Management of Immunotherapy-Related Toxicities, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology

Restricted access

The aim of the NCCN Guidelines for Management of Immunotherapy-Related Toxicities is to provide guidance on the management of immune-related adverse events resulting from cancer immunotherapy. The NCCN Management of Immunotherapy-Related Toxicities Panel is an interdisciplinary group of representatives from NCCN Member Institutions and ASCO, consisting of medical and hematologic oncologists with expertise in a wide array of disease sites, and experts from the fields of dermatology, gastroenterology, neuro-oncology, nephrology, emergency medicine, cardiology, oncology nursing, and patient advocacy. Several panel representatives are members of the Society for Immunotherapy of Cancer (SITC). The initial version of the NCCN Guidelines was designed in general alignment with recommendations published by ASCO and SITC. The content featured in this issue is an excerpt of the recommendations for managing toxicity related to immune checkpoint blockade and a review of existing evidence. For the full version of the NCCN Guidelines, including recommendations for managing toxicities related to chimeric antigen receptor T-cell therapy, visit NCCN.org.

Discussion Section Writing Committee.

ASCO Committee Member.

  • 1.

    Puzanov I, Diab A, Abdallah K, . Society for Immunotherapy of Cancer Toxicity Management Working Group Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 2017;5:95.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Brahmer JR, Lacchetti C, Schneider BJ, . National Comprehensive Cancer Network Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018;36:1714–1768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lam LH, Lin SD, Sun J. Pharmacokinetics and pharmacodynamics of immunotherapy. In: Patel SP, Kurzrock R, eds. Early Phase Cancer Immunotherapy. Cham: Springer International Publishing; 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Belum VR, Benhuri B, Postow MA, . Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016;60:12–25.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brahmer JR, Hammers H, Lipson EJ. Nivolumab: targeting PD-1 to bolster antitumor immunity. Future Oncol 2015;11:1307–1326.

  • 6.

    Ciccarese C, Alfieri S, Santoni M, . New toxicity profile for novel immunotherapy agents: focus on immune-checkpoint inhibitors. Expert Opin Drug Metab Toxicol 2016;12:57–75.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Eigentler TK, Hassel JC, Berking C, . Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy. Cancer Treat Rev 2016;45:7–18.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy 2016;8:821–837.

  • 9.

    Marrone KA, Ying W, Naidoo J. Immune-related adverse events from immune checkpoint inhibitors. Clin Pharmacol Ther 2016;100:242–251.

  • 10.

    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol 2015;33:1974–1982.

  • 11.

    Gangadhar TC, Vonderheide RH. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol 2014;11:91–99.

  • 12.

    Kong YC, Flynn JC. Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front Immunol 2014;5:206.

  • 13.

    Ledezma B, Heng A Real-world impact of education: treating patients with ipilimumab in a community practice setting. Cancer Manag Res 2013;6:5–14.

  • 14.

    Maude SL, Barrett D, Teachey DT, . Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014;20:119–122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Michot JM, Bigenwald C, Champiat S, . Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 2016;54:139–148.

  • 16.

    Lo B, Fritz JM, Su HC, . CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood 2016;128:1037–1042.

  • 17.

    Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:158–168.

  • 18.

    Boutros C, Tarhini A, Routier E, . Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 2016;13:473–486.

  • 19.

    Esfahani K, Miller WH Jr. Reversal of autoimmune toxicity and loss of tumor response by interleukin-17 blockade. N Engl J Med 2017;376:1989–1991.

  • 20.

    Johnson DB, Balko JM, Compton ML, . Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 2016;375:1749–1755.

  • 21.

    Byrne EH, Fisher DE. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 2017;123(S11):2143–2153.

  • 22.

