NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018

Restricted access

The NCCN Guidelines for Thyroid Carcinoma provide recommendations for the management of different types of thyroid carcinoma, including papillary, follicular, Hürthle cell, medullary, and anaplastic carcinomas. These NCCN Guidelines Insights summarize the panel discussion behind recent updates to the guidelines, including the expanding role of molecular testing for differentiated thyroid carcinoma, implications of the new pathologic diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features, and the addition of a new targeted therapy option for BRAF V600E–mutated anaplastic thyroid carcinoma.

Provided content development and/or authorship assistance.

Please NoteThe NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. The NCCN Guidelines® Insights highlight important changes in the NCCN Guidelines® recommendations from previous versions. Colored markings in the algorithm show changes and the discussion aims to further understanding of these changes by summarizing salient portions of the panel's discussion, including the literature reviewed.The NCCN Guidelines Insights do not represent the full NCCN Guidelines; further, the National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding the content, use, or application of the NCCN Guidelines and NCCN Guidelines Insights and disclaims any responsibility for their applications or use in any way.The full and most current version of these NCCN Guidelines is available at NCCN.org.© National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.
  • 1.

    MazzaferriEL. Thyroid carcinoma: papillary and follicular. In: MazzaferriELSamaanN eds. Endocrine Tumors. Cambridge, England: Blackwell Scientific Publications; 1993:278333.

    • Search Google Scholar
    • Export Citation
  • 2.

    HegedusL. Clinical practice. The thyroid nodule. N Engl J Med2004;351:1764771.

  • 3.

    CooperDSDohertyGMHaugenBR. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid2009;19:11671214.

    • Search Google Scholar
    • Export Citation
  • 4.

    EzzatSSartiDACainDRBraunsteinGD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med1994;154:18381840.

    • Search Google Scholar
    • Export Citation
  • 5.

    NooneAMHowladerNKrapchoM eds. SEER Cancer Statistics Review 1975-2015 based on November 2017 SEER data submission posted to the SEER web site April 2018. Bethesda, MD: National Cancer Institute; 2018. Available at: https://seer.cancer.gov/csr/1975_2015/. Accessed November 20 2018.

    • Search Google Scholar
    • Export Citation
  • 6.

    SiegelRLMillerKDJemalA. Cancer statistics, 2018. CA Cancer J Clin2018;68:730.

  • 7.

    AminMBEdgeSBGreeneF eds. AJCC Cancer Staging Manual8th ed.New York, NY: Springer International Publishing; 2017.

  • 8.

    SiegelRWardEBrawleyOJemalA. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin2011;61:212236.

    • Search Google Scholar
    • Export Citation
  • 9.

    JemalASiegelRWardE. Cancer statistics, 2009. CA Cancer J Clin2009;59:225249.

  • 10.

    KaplanMM. Clinical evaluation and management of solitary thyroid nodules. In: BravermanLEUtigerRD eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text9th ed.Philadelphia, PA: Lippincott Williams & Wilkins; 2005:9961010.

    • Search Google Scholar
    • Export Citation
  • 11.

    LayfieldLJCibasESGharibHMandelSJ. Thyroid aspiration cytology: current status. CA Cancer J Clin2009;59:99110.

  • 12.

    YangJSchnadigVLogronoRWassermanPG. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer2007;111:306315.

    • Search Google Scholar
    • Export Citation
  • 13.

    CibasESAliSZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid2017;27:13411346.

  • 14.

    GiordanoTJBeaudenon-HuibregtseSShindeR. Molecular testing for oncogenic gene mutations in thyroid lesions: a case-control validation study in 413 postsurgical specimens. Hum Pathol2014;45:13391347.

    • Search Google Scholar
    • Export Citation
  • 15.

    AlexanderEKKennedyGCBalochZW. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med2012;367:705715.

    • Search Google Scholar
    • Export Citation
  • 16.

    NikiforovYEOhoriNPHodakSP. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab2011;96:33903397.

    • Search Google Scholar
    • Export Citation
  • 17.

    OhoriNPNikiforovaMNSchoedelKE. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol2010;118:1723.

    • Search Google Scholar
    • Export Citation
  • 18.

