Chimeric Antigen Receptor T-Cell Therapy

Authors:
Ndiya Ogba National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Ndiya Ogba in
Current site
Google Scholar
PubMed
Close
 PhD
,
Nicole M. Arwood National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Nicole M. Arwood in
Current site
Google Scholar
PubMed
Close
 PharmD
,
Nancy L. Bartlett National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Nancy L. Bartlett in
Current site
Google Scholar
PubMed
Close
 MD
,
Mara Bloom National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Mara Bloom in
Current site
Google Scholar
PubMed
Close
 JD
,
Patrick Brown National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Patrick Brown in
Current site
Google Scholar
PubMed
Close
 MD
,
Christine Brown National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Christine Brown in
Current site
Google Scholar
PubMed
Close
 PhD
,
Elizabeth Lihua Budde National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Elizabeth Lihua Budde in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Robert Carlson National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Robert Carlson in
Current site
Google Scholar
PubMed
Close
 MD
,
Stephanie Farnia National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Stephanie Farnia in
Current site
Google Scholar
PubMed
Close
 MPH
,
Terry J. Fry National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Terry J. Fry in
Current site
Google Scholar
PubMed
Close
 MD
,
Morgan Garber National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Morgan Garber in
Current site
Google Scholar
PubMed
Close
 MSW
,
Rebecca A. Gardner National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Rebecca A. Gardner in
Current site
Google Scholar
PubMed
Close
 MD
,
Lauren Gurschick National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Lauren Gurschick in
Current site
Google Scholar
PubMed
Close
 NP
,
Patricia Kropf National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Patricia Kropf in
Current site
Google Scholar
PubMed
Close
 MD
,
Jeff J. Reitan National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Jeff J. Reitan in
Current site
Google Scholar
PubMed
Close
 MA
,
Craig Sauter National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Craig Sauter in
Current site
Google Scholar
PubMed
Close
 MD
,
Bijal Shah National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Bijal Shah in
Current site
Google Scholar
PubMed
Close
 MD
,
Elizabeth J. Shpall National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Elizabeth J. Shpall in
Current site
Google Scholar
PubMed
Close
 MD
, and
Steven T. Rosen National Comprehensive Cancer Network; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; Massachusetts General Hospital Cancer Center; City of Hope Comprehensive Cancer Center; American Society of Blood and Marrow Transplantation; University of Colorado Cancer Center; University of Washington/Seattle Cancer Care Alliance; Dana-Farber/Brigham and Women's Cancer Center; Fox Chase Cancer Center; Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance; Memorial Sloan Kettering Cancer Center; Moffitt Cancer Center; and The University of Texas MD Anderson Cancer Center.

Search for other papers by Steven T. Rosen in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Patients with relapsed or refractory (R/R) cancers have a poor prognosis and limited treatment options. The recent approval of 2 chimeric antigen receptor (CAR) autologous T-cell products for R/R B-cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma treatment is setting the stage for what is possible in other diseases. However, there are important factors that must be considered, including patient selection, toxicity management, and costs associated with CAR T-cell therapy. To begin to address these issues, NCCN organized a task force consisting of a multidisciplinary panel of experts in oncology, cancer center administration, and health policy, which met for the first time in March 2018. This report describes the current state of CAR T-cell therapy and future strategies that should be considered as the application of this novel immunotherapy expands and evolves.

Chair of the NCCN CAR T-Cell Therapy Task Force.

Correspondence: Steven T. Rosen, MD, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010. Email: srosen@coh.org
  • Collapse
  • Expand
  • 1.

    June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med 2018;379:6473.

  • 2.

    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989;86:1002410028.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Eshhar Z, Waks T, Bendavid A, Schindler DG. Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 2001;248:6776.

  • 4.

    Firor AE, Jares A, Ma Y. From humble beginnings to success in the clinic: chimeric antigen receptor-modified T-cells and implications for immunotherapy. Exp Biol Med (Maywood) 2015;240:10871098.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kawalekar OU, O'Connor RS, Fraietta JA et al.. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016;44:380390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Long AH, Haso WM, Shern JF et al.. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581590.

  • 7.

    van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 2015;14:499509.

  • 8.

    Almasbak H, Aarvak T, Vemuri MC. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res 2016;2016:5474602.

  • 9.

    Milone MC, Fish JD, Carpenito C et al.. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009;17:14531464.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hay KA, Turtle CJ. Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B-cell malignancies. Drugs 2017;77:237245.

  • 11.

    Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 2013;5:215ra172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013;13:525541.

  • 13.

    Crotta A, Zhang J, Keir C. Survival after stem-cell transplant in pediatric and young-adult patients with relapsed and refractory B-cell acute lymphoblastic leukemia. Curr Med Res Opin 2018;34:435440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kantarjian HM, Thomas D, Ravandi F et al.. Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration. Cancer 2010;116:55685574.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    O'Brien S, Thomas D, Ravandi F et al.. Outcome of adults with acute lymphocytic leukemia after second salvage therapy. Cancer 2008;113:31863191.

  • 16.

    Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput Struct Biotechnol J 2016;14:357362.

  • 17.

    Davila ML, Riviere I, Wang X et al.. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25.

  • 18.

    Gardner RA, Finney O, Annesley C et al.. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017;129:33223331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lee DW, Kochenderfer JN, Stetler-Stevenson M et al.. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015;385:517528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Maude SL, Frey N, Shaw PA et al.. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371:15071517.

  • 21.

    Park JH, Riviere I, Gonen M et al.. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378:449459.

  • 22.

    Turtle CJ, Hanafi LA, Berger C et al.. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016;126:21232138.

  • 23.

    Maude SL, Teachey DT, Rheingold SR et al.. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL [abstract]. J Clin Oncol 2016;34(Suppl 15):Abstract 3011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Maude SL, Laetsch TW, Buechner J et al.. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439448.

  • 25.

    Shah BD, Stock W, Wierda WG et al.. Phase 1 results of ZUMA-3: KTE-C19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in adult patients with relapsed/refractory acute lymphoblastic leukemia (R/R ALL) [abstract]. Blood 2017;130(Suppl 1):Abstract 888.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Shah BD, Wierda WG, Schiller GJ et al.. Updated results from ZUMA-3, a phase 1/2 study of KTE-C19 chimeric antigen receptor (CAR) T cell therapy, in adults with high-burden relapsed/refractory acute lymphoblastic leukemia (R/R ALL) [abstract]. J Clin Oncol 2017;35(Suppl 15):Abstract 3024.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Braig F, Brandt A, Goebeler M et al.. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017;129:100104.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fischer J, Paret C, El Malki K et al.. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother 2017;40:187195.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fry TJ, Shah NN, Orentas RJ et al.. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018;24:2028.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gardner R, Wu D, Cherian S et al.. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016;127:24062410.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Jacoby E, Nguyen SM, Fountaine TJ et al.. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun 2016;7:12320.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rayes A, McMasters RL, O'Brien MM. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer 2016;63:11131115.

  • 33.

    Shalabi H, Kraft IL, Wang HW et al.. Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica 2018;103:e215218.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sotillo E, Barrett DM, Black KL et al.. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015;5:12821295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Maude SL, Pulsipher MA, Boyer MW et al.. Efficacy and safety of CTL019 in the first US phase II multicenter trial in pediatric relapsed/refractory acute lymphoblastic leukemia: results of an interim analysis [abstract]. Blood 2016;128:Abstract 2801.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Maude SL, Shpall EJ, Grupp SA. Chimeric antigen receptor T-cell therapy for ALL. Hematology Am Soc Hematol Educ Program 2014;2014:559564.

  • 37.

    Riddell SR, Sommermeyer D, Berger C et al.. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 2014;20:141144.

  • 38.

    Qin H, Haso W, Nguyen SM, Fry TJ. Preclinical development of bispecific chimeric antigen receptor targeting both CD19 and CD22 [abstract]. Blood 2015;126:Abstract 4427.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Qin H, Nguyen SM, Ramakrishna S et al.. Novel CD19/CD22 bicistronic chimeric antigen receptors outperform single or bivalent cars in eradicating CD19+CD22+, CD19-, and CD22- pre-B leukemia [abstract]. Blood 2017;130(Suppl 1):Abstract 810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Shah NN, Stevenson MS, Yuan CM et al.. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer 2015;62:964969.

  • 41.

    Crump M, Neelapu SS, Farooq U et al.. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 2017;130:18001808.

  • 42.

    Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program 2011;2011:498505.

  • 43.

    Van Den Neste E, Schmitz N, Mounier N et al.. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant 2016;51:5157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Abramson JS, Palomba ML, Gordon LI et al.. High durable CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T cell product JCAR017 (TRANSCEND NHL 001): defined composition allows for dose-finding and definition of pivotal cohort [abstract]. Blood 2017;130(Suppl 1):Abstract 581.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Neelapu SS, Locke FL, Bartlett NL et al.. Long-term follow-up ZUMA-1: a pivotal trial of axicabtagene ciloleucel (Axi-Cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL) [abstract]. Blood 2017;130(Suppl 1):Abstract 578.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Neelapu SS, Locke FL, Bartlett NL et al.. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:25312544.