    Tarhini AA, Zahoor H, Lin Y, . Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer 2015;3:39.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Callahan MK, Yang A, Tandon S, . Evaluation of serum IL-17 levels during ipilimumab therapy: correlation with colitis. J Clin Oncol 2011;29(15_suppl):2505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Feng T, Qin H, Wang L, . Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production. J Immunol 2011;186:6313–6318.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Harbour SN, Maynard CL, Zindl CL, . Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci USA 2015;112:7061–7066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Iwama S, De Remigis A, Callahan MK, . Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 2014;6:230ra45.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Caturegli P, Di Dalmazi G, Lombardi M, . Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series. Am J Pathol 2016;186:3225–3235.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Osorio JC, Ni A, Chaft JE, . Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol 2017;28:583–589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kumar V, Chaudhary N, Garg M, . Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol 2017;8:49–62.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schadendorf D, Wolchok JD, Hodi FS, . Efficacy and safety outcomes in patients with advanced melanoma who discontinued treatment with nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase II and III trials. J Clin Oncol 2017;35:3807–3814.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bertrand A, Kostine M, Barnetche T, . Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 2015;13:211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ascierto PA, Del Vecchio M, Robert C, . Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2017;18:611–622.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Eggermont AM, Chiarion-Sileni V, Grob JJ, . Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med 2016;375:1845–1855.

  • 34.

    Eggermont AM, Chiarion-Sileni V, Grob JJ, . Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 2015;16:522–530.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Maughan BL, Bailey E, Gill DM, . Incidence of immune-related adverse events with program death receptor-1- and program death receptor-1 ligand-directed therapies in genitourinary cancers. Front Oncol 2017;7:56–64.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Villadolid J, Amin A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res 2015;4:560–575.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Topalian SL, Hodi FS, Brahmer JR, . Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443–2454.

  • 38.

    Wang PF, Chen Y, Song SY, . Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis. Front Pharmacol 2017;8:730–741.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    De Velasco G, Je Y, Bossé D, . Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol Res 2017;5:312–318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Khoja L, Day D, Wei-Wu Chen T, . Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol 2017;28:2377–2385.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Pillai RN, Behera M, Owonikoko TK, . Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature. Cancer 2018;124:271–277.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Khunger M, Rakshit S, Pasupuleti V, . Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest 2017;152:271–281.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Shoushtari AN, Friedman CF, Navid-Azarbaijani P, . Measuring toxic effects and time to treatment failure for nivolumab plus ipilimumab in melanoma. JAMA Oncol 2018;4:98–101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Wang DY, Salem JE, Cohen JV, . Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 2018;4:1721–1728.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wolchok JD, Chiarion-Sileni V, Gonzalez R, . Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017;377:1345–1356.

  • 46.

    Flynn MJ, Larkin JMG. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies. Expert Opin Pharmacother 2017;18:1477–1490.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hermel DJ, Ott PA. Combining forces: the promise and peril of synergistic immune checkpoint blockade and targeted therapy in metastatic melanoma. Cancer Metastasis Rev 2017;36:43–50.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Prieto PA, Reuben A, Cooper ZA, . Targeted therapies combined with immune checkpoint therapy. Cancer J 2016;22:138–146.

  • 49.

    Salama AK, Moschos SJ. Next steps in immuno-oncology: enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies. Ann Oncol 2017;28:57–74.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Prescribing Information: Nivolumab. Available at: http://bit.ly/1V77FcW. Accessed Jan 23, 2018.

    • PubMed
    • Export Citation
  • 51.

    Prescribing information: Ipilimumab. Available at: http://bit.ly/2cTp2AT. Accessed Jan 23, 2018.

    • PubMed
    • Export Citation
  • 52.

    Hodi FS, Chesney J, Pavlick AC, . Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016;17:1558–1568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Long GV, Atkinson V, Cebon JS, . Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet Oncol 2017;18:1202–1210.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Hellmann MD, Rizvi NA, Goldman JW, . Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 2017;18:31–41.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Antonia SJ, López-Martin JA, Bendell J, . Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 2016;17:883–895.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Langer CJ, Gadgeel SM, Borghaei H, .KEYNOTE-021 investigators Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016;17:1497–1508.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Govindan R, Szczesna A, Ahn MJ, . Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol 2017;35:3449–3457.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Alsaab HO, Sau S, Alzhrani R, . PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017;8:561.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Tallet AV, Dhermain F, Le Rhun E, . Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol 2017;28:2962–2976.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Hu ZI, Ho AY, McArthur HL. Combined radiation therapy and immune checkpoint blockade therapy for breast cancer. Int J Radiat Oncol Biol Phys 2017;99:153–164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Teulings HE, Limpens J, Jansen SN, . Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 2015;33:773–781.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Sanlorenzo M, Vujic I, Daud A, . Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol 2015;151:1206–1212.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Lo JA, Fisher DE, Flaherty KT. Prognostic significance of cutaneous adverse events associated with pembrolizumab therapy. JAMA Oncol 2015;1:1340–1341.