    RiveraMRicarte-FilhoJKnaufJ. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol2010;23:11911200.

    • Search Google Scholar
    • Export Citation
  • 19.

    NikiforovYEStewardDLRobinson-SmithTM. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab2009;94:20922098.

    • Search Google Scholar
    • Export Citation
  • 20.

    MusholtTJFottnerCWeberMM. Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg2010;34:25952603.

    • Search Google Scholar
    • Export Citation
  • 21.

    LassalleSHofmanVIlieM. Clinical impact of the detection of BRAF mutations in thyroid pathology: potential usefulness as diagnostic, prognostic and theragnostic applications. Curr Med Chem2010;17:18391850.

    • Search Google Scholar
    • Export Citation
  • 22.

    ChudovaDWildeJIWangET. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab2010;95:52965304.

    • Search Google Scholar
    • Export Citation
  • 23.

    YarchoanMLiVolsiVABroseMS. BRAF mutation and thyroid cancer recurrence. J Clin Oncol2015;33:78.

  • 24.

    LiCLeeKCSchneiderEBZeigerMA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab2012;97:45594570.

    • Search Google Scholar
    • Export Citation
  • 25.

    BasoloFTorregrossaLGianniniR. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab2010;95:41974205.

    • Search Google Scholar
    • Export Citation
  • 26.

    LiuRBishopJZhuG. Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality[published online September 1 2016]. JAMA Oncol. doi: 10.1001/jamaoncol.2016.3288.

    • Search Google Scholar
    • Export Citation
  • 27.

    SadowPMHeinrichMCCorlessCL. Absence of BRAF, NRAS, KRAS, HRAS mutations, and RET/PTC gene rearrangements distinguishes dominant nodules in Hashimoto thyroiditis from papillary thyroid carcinomas. Endocr Pathol2010;21:7379.

    • Search Google Scholar
    • Export Citation
  • 28.

    RodriguesHGDe PontesAAAdanLF. Contribution of the BRAF oncogene in the pre-operative phase of thyroid carcinoma. Oncol Lett2013;6:191196.

    • Search Google Scholar
    • Export Citation
  • 29.

    Canadas-GarreMBecerra-MassarePLopez de la Torre-CasaresM. Reduction of false-negative papillary thyroid carcinomas by the routine analysis of BRAF(T1799A) mutation on fine-needle aspiration biopsy specimens: a prospective study of 814 thyroid FNAB patients. Ann Surg2012;255:986992.

    • Search Google Scholar
    • Export Citation
  • 30.

    LeeSTKimSWKiCS. Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab2012;97:22992306.

    • Search Google Scholar
    • Export Citation
  • 31.

    WangCCFriedmanLKennedyGC. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid2011;21:243251.

    • Search Google Scholar
    • Export Citation
  • 32.

    AlbarelFConte-DevolxBOliverC. From nodule to differentiated thyroid carcinoma: contributions of molecular analysis in 2012. Ann Endocrinol (Paris)2012;73:155164.

    • Search Google Scholar
    • Export Citation
  • 33.

    HodakSPRosenthalDSAmerican Thyroid Association Clinical Affairs Committee. Information for clinicians: commercially available molecular diagnosis testing in the evaluation of thyroid nodule fine-needle aspiration specimens. Thyroid2013;23:131134.

    • Search Google Scholar
    • Export Citation
  • 34.

    McIverBCastroMRMorrisJC. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab2014;99:40694077.

    • Search Google Scholar
    • Export Citation
  • 35.

    CelikBWhetsellCRNassarA. Afirma GEC and thyroid lesions: an institutional experience. Diagn Cytopathol2015;43:966970.

  • 36.

    BraunerEHolmesBJKraneJF. Performance of the Afirma Gene Expression Classifier in Hurthle cell thyroid nodules differs from other indeterminate thyroid nodules. Thyroid2015;25:789796.

    • Search Google Scholar
    • Export Citation
  • 37.

    DuhQYAngellTEBabiarzJ. Development and validation of classifiers to enhance the Afirma genomic sequencing classifier performance among Hürhtle cell specimens. Presented at the 87th Annual Meeting of the American Thryoid Association; October18–222017; Victoria, BC, Canada.

