebo in men with non-metastatic, castration-resistant prostate cancer (PROSPER): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 2019;20:556–569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 195.

    ERLEADATM (apalutamide) tablets, for oral use. Horsham, PA: Janssen Products, LP; 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210951s000lbl.pdf. Accessed March 15, 2019.

  • 196.

    Smith MR, Saad F, Chowdhury S, .; SPARTAN Investigators Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378:1408–1418.

  • 197.

    Saad F, Cella D, Basch E, . Effect of apalutamide on health-related quality of life in patients with non-metastatic castration-resistant prostate cancer: an analysis of the SPARTAN randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2018;19:1404–1416.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 198.

    Petrylak DP, Tangen CM, Hussain MH, . Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351:1513–1520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 199.

    Tannock IF, de Wit R, Berry WR, .; TAX 327 Investigators Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502–1512.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Berthold DR, Pond GR, Soban F, . Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 2008;26:242–245.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    Kellokumpu-Lehtinen PL, Harmenberg U, Joensuu T, .; PROSTY study group 2-Weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: a randomised, phase 3 trial. Lancet Oncol 2013;14:117–124.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 202.

    James ND, Sydes MR, Clarke NW, .; STAMPEDE investigators Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016;387:1163–1177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Sweeney CJ, Chen YH, Carducci M, . Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 2015;373:737–746.

  • 204.

    Kyriakopoulos CE, Chen YH, Carducci MA, . Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: Long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 2018;36:1080–1087.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 205.

    Fizazi K, Faivre L, Lesaunier F, . Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol 2015;16:787–794.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 206.

    Rosenthal SA, Hu C, Sartor O, . Effect of chemotherapy with docetaxel with androgen suppression and radiotherapy for localized high-risk prostate cancer: the randomized phase III NRG Oncology RTOG 0521 trial [published online March 12, 2019]. J Clin Oncol. doi: 10.1200/JCO.18.02158

    • Search Google Scholar
    • Export Citation
  • 207.

    de Bono JS, Oudard S, Ozguroglu M, .; TROPIC Investigators Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376:1147–1154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 208.

    Bahl A, Oudard S, Tombal B, .; TROPIC Investigators Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol 2013;24:2402–2408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 209.

    Meisel A, von Felten S, Vogt DR, . Severe neutropenia during cabazitaxel treatment is associated with survival benefit in men with metastatic castration-resistant prostate cancer (mCRPC): a post-hoc analysis of the TROPIC phase III trial. Eur J Cancer 2016;56:93–100.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 210.

    Eisenberger M, Hardy-Bessard AC, Kim CS, . Phase III study comparing a reduced dose of cabazitaxel (20 mg/m(2)) and the currently approved dose (25 mg/m(2)) in postdocetaxel patients with metastatic castration-resistant prostate cancer-PROSELICA. J Clin Oncol 2017;35:3198–3206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 211.

    Oudard S, Fizazi K, Sengeløv L, . Cabazitaxel versus docetaxel as first-line therapy for patients with metastatic castration-resistant prostate cancer: a randomized phase III trial-FIRSTANA. J Clin Oncol 2017;35:3189–3197.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 212.

    Sarantopoulos J, Mita AC, He A, . Safety and pharmacokinetics of cabazitaxel in patients with hepatic impairment: a phase I dose-escalation study. Cancer Chemother Pharmacol 2017;79:339–351.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 213.

    Kantoff PW, Higano CS, Shore ND, .; IMPACT Study Investigators Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411–422.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    KEYTRUDA® (pembrolizumab). Merck & Co, Inc., Whitehouse Station, NJ. 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s031lbl.pdf, Accessed June 11, 2018

    • Search Google Scholar
    • Export Citation
  • 215.

    KEYTRUDA® (pembrolizumab). Merck & Co, Inc., Whitehouse Station, NJ. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514s040lbl.pdf, Accessed March 15, 2019

    • Search Google Scholar
    • Export Citation
  • 216.

    Graff JN, Alumkal JJ, Drake CG, . Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 2016;7:52810–52817.

  • 217.

    Le DT, Durham JN, Smith KN, . Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409–413.

  • 218.

    Hansen AR, Massard C, Ott PA, . Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol 2018;29:1807–1813.

  • 219.

    Kaufman B, Shapira-Frommer R, Schmutzler RK, . Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244–250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 220.

    Mateo J, Carreira S, Sandhu S, . DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373:1697–1708.

  • 221.

    Clarke N, Wiechno P, Alekseev B, . Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2018;19:975–986.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 222.

    Imyanitov EN, Moiseyenko VM. Drug therapy for hereditary cancers. Hered Cancer Clin Pract 2011;9:5.

  • 223.

    Cheng HH, Pritchard CC, Boyd T, . Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol 2016;69:992–995.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 224.

    Pomerantz MM, Spisák S, Jia L, . The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 2017;123:3532–3539.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 225.

    Hager S, Ackermann CJ, Joerger M, . Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann Oncol 2016;27:975–984.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 226.

    Antonarakis ES, Lu C, Luber B, . Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur Urol 2018;74:218–225.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 227.

    Mateo J, Cheng HH, Beltran H, . Clinical outcome of prostate cancer patients with germline DNA repair mutations: Retrospective analysis from an international study. Eur Urol 2018;73:687–693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 228.

    Saad F, Gleason DM, Murray R, .; Zoledronic Acid Prostate Cancer Study Group A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002;94:1458–1468.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 229.

    Saad F, Gleason DM, Murray R, .; Zoledronic Acid Prostate Cancer Study Group Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 2004;96:879–882.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 230.

    Smith MR, Halabi S, Ryan CJ, . Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol 2014;32:1143–1150.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 231.