  • 64.

    Hua C, Boussemart L, Mateus C, . Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol 2016;152:45–51.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Freeman-Keller M, Kim Y, Cronin H, . Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 2016;22:886–894.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Wang Y, Abu-Sbeih H, Mao E, . Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson. J Immunother Cancer 2018;6:37–49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Kostine M, Rouxel L, Barnetche T, .FHU ACRONIM Rheumatic disorders associated with immune checkpoint inhibitors in patients with cancer-clinical aspects and relationship with tumour response: a single-centre prospective cohort study. Ann Rheum Dis 2018;77:393–398.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Feng S, Coward J, McCaffrey E, . Pembrolizumab-induced encephalopathy: a review of neurological toxicities with immune checkpoint inhibitors. J Thorac Oncol 2017;12:1626–1635.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Horvat TZ, Adel NG, Dang TO, . Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol 2015;33:3193–3198.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Reimold AM. TNFalpha as therapeutic target: new drugs, more applications. Curr Drug Targets Inflamm Allergy 2002;1:377–392.

  • 71.

    Sfikakis PP. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun 2010;11:180–210.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Wolfe RM, Ang DC. Biologic therapies for autoimmune and connective tissue diseases. Immunol Allergy Clin North Am 2017;37:283–299.

  • 73.

    Prescribing Information: Infliximab. Available at: http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/REMICADE-pi.pdf. Accessed April 25, 2018.

    • Export Citation
  • 74.

    Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol 2016;2:1346–1353.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Prescribing Information: Vedolizumab. Available at: https://general.takedapharm.com/ENTYVIOPI. Accessed April 24, 2018.

    • Export Citation
  • 76.

    Bergqvist V, Hertervig E, Gedeon P, . Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol Immunother 2017;66:581–592.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Diana P, Mankongpaisarnrung C, Atkins MB, . Emerging role of vedolizumab in managing refractory immune checkpoint inhibitor-induced enteritis. ACG Case Rep J 2018;5:e17.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Prescribing Information: Mycophenolate mofetil. Available at: https://www.gene.com/download/pdf/cellcept_prescribing.pdf. Accessed Jun 12, 2018.

    • Export Citation
  • 79.

    Prescribing Information: Mycophenolic acid. Available at: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/myfortic.pdf. Accessed Jun 12, 2018.

    • Export Citation
  • 80.

    Karnell JL, Karnell FG III, Stephens GL, . Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol 2011;187:3603–3612.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 2005;80(2, Suppl)S181–S190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Henderson L, Masson P, Craig JC, . Treatment for lupus nephritis. Cochrane Database Syst Rev 2012;12:CD002922.

  • 83.

    Nousari HC, Sragovich A, Kimyai-Asadi A, . Mycophenolate mofetil in autoimmune and inflammatory skin disorders. J Am Acad Dermatol 1999;40:265–268.

  • 84.

    Eskin-Schwartz M, David M, Mimouni D. Mycophenolate mofetil for the management of autoimmune bullous diseases. Dermatol Clin 2011;29:555–559.

  • 85.

    Ueda T, Sakagami T, Kikuchi T, . Mycophenolate mofetil as a therapeutic agent for interstitial lung diseases in systemic sclerosis. Respir Investig 2018;56:14–20.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Mieli-Vergani G, Vergani D, Czaja AJ, . Autoimmune hepatitis. Nat Rev Dis Primers 2018;4:18017

  • 87.