  • 47.

    Schuster SJ, Bishop MR, Tam CS et al.. Primary analysis of Juliet: a global, pivotal, phase 2 trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma [abstract]. Blood 2017;130(Suppl 1):Abstract 577.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Schuster SJ, Svoboda J, Chong EA et al.. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:25452554.

  • 49.

    Locke FL, Neelapu SS, Bartlett NL et al.. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther 2017;25:285295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Locke FL, Ghobadi A, Jacobson CA et al.. Durability of response in ZUMA-1, the pivotal phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients (Pts) with refractory large B-cell lymphoma [abstract]. J Clin Oncol 2018;36(Suppl):Abstract 3003.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Ali SA, Shi V, Maric I et al.. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 2016;128:16881700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Brudno JN, Maric I, Hartman SD et al.. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 2018;36:22672280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Kim MY, Yu KR, Kenderian SS et al.. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 2018;173:14391453.e19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Porter DL, Hwang WT, Frey NV et al.. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015;7:303ra139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Porter DL, Levine BL, Kalos M et al.. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725733.

  • 56.

    Ramos CA, Ballard B, Zhang H et al.. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 2017;127:34623471.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Turtle CJ, Hay KA, Hanafi LA et al.. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 2017;35:30103020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Wang CM, Wu ZQ, Wang Y et al.. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 2017;23:11561166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Berdeja JG, Lin Y, Raje NS et al.. First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: updated results [abstract]. J Clin Oncol 2017;35(Suppl):Abstract 3010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Fan F, Zhao W, Liu J et al.. Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma [abstract]. J Clin Oncol 2017;35(Suppl):Abstract LBA3001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Raje NS, Berdeja JG, Lin Y et al.. bb2121 anti-BCMA CAR T-cell therapy in patients with relapsed/refractory multiple myeloma: updated results from a multicenter phase I study [abstract]. J Clin Oncol 2018;36(Suppl):Abstract 8007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 2016;127:33213330.

  • 63.

    Neelapu SS, Tummala S, Kebriaei P et al.. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 2018;15:4762.

  • 64.

    Halton E, Llerandi D, Diamonte C et al.. Developing infrastructure: managing patients with cancer undergoing CAR T-cell therapy. Clin J Oncol Nurs 2017;21:3540.

  • 65.

    Lee DW, Gardner R, Porter DL et al.. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188195.

  • 66.

    Porter D, Frey N, Wood PA et al.. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel [published correction appears in J Hematol Oncol 2018;11:81]. J Hematol Oncol 2018;11:35.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Locke FL, Neelapu SS, Bartlett NL et al.. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL) [abstract]. Blood 2017;130(Suppl 1):Abstract 1547.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Chen F, Teachey DT, Pequignot E et al.. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods 2016;434:18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Giavridis T, van der Stegen SJ, Eyquem J et al.. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018;24:731738.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Kenderian SS, Ruella M, Shestova O et al.. Ruxolitinib prevents cytokine release syndrome after CART cell therapy without impairing the anti-tumor effect in a xenograft model [abstract]. Blood 2016;128:Abstract 652.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Norelli M, Camisa B, Barbiera G et al.. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018;24:739748.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Shah NN, Shalabi H, Yates B et al.. Beyond cytokine storm: optimizing treatment strategies to target the complex interplay between CAR mediated inflammatory response, disseminated intravascular coagulation and macrophage activation syndrome [abstract]. Blood 2017;130(Suppl 1):Abstract 1277.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Hu Y, Sun J, Wu Z et al.. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol 2016;9:70.

  • 74.

    Lacey SF, Shaw PA, Teachey DT et al.. Biomarker profiling differentiates sepsis from cytokine release syndrome in chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia (ALL) [abstract]. Blood 2016;128:Abstract 2812.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Santomasso BD, Park JH, Salloum D et al.. Clinical and biologic correlates of neurotoxicity associated with CAR T cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018;8:958971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Teachey DT, Lacey SF, Shaw PA et al.. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016;6:664679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res 2018;6:4.

  • 78.