    • Search Google Scholar
    • Export Citation
  • 38.

    NikiforovaMNMercurioSWaldAI. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer2018;124:16821690.

    • Search Google Scholar
    • Export Citation
  • 39.

    ShermanSI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol)2010;22:464468.

  • 40.

    SchlumbergerMTaharaMWirthLJ. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med2015;372:621630.

  • 41.

    BroseMSWordenFPNewboldKL. Effect of age on the efficacy and safety of lenvatinib in radioiodine-refractory differentiated thyroid cancer in the phase III SELECT trial. J Clin Oncol2017;35:26922699.

    • Search Google Scholar
    • Export Citation
  • 42.

    BroseMSNuttingCMJarzabB. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet2014;384:319328.

    • Search Google Scholar
    • Export Citation
  • 43.

    CarrLLMankoffDAGoulartBH. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res2010;16:52605268.

    • Search Google Scholar
    • Export Citation
  • 44.

    CabanillasMEWaguespackSGBronsteinY. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab2010;95:25882595.

    • Search Google Scholar
    • Export Citation
  • 45.

    LocatiLDLicitraLAgateL. Treatment of advanced thyroid cancer with axitinib: phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer2014;120:26942703.

    • Search Google Scholar
    • Export Citation
  • 46.

    CohenEERosenLSVokesEE. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol2008;26:47084713.

    • Search Google Scholar
    • Export Citation
  • 47.

    CohenEETortoriciMKimS. A phase II trial of axitinib in patients with various histologic subtypes of advanced thyroid cancer: long-term outcomes and pharmacokinetic/pharmacodynamic analyses. Cancer Chemother Pharmacol2014;74:12611270.

    • Search Google Scholar
    • Export Citation
  • 48.

    LimSMChangHYoonMJ. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol2013;24:30893094.

    • Search Google Scholar
    • Export Citation
  • 49.

    LeboulleuxSBastholtLKrauseT. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol2012;13:897905.

    • Search Google Scholar
    • Export Citation
  • 50.

    ShahMHDe SouzaJWirthL. Cabozantinib in patients with radioiodine-refractory differentiated thryoid cancer who progressed on prior VEGFR-targeted therapy: results of NCI- and ITOG-sponsored multicenter phase II clinical trial [abstract]. Presented at the 15th International Thyroid Congress; October18–232015; Orlando, Florida. Abstract 73.

    • Search Google Scholar
    • Export Citation
  • 51.

    CabanillasMEBroseMSHollandJ. A phase I study of cabozantinib (XL184) in patients with differentiated thyroid cancer. Thyroid2014;24:15081514.

    • Search Google Scholar
    • Export Citation
  • 52.

    BibleKCSumanVJMolinaJR. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol2010;11:962972.

    • Search Google Scholar
    • Export Citation
  • 53.

    Klein HesselinkENSteenvoordenDKapiteijnE. Therapy of endocrine disease: response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: a systematic review and meta-analysis. Eur J Endocrinol2015;172:R215225.

    • Search Google Scholar
    • Export Citation
  • 54.

    FalchookGSMillwardMHongD. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid2015;25:7177.

  • 55.

    RothenbergSMMcFaddenDGPalmerEL. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res2015;21:10281035.

    • Search Google Scholar
    • Export Citation
  • 56.

    BroseMSCabanillasMECohenEE. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol2016;17:12721282.

    • Search Google Scholar
    • Export Citation
  • 57.

    ChouAFraserSToonCW. A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol2015;39:652659.

    • Search Google Scholar
    • Export Citation
  • 58.

    ParkGKimTHLeeHO. Standard immunohistochemistry efficiently screens for anaplastic lymphoma kinase rearrangements in differentiated thyroid cancer. Endocr Relat Cancer2015;22:5563.

    • Search Google Scholar
    • Export Citation
  • 59.

    PerotGSoubeyranIRibeiroA. Identification of a recurrent STRN/ALK fusion in thyroid carcinomas. PLoS One2014;9:e87170.

  • 60.

    KellyLMBarilaGLiuP. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A2014;111:42334238.

    • Search Google Scholar
    • Export Citation
  • 61.