    Aggarwal R, Oddis CV. Therapeutic advances in myositis. Curr Opin Rheumatol 2012;24:635–641.

  • 88.

    Daanen RA, Maas RJH, Koornstra RHT, . Nivolumab-associated nephrotic syndrome in a patient with renal cell carcinoma: a case report. J Immunother 2017;40:345–348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Pushkarevskaya A, Neuberger U, Dimitrakopoulou-Strauss A, . Severe ocular myositis after ipilimumab treatment for melanoma: a report of 2 cases. J Immunother 2017;40:282–285.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Cheng R, Cooper A, Kench J, . Ipilimumab-induced toxicities and the gastroenterologist. J Gastroenterol Hepatol 2015;30:657–666.

  • 91.

    Tanaka R, Fujisawa Y, Sae I, . Severe hepatitis arising from ipilimumab administration, following melanoma treatment with nivolumab. Jpn J Clin Oncol 2017;47:175–178.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Gürcan HM, Ahmed AR. Efficacy of various intravenous immunoglobulin therapy protocols in autoimmune and chronic inflammatory disorders. Ann Pharmacother 2007;41:812–823.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013;13:176–189.

  • 94.

    Sibéril S, Elluru S, Graff-Dubois S, . Intravenous immunoglobulins in autoimmune and inflammatory diseases: a mechanistic perspective. Ann N Y Acad Sci 2007;1110:497–506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Bayry J, Misra N, Latry V, . Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases. Transfus Clin Biol 2003;10:165–169.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology--mode of action and clinical efficacy. Nat Rev Neurol 2015;11:80–89.

  • 97.

    Jolles S, Sewell WA, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol 2005;142:1–11.

  • 98.

    Schwartz J, Padmanabhan A, Aqui N, . Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing committee of the American Society for Apheresis: the seventh special issue. J Clin Apher 2016;31:149–162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Touat M, Talmasov D, Ricard D, . Neurological toxicities associated with immune-checkpoint inhibitors. Curr Opin Neurol 2017;30:659–668.

  • 100.

    Fellner A, Makranz C, Lotem M, . Neurologic complications of immune checkpoint inhibitors. J Neurooncol 2018;137:601–609.

  • 101.

    Larkin J, Chmielowski B, Lao CD, . Neurologic serious adverse events associated with nivolumab plus ipilimumab or nivolumab alone in advanced melanoma, including a case series of encephalitis. Oncologist 2017;22:709–718.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Curtis JR, Westfall AO, Allison J, . Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum 2006;55:420–426.

  • 103.

    Williams KJ, Grauer DW, Henry DW, . Corticosteroids for the management of immune-related adverse events in patients receiving checkpoint inhibitors. J Oncol Pharm Pract 2017;Jan 1:1078155217744872.

    • Search Google Scholar
    • Export Citation
  • 104.

    Riminton DS, Hartung HP, Reddel SW. Managing the risks of immunosuppression. Curr Opin Neurol 2011;24:217–223.

  • 105.

    Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract 2009;15:469–474.

  • 106.

    Kwon S, Hermayer KL, Hermayer K. Glucocorticoid-induced hyperglycemia. Am J Med Sci 2013;345:274–277.

  • 107.

    Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am 2016;42:157–176., ix–x.

  • 108.

    Keane J, Gershon S, Wise RP, . Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001;345:1098–1104.

  • 109.

    Mori S, Fujiyama S. Hepatitis B virus reactivation associated with antirheumatic therapy: risk and prophylaxis recommendations. World J Gastroenterol 2015;21:10274–10289.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Manzano-Alonso ML, Castellano-Tortajada G. Reactivation of hepatitis B virus infection after cytotoxic chemotherapy or immunosuppressive therapy. World J Gastroenterol 2011;17:1531–1537.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Carroll MB, Forgione MA. Use of tumor necrosis factor alpha inhibitors in hepatitis B surface antigen-positive patients: a literature review and potential mechanisms of action. Clin Rheumatol 2010;29:1021–1029.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Weber JS, Hodi FS, Wolchok JD, . Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol 2017;35:785–792.