    Hay KA, Gauthier J, Hirayama AV et al.. Factors impacting disease-free survival in adult B cell B-ALL patients achieving MRD-negative CR after CD19 CAR-T cells [abstract]. J Clin Oncol 2018;36(Suppl):Abstract 7005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Gust J, Hay KA, Hanafi LA et al.. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 2017;7:14041419.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Brown CE, Alizadeh D, Starr R et al.. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016;375:25612569.

  • 81.

    Kueberuwa G, Kalaitsidou M, Cheadle E et al.. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol Ther Oncolytics 2018;8:4151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Sampson JH, Choi BD, Sanchez-Perez L et al.. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 2014;20:972984.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Abken H. Driving CARs on the highway to solid cancer: some considerations on the adoptive therapy with CAR T cells. Hum Gene Ther 2017;28:10471060.

  • 84.

    Castellarin M, Watanabe K, June CH et al.. Driving cars to the clinic for solid tumors. Gene Ther 2018;25:165175.

  • 85.

    Abramson JS, McGree B, Noyes S et al.. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma. N Engl J Med 2017;377:783784.

  • 86.

    Brown CE, Aguilar B, Starr R et al.. Optimization of IL13Ralpha2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol Ther 2018;26:3144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Brown CE, Starr R, Aguilar B et al.. Stem-like tumor-initiating cells isolated from IL13Ralpha2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin Cancer Res 2012;18:21992209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Kahlon KS, Brown C, Cooper LJ et al.. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004;64:91609166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Brown CE, Badie B, Barish ME et al.. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 2015;21:40624072.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Ahmed N, Brawley V, Hegde M et al.. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017;3:10941101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    O'Rourke DM, Nasrallah MP, Desai A et al.. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9:eaaa0984.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646674.

  • 93.

    Beatty GL, Haas AR, Maus MV et al.. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2014;2:112120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Hegde M, Mukherjee M, Grada Z et al.. Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest 2016;126:30363052.

  • 95.

    Kloss CC, Condomines M, Cartellieri M et al.. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 2013;31:7175.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Caruso HG, Hurton LV, Najjar A et al.. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 2015;75:35053518.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Liu X, Jiang S, Fang C et al.. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 2015;75:35963607.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    McGray AJ, Hallett R, Bernard D et al.. Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor. Mol Ther 2014;22:206218.

  • 99.

    Moon EK, Wang LC, Dolfi DV et al.. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 2014;20:42624273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Cherkassky L, Morello A, Villena-Vargas J et al.. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016;126:31303144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Chmielewski M, Abken H. CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 2012;61:12691277.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Hanafi LA, Gauchat D, Godin-Ethier J et al.. Fludarabine downregulates indoleamine 2,3-dioxygenase in tumors via a proteasome-mediated degradation mechanism. PLoS One 2014;9:e99211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    John LB, Devaud C, Duong CP et al.. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 2013;19:56365646.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Koneru M, Purdon TJ, Spriggs D et al.. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 2015;4:e994446.

  • 105.

    Mohammed S, Sukumaran S, Bajgain P et al.. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 2017;25:249258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Ninomiya S, Narala N, Huye L et al.. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 2015;125:39053916.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Prosser ME, Brown CE, Shami AF et al.. Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol Immunol 2012;51:263272.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Walter S, Weinschenk T, Stenzl A et al.. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012;18:12541261.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Adusumilli PS, Cherkassky L, Villena-Vargas J et al.. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 2014;6:261ra151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Katz SC, Point GR, Cunetta M et al.. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther 2016;23:142148.

  • 111.

    Priceman SJ, Tilakawardane D, Jeang B et al.. Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2(+) breast cancer metastasis to the brain. Clin Cancer Res 2018;24:95105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Katz SC, Burga RA, McCormack E et al.. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 2015;21:31493159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    You F, Jiang L, Zhang B et al.. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci 2016;59:386397.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Craddock JA, Lu A, Bear A et al.. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 2010;33:780788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Di Stasi A, De Angelis B, Rooney CM et al.. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 2009;113:63926402.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Moon EK, Carpenito C, Sun J et al.. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 2011;17:47194730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Caruana I, Savoldo B, Hoyos V et al.. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 2015;21:524529.

  • 118.

    Lo A, Wang LS, Scholler J et al.. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res 2015;75:28002810.

  • 119.

    Schuberth PC, Hagedorn C, Jensen SM et al.. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med 2013;11:187.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Mirzaei HR, Rodriguez A, Shepphird J et al.. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol 2017;8:1850.

  • 121.

    Saudemont A, Jespers L, Clay T. Current status of gene engineering cell therapeutics. Front Immunol 2018;9:153.

  • 122.

