The NCCN Guidelines for Survivorship provide screening, evaluation, and treatment recommendations for common physical and psychosocial consequences of cancer and cancer treatment to help healthcare professionals who work with survivors of adult-onset cancer in the posttreatment period. This portion of the guidelines describes recommendations regarding the management of anthracycline-induced cardiotoxicity and lymphedema. In addition, recommendations regarding immunizations and the prevention of infections in cancer survivors are included.

Please NoteThe NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their applications or use in any way. The full NCCN Guidelines for Survivorship are not printed in this issue of JNCCN but can be accessed online at NCCN.org.© National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.
Disclosures for the NCCN Survivorship PanelAt the beginning of each NCCN Guidelines panel meeting, panel members review all potential conflicts of interest. NCCN, in keeping with its commitment to public transparency, publishes these disclosures for panel members, staff, and NCCN itself.Individual disclosures for the NCCN Survivorship Panel members can be found on page 1247. (The most recent version of these guidelines and accompanying disclosures are available on the NCCN Web site at NCCN.org.)These guidelines are also available on the Internet. For the latest update, visit NCCN.org.
NCCN Survivorship Panel Members*Crystal S. Denlinger, MD/Chair†Fox Chase Cancer CenterTara Sanft, MD/Vice-Chair†ÞYale Cancer Center/Smilow Cancer HospitalK. Scott Baker, MD, MS€ξFred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance*Gregory Broderick, MDωMayo Clinic Cancer CenterWendy Demark-Wahnefried, PhD, RD≅University of Alabama at Birmingham Comprehensive Cancer CenterDebra L. Friedman, MD, MS€‡†Vanderbilt-Ingram Cancer Center*Mindy Goldman, MDΩUCSF Helen Diller Family Comprehensive Cancer CenterMelissa Hudson, MD€‡†St. Jude Children's Research Hospital/The University of Tennessee Health Science CenterNazanin Khakpour, MD¶Moffitt Cancer CenterAllison King, MD€ψ‡†Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of MedicineDivya Koura, MD‡UC San Diego Moores Cancer CenterRobin M. Lally, PhD, RN, MS#Fred & Pamela Buffett Cancer CenterTerry S. Langbaum, MAS¥The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsAllison L. McDonough, MDMassachusetts General Hospital Cancer CenterMichelle Melisko, MD†£UCSF Helen Diller Family Comprehensive Cancer Center*Jose G. Montoya, MDΦStanford Cancer InstituteKathi Mooney, RN, PhD#†Huntsman Cancer Institute at the University of Utah*Javid J. Moslehi, MDλÞVanderbilt-Ingram Cancer CenterTracey O'Connor, MD†Roswell Park Comprehensive Cancer CenterLinda Overholser, MD, MPHÞUniversity of Colorado Cancer Center*Electra D. Paskett, PhDεThe Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research InstituteJeffrey Peppercorn, MD, MPH†Massachusetts General Hospital Cancer CenterWilliam Pirl, MDθDana-Farber/Brigham and Women's Cancer CenterM. Alma Rodriguez, MD‡†ÞThe University of Texas MD Anderson Cancer CenterKathryn J. Ruddy, MD, MPH‡†Mayo Clinic Cancer CenterPaula Silverman, MD†Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer InstituteSophia Smith, PhD, MSW£Duke Cancer Institute*Karen L. Syrjala, PhDθ£Fred Hutchinson Cancer Research Center/Seattle Cancer Care AllianceAmye Tevaarwerk, MD‡University of Wisconsin Carbone Cancer Center*Susan G. Urba, MD†£University of Michigan Rogel Cancer CenterMark T. Wakabayashi, MD, MPHΩCity of Hope National Medical CenterPhyllis Zee, MD, PhDψRobert H. Lurie Comprehensive Cancer Center of Northwestern UniversityNCCN Staff: Deborah A. Freedman-Cass, PhD, and Nicole R. McMillian, MSKEY:*Discussion Section Writing CommitteeSpecialties: †Medical Oncology; ÞInternal Medicine; €Pediatric Oncology; ξBone Marrow Transplantation; ωUrology; ≅Nutrition Science/Dietitian; ‡Hematology/Hematology Oncology; ΩGynecology/Gynecologic Oncology; ¶Surgery/Surgical Oncology; ψNeurology/Neuro-Oncology; #Nursing; ¥Patient Advocacy; £Supportive Care Including Palliative, Pain Management, Pastoral Care, and Oncology Social Work; ΦInfectious Diseases; λCardiology; εEpidemiology; θPsychiatry, Psychology, Including Health Behavior.
  • 1.

    DarbySCEwertzMMcGaleP. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med2013;368:987998.

  • 2.

    KyBVejpongsaPYehET. Emerging paradigms in cardiomyopathies associated with cancer therapies. Circ Res2013;113:754764.

  • 3.

    LiWCroceKSteensmaDP. Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J Am Coll Cardiol2015;66:11601178.

    • Search Google Scholar
    • Export Citation
  • 4.

    MoslehiJJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med2016;375:14571467.

  • 5.

    O'FarrellSGarmoHHolmbergL. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol2015;33:12431251.

    • Search Google Scholar
    • Export Citation
  • 6.

    SchmidMSammonJDReznorG. Dose-dependent effect of androgen deprivation therapy for localized prostate cancer on adverse cardiac events. BJU Int2015;118:221229.