  • 113.

    Weber JS, Larkin JMG, Schadendorf D, . Management of gastrointestinal (GI) toxicity associated with nivolumab (NIVO) plus ipilimumab (IPI) or IPI alone in phase II and III trials in advanced melanoma (MEL). [abstract] J Clin Oncol 2017;35(15_suppl):9523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Arbour KC, Mezquita L, Long N, . Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol 2018;36:2872–2878.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Gutzmer R, Koop A, Meier F, .German Dermatooncology Group (DeCOG) Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur J Cancer 2017;75:24–32.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Menzies AM, Johnson DB, Ramanujam S, . Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol 2017;28:368–376.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Johnson DB, Sullivan RJ, Ott PA, . Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol 2016;2:234–240.

  • 118.

    Abdel-Wahab N, Shah M, Lopez-Olivo MA, . Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann Intern Med 2018;168:121–130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Pollack MH, Betof A, Dearden H, . Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol 2018;29:250–255.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Kittai AS, Oldham H, Cetnar J, . Immune checkpoint inhibitors in organ transplant patients. J Immunother 2017;40:277–281.

  • 121.

    Maggiore U, Pascual J. The bad and the good news on cancer immunotherapy: implications for organ transplant recipients. Adv Chronic Kidney Dis 2016;23:312–316.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Morales RE, Shoushtari AN, Walsh MM, . Safety and efficacy of ipilimumab to treat advanced melanoma in the setting of liver transplantation. J Immunother Cancer 2015;3:22.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Lipson EJ, Bodell MA, Kraus ES, . Successful administration of ipilimumab to two kidney transplantation patients with metastatic melanoma. J Clin Oncol 2014;32:e69–e71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Chae YK, Galvez C, Anker JF, . Cancer immunotherapy in a neglected population: the current use and future of T-cell-mediated checkpoint inhibitors in organ transplant patients. Cancer Treat Rev 2018;63:116–121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125.

    Krauss AC, Mulkey F, Shen Y-L, . FDA analysis of pembrolizumab trials in multiple myeloma: Immune related adverse events (irAEs) and response. [Abstract] J Clin Oncol 2018;36(15 suppl):Abstract 8008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Di Giacomo AM, Biagioli M, Maio M The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol 2010;37:499–507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Spain L, Diem S, Larkin J Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev 2016;44:51–60.

  • 128.

    Kelly K, Infante JR, Taylor MH, . Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials. Cancer 2018;124:2010–2017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Prescribing Information: Avelumab. Available at: https://www.bavencio.com/en_US/document/Prescribing-Information.pdf. Accessed July 25, 2017.

    • Export Citation
  • 130.

    Prescribing Information: Atezolizumab. Available at: https://www.gene.com/download/pdf/tecentriq_prescribing.pdf. Accessed Jan 23, 2018.

    • Export Citation
  • 131.

    Prescribing Information: Durvalumab. Available at: https://www.azpicentral.com/imfinzi/imfinzi.pdf#page=1. Accessed July 25, 2017.

    • Export Citation
  • 132.

    Prescribing Information: Pembrolizumab. Available at: http://bit.ly/2cTmItE. Accessed Jul 25, 2017.

    • Export Citation
  • 133.

    Lacouture ME, Wolchok JD, Yosipovitch G, . Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol 2014;71:161–169.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012;30:2691–2697.

  • 135.

    Naidoo J, Page DB, Li BT, . Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2015;26:2375–2391.

  • 136.

    Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy. Am J Clin Dermatol 2018;19:345–361.

  • 137.