    Barker JN, Doubrovina E, Sauter C et al.. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood 2010;116:50455049.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Comoli P, Basso S, Labirio M et al.. T cell therapy of Epstein-Barr virus and adenovirus infections after hemopoietic stem cell transplant. Blood Cells Mol Dis 2008;40:6870.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Dong L, Gao ZY, Chang LJ et al.. Adoptive transfer of cytomegalovirus/Epstein-Barr virus-specific immune effector cells for therapeutic and preventive/preemptive treatment of pediatric allogeneic cell transplant recipients. J Pediatr Hematol Oncol 2010;32:e3137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Doubrovina E, Oflaz-Sozmen B, Prockop SE et al.. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 2012;119:26442656.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Papadopoulou A, Gerdemann U, Katari UL et al.. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med 2014;6:242ra83.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    O'Reilly RJ, Prockop S, Hasan AN et al.. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant 2016;51:11631172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Kochenderfer JN, Wilson WH, Janik JE et al.. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116:40994102.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Bhoj VG, Arhontoulis D, Wertheim G et al.. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 2016;128:360370.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Hill JA, Li D, Hay KA et al.. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 2018;131:121130.

  • 131.

    Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al.. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415419.

  • 132.

    Scholler J, Brady TL, Binder-Scholl G et al.. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012;4:132ra53.

  • 133.

    Lacey SF, Xu J, Ruella M et al.. Cars in leukemia: relapse with antigen-negative leukemia originating from a single B cell expressing the leukemia-targeting CAR [abstract]. Blood 2016;128:Abstract 281.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Cornetta K, Duffy L, Turtle CJ et al.. Absence of replication-competent lentivirus in the clinic: analysis of infused T cell products. Mol Ther 2018;26:280288.

  • 135.

    Ariza-Heredia EJ, Granwehr BP, Viola GM et al.. False-positive HIV nucleic acid amplification testing during CAR T-cell therapy. Diagn Microbiol Infect Dis 2017;88:305307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    De Ravin SS, Gray JT, Throm RE et al.. False-positive HIV PCR test following ex vivo lentiviral gene transfer treatment of X-linked severe combined immunodeficiency vector. Mol Ther 2014;22:244245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Laetsch TW, Maude SL, Milone MC et al.. False-positive results with select HIV-1 NAT methods following lentivirus-based tisagenlecleucel therapy. Blood 2018;131:25962598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Maus MV, Nikiforow S. The why, what, and how of the new FACT standards for immune effector cells. J Immunother Cancer 2017;5:36.

  • 139.

    Palazzo M, Shah GL, Copelan O et al.. Revaccination after autologous hematopoietic stem cell transplantation is safe and effective in patients with multiple myeloma receiving lenalidomide maintenance. Biol Blood Marrow Transplant 2018;24:871876.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Grupp SA, Laetsch TW, Buechner J et al.. Analysis of a global registration trial of the efficacy and safety of CTL019 in pediatric and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL) [abstract]. Blood 2016;128:Abstract 221.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Neelapu SS, Locke FL, Bartlett NL et al.. Kte-C19 (anti-CD19 CAR T Cells) induces complete remissions in patients with refractory diffuse large B-cell lymphoma (DLBCL): results from the pivotal phase 2 Zuma-1 [abstract]. Blood 2016;128:Abstract LBA-6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Tice JA, Walsh JM, Otuonye I et al.. Chimeric antigen receptor T-cell therapy for B-cell cancers: effectiveness and value. https://icer-review.org/wp-content/uploads/2017/07/ICER_CAR_T_Final_Evidence_Report_032318.pdf. Institute for Clinical and Economic Review. Published March 23, 2018. Accessed August 20, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Medicare Program; Hospital Inpatient Prospective Payment Systems for Acute Care Hospitals and the Long-Term Care Hospital Prospective Payment System and Policy Changes and Fiscal Year 2019 Rates; Quality Reporting Requirements for Specific Providers; Medicare and Medicaid Electronic Health Record (EHR) Incentive Programs (Promoting Interoperability Programs) Requirements for Eligible Hospitals, Critical Access Hospitals, and Eligible Professionals; Medicare Cost Reporting Requirements; and Physician Certification and Recertification of Claims. Final Rule. Federal Register 2018;83:4114441784. Available at: https://www.federalregister.gov/d/2018-16766. Accessed August 21, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Heymach J, Krilov L, Alberg A et al.. Clinical cancer advances 2018: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 2018;36:10201044.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 10619 3429 1300
PDF Downloads 2343 309 43
EPUB Downloads 0 0 0