    James ND, Pirrie SJ, Pope AM, . Clinical outcomes and survival following treatment of metastatic castrate-refractory prostate cancer with docetaxel alone or with strontium-89, zoledronic acid, or both: The trapeze randomized clinical trial. JAMA Oncol 2016;2:493–499.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 232.

    Fizazi K, Carducci M, Smith M, . Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 2011;377:813–822.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 233.

    Tarassoff P, Csermak K. Avascular necrosis of the jaws: risk factors in metastatic cancer patients. J Oral Maxillofac Surg 2003;61:1238–1239.

  • 234.

    Erho N, Crisan A, Vergara IA, . Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One 2013;8:e66855.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 235.

    Karnes RJ, Bergstralh EJ, Davicioni E, . Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J Urol 2013;190:2047–2053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 236.

    Klein EA, Yousefi K, Haddad Z, . A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol 2015;67:778–786.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 237.

    Prensner JR, Zhao S, Erho N, . RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol 2014;15:1469–1480.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 239.

    Tomlins SA, Alshalalfa M, Davicioni E, . Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes. Eur Urol 2015;68:555–567.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 240.

    Ross AE, Johnson MH, Yousefi K, . Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. Eur Urol 2016;69:157–165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 241.

    Yamoah K, Johnson MH, Choeurng V, . Novel biomarker signature that may predict aggressive disease in African American men with prostate cancer. J Clin Oncol 2015;33:2789–2796.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 242.

    Cooperberg MR, Davicioni E, Crisan A, . Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol 2015;67:326–333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 243.

    Ross AE, Feng FY, Ghadessi M, . A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis 2014;17:64–69.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 244.

    Den RB, Feng FY, Showalter TN, . Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys 2014;89:1038–1046.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 245.

    Den RB, Yousefi K, Trabulsi EJ, . Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol 2015;33:944–951.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 246.

    Freedland SJ, Choeurng V, Howard L, . Utilization of a genomic classifier for prediction of metastasis following salvage radiation therapy after radical prostatectomy. Eur Urol 2016;70:588–596.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 247.

    Klein EA, Santiago-Jiménez M, Yousefi K, . Molecular analysis of low grade prostate cancer using a genomic classifier of metastatic potential. J Urol 2017;197:122–128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 248.

    Spratt DE, Yousefi K, Deheshi S, . Individual patient-level meta-analysis of the performance of the Decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J Clin Oncol 2017;35:1991–1998.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 249.

    Karnes RJ, Choeurng V, Ross AE, . Validation of a genomic risk classifier to predict prostate cancer-specific mortality in men with adverse pathologic features. Eur Urol 2018;73:168–175.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 250.

    Khor LY, Bae K, Paulus R, . MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer: RTOG 92-02. J Clin Oncol 2009;27:3177–3184.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 251.

    Verhoven B, Yan Y, Ritter M, . Ki-67 is an independent predictor of metastasis and cause-specific mortality for prostate cancer patients treated on Radiation Therapy Oncology Group (RTOG) 94-08. Int J Radiat Oncol Biol Phys 2013;86:317–323.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 252.

    Li R, Heydon K, Hammond ME, . Ki-67 staining index predicts distant metastasis and survival in locally advanced prostate cancer treated with radiotherapy: an analysis of patients in radiation therapy oncology group protocol 86-10. Clin Cancer Res 2004;10:4118–4124.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 253.

    Fisher G, Yang ZH, Kudahetti S, .; Transatlantic Prostate Group Prognostic value of Ki-67 for prostate cancer death in a conservatively managed cohort. Br J Cancer 2013;108:271–277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 254.

    Cullen J, Rosner IL, Brand TC, . A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 2015;68:123–131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 255.

    Brand TC, Zhang N, Crager MR, . Patient-specific meta-analysis of 2 clinical validation studies to predict pathologic outcomes in prostate cancer using the 17-gene genomic prostate score. Urology 2016;89:69–75.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 256.

    Magi-Galluzzi C, Isharwal S, Falzarano SM, . The 17-gene genomic prostate score assay predicts outcome after radical prostatectomy independent of PTEN status. Urology 2018;121:132–138.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 257.

    Eggener S, Karsh LI, Richardson T, . A 17-gene panel for prediction of adverse prostate cancer pathologic features: Prospective clinical validation and utility. Urology 2019;126:76–82.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 258.

    Cuzick J, Stone S, Fisher G, . Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer 2015;113:382–389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 259.

    Cooperberg MR, Simko JP, Cowan JE, . Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol 2013;31:1428–1434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 260.

    Tosoian JJ, Chappidi MR, Bishoff JT, . Prognostic utility of biopsy-derived cell cycle progression score in patients with National Comprehensive Cancer Network low-risk prostate cancer undergoing radical prostatectomy: implications for treatment guidance. BJU Int 2017;120:808–814.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 261.

    Blume-Jensen P, Berman DM, Rimm DL, . Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res 2015;21:2591–2600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 262.

    Cuzick J, Yang ZH, Fisher G, .; Transatlantic Prostate Group Prognostic value of PTEN loss in men with conservatively managed localised prostate cancer. Br J Cancer 2013;108:2582–2589.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 263.

    Lotan TL, Carvalho FL, Peskoe SB, . PTEN loss is associated with upgrading of prostate cancer from biopsy to radical prostatectomy. Mod Pathol 2015;28:128–137.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 264.

    Lotan TL, Gurel B, Sutcliffe S, . PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res 2011;17:6563–6573.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 265.

    Lotan TL, Wei W, Ludkovski O, . Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Mod Pathol 2016;29:904–914.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 266.

    Troyer DA, Jamaspishvili T, Wei W, . A multicenter study shows PTEN deletion is strongly associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer. Prostate 2015;75:1206–1215.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22692 22691 4137
PDF Downloads 7272 7272 1177
EPUB Downloads 0 0 0