    Naidoo J, Schindler K, Querfeld C, . Autoimmune bullous skin disorders with immune checkpoint inhibitors targeting PD-1 and PD-L1. Cancer Immunol Res 2016;4:383–389.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Rivera N, Boada A, Bielsa MI, . Hair repigmentation during immunotherapy treatment with an anti-programmed cell death 1 and anti-programmed cell death ligand 1 agent for lung cancer. JAMA Dermatol 2017;153:1162–1165.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Zarbo A, Belum VR, Sibaud V, . Immune-related alopecia (areata and universalis) in cancer patients receiving immune checkpoint inhibitors. Br J Dermatol 2017;176:1649–1652.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Jaber SH, Cowen EW, Haworth LR, . Skin reactions in a subset of patients with stage IV melanoma treated with anti-cytotoxic T-lymphocyte antigen 4 monoclonal antibody as a single agent. Arch Dermatol 2006;142:166–172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Voskens CJ, Goldinger SM, Loquai C, . The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 2013;8:e53745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Weber JS, Dummer R, de Pril V, .MDX010-20 Investigators Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 2013;119:1675–1682.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Wang Y, Abu-Sbeih H, Mao E, . Endoscopic and histologic features of immune checkpoint inhibitor-related colitis. Inflamm Bowel Dis 2018;24:1695–1705.

  • 144.

    Gupta A, De Felice KM, Loftus EV Jr, . Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther 2015;42:406–417.

  • 145.

    Pernot S, Ramtohul T, Taieb J. Checkpoint inhibitors and gastrointestinal immune-related adverse events. Curr Opin Oncol 2016;28:264–268.

  • 146.

    Tandon P, Bourassa-Blanchette S, Bishay K, . The risk of diarrhea and colitis in patients with advanced melanoma undergoing immune checkpoint inhibitor therapy: a systematic review and meta-analysis. J Immunother 2018;41:101–108.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Wang DY, Ye F, Zhao S, . Incidence of immune checkpoint inhibitor-related colitis in solid tumor patients: A systematic review and meta-analysis. OncoImmunology 2017;6:e1344805.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Geukes Foppen MH, Rozeman EA, van Wilpe S, . Immune checkpoint inhibition-related colitis: symptoms, endoscopic features, histology and response to management. ESMO Open 2018;3:e000278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149.

    Jain A, Lipson EJ, Sharfman WH, . Colonic ulcerations may predict steroid-refractory course in patients with ipilimumab-mediated enterocolitis. World J Gastroenterol 2017;23:2023–2028.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Pagès C, Gornet JM, Monsel G, . Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res 2013;23:227–230.

  • 151.

    Merrill SP, Reynolds P, Kalra A, . Early administration of infliximab for severe ipilimumab-related diarrhea in a critically ill patient. Ann Pharmacother 2014;48:806–810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 152.

    Hsieh AH, Ferman M, Brown MP, Andrews JM. Vedolizumab: a novel treatment of ipilimumab-induced colitis. BMJ Case Rep 2016;pii:bcr2016216641.

    • Crossref
    • Export Citation
  • 153.

    Suzman DL, Pelosof L, Rosenberg A, . Hepatotoxicity of immune checkpoint inhibitors: An evolving picture of risk associated with a vital class of immunotherapy agents. Liver Int 2018;38:976–987.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Sznol M, Ferrucci PF, Hogg D, . Pooled analysis safety profile of nivolumab and ipilimumab combination therapy in patients with advanced melanoma. J Clin Oncol 2017;35:3815–3822.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    De Martin E, Michot JM, Papouin B, . Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J Hepatol 2018;68:1181–1190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 156.

    Huffman BM, Kottschade LA, Kamath PS, Markovic SN. Hepatotoxicity after immune checkpoint inhibitor therapy in melanoma: natural progression and management. Am J Clin Oncol 2018;41:760–765.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Ziemer M, Koukoulioti E, Beyer S, . Managing immune checkpoint-inhibitor-induced severe autoimmune-like hepatitis by liver-directed topical steroids. J Hepatol 2017;66:657–659.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Cramer P, Bresalier RS. Gastrointestinal and hepatic complications of immune checkpoint inhibitors. Curr Gastroenterol Rep 2017;19:3.

  • 159.

    Alessandrino F, Tirumani SH, Krajewski KM, . Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors. Clin Radiol 2017;72:521–533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 160.

    Chmiel KD, Suan D, Liddle C, . Resolution of severe ipilimumab-induced hepatitis after antithymocyte globulin therapy. J Clin Oncol 2011;29:e237–e240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161.