    TurskiMLVidwansSJJankuF. Genomically driven tumors and actionability across histologies: BRAF-mutant cancers as a paradigm. Mol Cancer Ther2016;15:533547.

    • Search Google Scholar
    • Export Citation
  • 62.

    ShahMHWeiLWirthLJ. Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma [abstract]. J Clin Oncol2017;35(Suppl):Abstract 6022.

    • Search Google Scholar
    • Export Citation
  • 63.

    PatelKN. Noninvasive encapsulated follicular variant of papillary thyroid “cancer” (or not): time for a name change. JAMA Oncol2016;2:10051006.

    • Search Google Scholar
    • Export Citation
  • 64.

    NikiforovYESeethalaRRTalliniG. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol2016;2:10231029.

    • Search Google Scholar
    • Export Citation
  • 65.

    ViveroMKraftSBarlettaJA. Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid2013;23:273279.

  • 66.

    PianaSFrasoldatiADi FeliceE. Encapsulated well-differentiated follicular-patterned thyroid carcinomas do not play a significant role in the fatality rates from thyroid carcinoma. Am J Surg Pathol2010;34:868872.

    • Search Google Scholar
    • Export Citation
  • 67.

    LiuJSinghBTalliniG. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer2006;107:12551264.

    • Search Google Scholar
    • Export Citation
  • 68.

    SeethalaRRAsaSLBullockMJ. Protocol for the Examination of Specimens From Patients With Carcinomas of the Thyroid Gland 2017. Available at: https://cap.objects.frb.io/protocols/cp-thyroid-17protocol-4000.pdf. Accessed March 22 2018.

    • Search Google Scholar
    • Export Citation
  • 69.

    PaulsonVAShivdasaniPAngellTE. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features accounts for over half of “carcinomas” harboring RAS mutations. Thyroid2017;27:506511.

    • Search Google Scholar
    • Export Citation
  • 70.

    BrandlerTCLiuCZChoM. Does noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) have a unique molecular profile?Am J Clin Pathol2018;150:451460.

    • Search Google Scholar
    • Export Citation
  • 71.

    JiangXSHarrisonGPDattoMB. Young investigator challenge: molecular testing in noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Cancer Cytopathol2016;124:893900.

    • Search Google Scholar
    • Export Citation
  • 72.

    SongSJLiVolsiVAMontoneKBalochZ. Pre-operative features of non-invasive follicular thyroid neoplasms with papillary-like nuclear features: an analysis of their cytological, Gene Expression Classifier and sonographic findings. Cytopathology2017;28:488494.

    • Search Google Scholar
    • Export Citation
  • 73.

    AreCShahaAR. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol2006;13:453464.

    • Search Google Scholar
    • Export Citation
  • 74.

    SmallridgeRCAinKBAsaSL. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid2012;22:11041139.

    • Search Google Scholar
    • Export Citation
  • 75.

    NachalonYStern-ShavitSBacharG. Aggressive palliation and survival in anaplastic thyroid carcinoma. JAMA Otolaryngol Head Neck Surg2015;141:11281132.

    • Search Google Scholar
    • Export Citation
  • 76.

    KunstmanJWJuhlinCCGohG. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet2015;24:23182329.

    • Search Google Scholar
    • Export Citation
  • 77.

    RosoveMHPeddiPFGlaspyJA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med2013;368:684685.

  • 78.

    TakanoTItoYHirokawaM. BRAF V600E mutation in anaplastic thyroid carcinomas and their accompanying differentiated carcinomas. Br J Cancer2007;96:15491553.

    • Search Google Scholar
    • Export Citation
  • 79.

    KeutgenXMSadowskiSMKebebewE. Management of anaplastic thyroid cancer. Gland Surg2015;4:4451.

  • 80.

    SubbiahVKreitmanRJWainbergZA. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol2018;36:713.

    • Search Google Scholar
    • Export Citation
  • 81.

    U.S. Food & Drug Administration. FDA approves dabrafenib plus trametinib for anaplastic thyroid cancer with BRAF V600E mutation. Available at: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm606708.htm. Accessed August 24 2018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7 7 0
Full Text Views 7805 7805 593
PDF Downloads 2458 2458 238
EPUB Downloads 0 0 0