Partial Response to Ceritinib in a Patient With Abdominal Inflammatory Myofibroblastic Tumor Carrying a TFG-ROS1 Fusion

Authors:
Yong Li Department of Oncology, and

Search for other papers by Yong Li in
Current site
Google Scholar
PubMed
Close
 MM
,
Xian Chen Department of Oncology, and

Search for other papers by Xian Chen in
Current site
Google Scholar
PubMed
Close
 MM
,
Yanchun Qu Department of Oncology, and

Search for other papers by Yanchun Qu in
Current site
Google Scholar
PubMed
Close
 MM
,
Jia-Ming Fan Department of Oncology, and

Search for other papers by Jia-Ming Fan in
Current site
Google Scholar
PubMed
Close
 MM
,
Yan Li Department of Oncology, and

Search for other papers by Yan Li in
Current site
Google Scholar
PubMed
Close
 MM
,
Hui Peng Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou; and

Search for other papers by Hui Peng in
Current site
Google Scholar
PubMed
Close
 MM
,
Yaojie Zheng OrigiMed, Shanghai, China.

Search for other papers by Yaojie Zheng in
Current site
Google Scholar
PubMed
Close
 MM
,
Yihong Zhang OrigiMed, Shanghai, China.

Search for other papers by Yihong Zhang in
Current site
Google Scholar
PubMed
Close
 ME
, and
Hai-Bo Zhang Department of Oncology, and

Search for other papers by Hai-Bo Zhang in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Inflammatory myofibroblastic tumor (IMT), a rare sarcoma, is primarily treated via resection of the mass. However, there is no standard treatment for recurrence or unresectable tumors. Almost 50% of IMTs carry ALK gene rearrangement that can be treated using ALK inhibitors, but therapeutic options for ALK-negative tumors are limited. This report describes a woman aged 22 years with unresectable ALK-negative IMT. Next-generation sequencing revealed a TFG-ROS1 fusion, and she had a partial response to the ROS1 inhibitor ceritinib. This report provides the first published demonstration of a patient with IMT with ROS1 fusion successfully treated using ceritinib. Our study suggests that targeting ROS1 fusions using the small molecule inhibitor shows promise as an effective therapy in patients with IMT carrying this genetic alteration, but this requires further investigation in large clinical trials.

Submitted for publication June 24, 2019; accepted for publication September 13, 2019.

Disclosures: Drs. Zheng and Y. Zhang have disclosed that they are employees of OrigiMed. The remaining authors have disclosed that they have not received any financial consideration from any person or organization to support the preparation, analysis, results, or discussion of this article.

Correspondence: Hai-Bo Zhang, MD, Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China. Email: haibozh@aliyun.com
  • Collapse
  • Expand
  • 1.

    Su LD, Atayde-Perez A, Sheldon S, et al.. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol 1998;11:364368.

  • 2.

    Gleason BC, Hornick JL. Inflammatory myofibroblastic tumours: where are we now? J Clin Pathol 2008;61:428437.

  • 3.

    Coffin CM, Watterson J, Priest JR, et al.. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19:859872.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Coffin CM, Patel A, Perkins S, et al.. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol 2001;14:569576.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ono A, Murakami H, Serizawa M, et al.. Drastic initial response and subsequent response to two ALK inhibitors in a patient with a highly aggressive ALK-rearranged inflammatory myofibroblastic tumor arising in the pleural cavity. Lung Cancer 2016;99:151154.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rao N, Iwenofu H, Tang B, et al.. Inflammatory myofibroblastic tumor driven by novel NUMA1-ALK fusion responds to ALK inhibition. J Natl Compr Canc Netw 2018;16:115121.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol 2007;31:509520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lovly CM, Gupta A, Lipson D, et al.. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.

  • 9.

    Takahashi A, Kurosawa M, Uemura M, et al.. Anaplastic lymphoma kinase-negative uterine inflammatory myofibroblastic tumor containing the ETV6-NTRK3 fusion gene: a case report. J Int Med Res 2018;46:34983503.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Antonescu CR, Suurmeijer AJ, Zhang L, et al.. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jo VY, Fletcher CD. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 2014;46:95104.

  • 12.

    Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19:55485557.

  • 13.

    Davies KD, Doebele RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.

  • 14.

    Takeuchi K, Soda M, Togashi Y, et al.. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012;18:378381.

  • 15.

    Charest A, Kheifets V, Park J, et al.. Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc Natl Acad Sci USA 2003;100:916921.

  • 16.

    Chang JC, Zhang L, Drilon AE, et al.. Expanding the molecular characterization of thoracic inflammatory myofibroblastic tumors beyond ALK gene rearrangements. J Thorac Oncol 2019;14:825834.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hornick JL, Sholl LM, Dal Cin P, et al.. Expression of ROS1 predicts ROS1 gene rearrangement in inflammatory myofibroblastic tumors. Mod Pathol 2015;28:732739.

  • 18.

    Rossing M, Yde CW, Sehested A, et al.. Genomic diagnostics leading to the identification of a TFG-ROS1 fusion in a child with possible atypical meningioma. Cancer Genet 2017;212–213:3237.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zou HY, Li Q, Lee JH, et al.. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 2007;67:44084417.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kwak EL, Bang YJ, Camidge DR, et al.. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010;363:16931703.

  • 21.

    Roskoski R Jr. ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacol Res 2017;121:202212.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mai S, Xiong G, Diao D, et al.. Case report: crizotinib is effective in a patient with ROS1-rearranged pulmonary inflammatory myofibroblastic tumor. Lung Cancer 2019;128:101104.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Daniel S, Gay LM, Vergilio JA, et al.. A clinical and genomic profile of inflammatory myofibroblastic tumors [abstract]. J Clin Oncol 2017;35(Suppl 15):Abstract 1538.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Santarpia M, Daffinà MG, D’Aveni A, et al.. Spotlight on ceritinib in the treatment of ALK+ NSCLC: design, development and place in therapy. Drug Des Devel Ther 2017;11:20472063.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Shaw AT, Engelman JA. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014;370:11891197.

  • 26.

    Facchinetti F, Loriot Y, Kuo MS, et al.. Crizotinib-resistant ROS1 mutations reveal a predictive kinase inhibitor sensitivity model for ROS1- and ALK-rearranged lung cancers. Clin Cancer Res 2016;22:59835991.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lim SM, Kim HR, Lee JS, et al.. Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol 2017;35:26132618.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mansfield AS, Murphy SJ, Harris FR, et al.. Chromoplectic TPM3-ALK rearrangement in a patient with inflammatory myofibroblastic tumor who responded to ceritinib after progression on crizotinib. Ann Oncol 2016;27:21112117.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3275 616 19
PDF Downloads 1706 198 17
EPUB Downloads 0 0 0