    Tripathi A, Kaymakcalan MD, LeBoeuf NR, . Programmed cell death-1 pathway inhibitors in genitourinary malignancies: specific side-effects and their management. Curr Opin Urol 2016;26:548–555.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Spänkuch I, Gassenmaier M, Tampouri I, . Severe hepatitis under combined immunotherapy: Resolution under corticosteroids plus anti-thymocyte immunoglobulins. Eur J Cancer 2017;81:203–205.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Grover S, Rahma OE, Hashemi N, . Gastrointestinal and hepatic toxicities of checkpoint inhibitors: algorithms for management. Am Soc Clin Oncol Educ Book 2018;38:13–19.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book 2015;35:76–83.

  • 165.

    Hofmann L, Forschner A, Loquai C, . Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60:190–209.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Widmann G, Nguyen VA, Plaickner J, . Imaging features of toxicities by immune checkpoint inhibitors in cancer therapy. Curr Radiol Rep 2016;5:59.

  • 167.

    Byun DJ, Wolchok JD, Rosenberg LM, . Cancer immunotherapy - immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol 2017;13:195–207.

  • 168.

    Sznol M, Postow MA, Davies MJ, . Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat Rev 2017;58:70–76.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Alessandrino F, Shah HJ, Ramaiya NH. Multimodality imaging of endocrine immune related adverse events: a primer for radiologists. Clin Imaging 2018;50:96–103.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Barroso-Sousa R, Barry WT, Garrido-Castro AC, . Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol 2018;4:173–182.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Stamatouli AM, Quandt Z, Perdigoto AL, . Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 2018;67:1471–1480.

  • 172.

    Faje AT, Sullivan R, Lawrence D, . Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab 2014;99:4078–4085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 173.

    Ryder M, Callahan M, Postow MA, . Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer 2014;21:371–381.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Torino F, Corsello SM, Salvatori R. Endocrinological side-effects of immune checkpoint inhibitors. Curr Opin Oncol 2016;28:278–287.

  • 175.

    Min L, Hodi FS, Giobbie-Hurder A, . Systemic high-dose corticosteroid treatment does not improve the outcome of ipilimumab-related hypophysitis: a retrospective cohort study. Clin Cancer Res 2015;21:749–755.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Naidoo J, Wang X, Woo KM, . Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol 2017;35:709–717.

  • 177.

    Nishino M, Giobbie-Hurder A, Hatabu H, . Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol 2016;2:1607–1616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178.

    Hodi FS, O’Day SJ, McDermott DF, . Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–723.

  • 179.

    Wolchok JD, Neyns B, Linette G, . Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 2010;11:155–164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Chuzi S, Tavora F, Cruz M, . Clinical features, diagnostic challenges, and management strategies in checkpoint inhibitor-related pneumonitis. Cancer Manag Res 2017;9:207–213.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Cortazar FB, Marrone KA, Troxell ML, . Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int 2016;90:638–647.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Wanchoo R, Karam S, Uppal NN, .Cancer and Kidney International Network Workgroup on Immune Checkpoint Inhibitors Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol 2017;45:160–169.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Jhaveri KD, Perazella MA. Adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:1163–1165.

  • 184.

    Jhaveri KD, Wanchoo R, Sakhiya V, . Adverse renal effects of novel molecular oncologic targeted therapies: a narrative review. Kidney Int Rep 2016;2:108–123.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Belliere J, Meyer N, Mazieres J, . Acute interstitial nephritis related to immune checkpoint inhibitors. Br J Cancer 2016;115:1457–1461.

  • 186.

    Shirali AC, Perazella MA, Gettinger S. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients. Am J Kidney Dis 2016;68:287–291.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Murakami N, Borges TJ, Yamashita M, . Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin Kidney J 2016;9:411–417.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Clarkson MR, Giblin L, O’Connell FP, . Acute interstitial nephritis: clinical features and response to corticosteroid therapy. Nephrol Dial Transplant 2004;19:2778–2783.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    González E, Gutiérrez E, Galeano C, . Grupo Madrileño De Nefritis Intersticiales Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int 2008;73:940–946.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Haanen JBAG, Carbonnel F, Robert C, . ESMO Guidelines Committee Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28(suppl_4):iv119–iv142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 191.

    Antoun J, Titah C, Cochereau I Ocular and orbital side-effects of checkpoint inhibitors: a review article. Curr Opin Oncol 2016;28:288–294.

  • 192.

    Dalvin LA, Shields CL, Orloff M, . Checkpoint inhibitor immune therapy: systemic indications and ophthalmic side effects. Retina 2018;38:1063–1078.

  • 193.

    Abdel-Rahman O, Oweira H, Petrausch U, . Immune-related ocular toxicities in solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Anticancer Ther 2017;17:387–394.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Conrady CD, Larochelle M, Pecen P, . Checkpoint inhibitor-induced uveitis: a case series. Graefes Arch Clin Exp Ophthalmol 2018;256:187–191.

  • 195.

    Sosa A, Lopez Cadena E, Simon Olive C, . Clinical assessment of immune-related adverse events. Ther Adv Med Oncol 2018;10:1758835918764628.

  • 196.

    Zimmer L, Goldinger SM, Hofmann L, . Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60:210–225.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    Kao JC, Liao B, Markovic SN, . Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol 2017;74:1216–1222.

  • 198.

    Larkin J, Chiarion-Sileni V, Gonzalez R, . Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:23–34.

  • 199.

    Williams TJ, Benavides DR, Patrice KA, . Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol 2016;73:928–933.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Mancone S, Lycan T, Ahmed T, . Severe neurologic complications of immune checkpoint inhibitors: a single-center review. J Neurol 2018;265:1636–1642.

  • 201.

    Makarious D, Horwood K, Coward JIG. Myasthenia gravis: an emerging toxicity of immune checkpoint inhibitors. Eur J Cancer 2017;82:128–136.

  • 202.

    Cuzzubbo S, Javeri F, Tissier M, . Neurological adverse events associated with immune checkpoint inhibitors: Review of the literature. Eur J Cancer 2017;73:1–8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 203.

    Heinzerling L, Ott PA, Hodi FS, . Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer 2016;4:50.

  • 204.

    Mahmood SS, Fradley MG, Cohen JV, . Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 2018;71:1755–1764.

  • 205.

    Varricchi G, Marone G, Mercurio V, . Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr Med Chem 2018;25:1327–1339.

  • 206.

    Moslehi JJ, Salem JE, Sosman JA, . Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018;391:933.

  • 207.

    Norwood TG, Westbrook BC, Johnson DB, . Smoldering myocarditis following immune checkpoint blockade. J Immunother Cancer 2017;5:91.

  • 208.

    Tajmir-Riahi A, Bergmann T, Schmid M, . Life-threatening autoimmune cardiomyopathy reproducibly induced in a patient by checkpoint inhibitor therapy. J Immunother 2018;41:35–38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 209.

    Cappelli LC, Gutierrez AK, Bingham CO III, . Rheumatic and musculoskeletal immune-related adverse events due to immune checkpoint inhibitors: a systematic review of the literature. Arthritis Care Res (Hoboken) 2017;69:1751–1763.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 210.

    Naidoo J, Cappelli LC, Forde PM, . Inflammatory arthritis: a newly recognized adverse event of immune checkpoint blockade. Oncologist 2017;22:627–630.

  • 211.

    Lidar M, Giat E, Garelick D, . Rheumatic manifestations among cancer patients treated with immune checkpoint inhibitors. Autoimmun Rev 2018;17:284–289.

  • 212.

    Cappelli LC, Gutierrez AK, Baer AN, . Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis 2017;76:43–50.

  • 213.

    Cappelli LC, Brahmer JR, Forde PM, . Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin Arthritis Rheum 2018;48:553–557.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    Belkhir R, Burel SL, Dunogeant L, . Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann Rheum Dis 2017;76:1747–1750.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9447 9447 777
PDF Downloads 4374 4374 405
EPUB Downloads 0 0 0