    • Search Google Scholar
    • Export Citation
  • 7.

    DessRTSunYMatuszakMM. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol2017;35:13951402.

    • Search Google Scholar
    • Export Citation
  • 8.

    ArmenianSHXuLKyB. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol2016;34:11221130.

    • Search Google Scholar
    • Export Citation
  • 9.

    MoslehiJ. The cardiovascular perils of cancer survivorship. N Engl J Med2013;368:10551056.

  • 10.

    MoslehiJChengS. Cardio-oncology: it takes two to translate. Sci Transl Med2013;5:187fs120.

  • 11.

    LipshultzSEColanSDGelberRD. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med1991;324:808815.

    • Search Google Scholar
    • Export Citation
  • 12.

    LipshultzSELipsitzSRMoneSM. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med1995;332:17381743.

    • Search Google Scholar
    • Export Citation
  • 13.

    SmithLACorneliusVRPlummerCJ. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer2010;10:337.

    • Search Google Scholar
    • Export Citation
  • 14.

    MinottiGMennaPSalvatorelliE. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev2004;56:185229.

    • Search Google Scholar
    • Export Citation
  • 15.

    ZhangSLiuXBawa-KhalfeT. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med2012;18:16391642.

  • 16.

    KoelwynGJKhouriMMackeyJR. Running on empty: cardiovascular reserve capacity and late effects of therapy in cancer survivorship. J Clin Oncol2012;30:44584461.

    • Search Google Scholar
    • Export Citation
  • 17.

    LotrionteMBiondi-ZoccaiGAbbateA. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol2013;112:19801984.

    • Search Google Scholar
    • Export Citation
  • 18.

    RomondEHJeongJHRastogiP. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol2012;30:37923799.

    • Search Google Scholar
    • Export Citation
  • 19.

    RussellSDBlackwellKLLawrenceJ. Independent adjudication of symptomatic heart failure with the use of doxorubicin and cyclophosphamide followed by trastuzumab adjuvant therapy: a combined review of cardiac data from the National Surgical Adjuvant breast and Bowel Project B-31 and the North Central Cancer Treatment Group N9831 clinical trials. J Clin Oncol2010;28:34163421.

    • Search Google Scholar
    • Export Citation
  • 20.

    CardinaleDColomboABacchianiG. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation2015;131:19811988.

    • Search Google Scholar
    • Export Citation
  • 21.

    DraftsBCTwomleyKMD'AgostinoRJr.. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging2013;6:877885.

    • Search Google Scholar
    • Export Citation
  • 22.

    GroarkeJTongDKhambhatiJ. Breast cancer therapies and cardiomyopathy. Med Clin North Am2012;96:10011019.

  • 23.

    JohnsonDBBalkoJMComptonML. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med2016;375:17491755.

  • 24.

    MoslehiJJSalemJESosmanJA. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet2018;391:933.

  • 25.

    DanielsLAKrolADde GraafMA. Screening for coronary artery disease after mediastinal irradiation in Hodgkin lymphoma survivors: phase II study of indication and acceptancedagger. Ann Oncol2014;25:11981203.

    • Search Google Scholar
    • Export Citation
  • 26.

    CardinaleDColomboALamantiaG. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol2010;55:213220.

    • Search Google Scholar
    • Export Citation
  • 27.

    Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J Med1992;327:685691.

    • Search Google Scholar
    • Export Citation
  • 28.

    ThakurAWittelesRM. Cancer therapy-induced left ventricular dysfunction: interventions and prognosis. J Card Fail2014;20:155158.

  • 29.

    SilberJHCnaanAClarkBJ. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol2004;22:820828.

    • Search Google Scholar
    • Export Citation
  • 30.

    AdamoVRicciardiGRAdamoB. The risk of toxicities from trastuzumab, alone or in combination, in an elderly breast cancer population. Oncology2014;86:1621.

    • Search Google Scholar
    • Export Citation
  • 31.

    MitraMSDonthamsettySWhiteBMehendaleHM. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol2008;231:413422.

    • Search Google Scholar
    • Export Citation
  • 32.

    ScottEDaleyAJDollH. Effects of an exercise and hypocaloric healthy eating program on biomarkers associated with long-term prognosis after early-stage breast cancer: a randomized controlled trial. Cancer Causes Control2013;24:181191.

    • Search Google Scholar
    • Export Citation
  • 33.

    FerrariNTosettiFDe FloraS. Diet-derived phytochemicals: from cancer chemoprevention to cardio-oncological prevention. Curr Drug Targets2011;12:19091924.

    • Search Google Scholar
    • Export Citation
  • 34.

    DolinskyVWRoganKJSungMM. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab2013;305:E243253.

    • Search Google Scholar
    • Export Citation
  • 35.

    EmterCABowlesDK. Curing the cure: utilizing exercise to limit cardiotoxicity. Med Sci Sports Exerc2008;40:806807.

  • 36.

    HydockDSLienCYJensenBT. Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity. Integr Cancer Ther2011;10:4757.

    • Search Google Scholar
    • Export Citation
  • 37.

    JonesLWLiuQArmstrongGT. Exercise and risk of major cardiovascular events in adult survivors of childhood hodgkin lymphoma: a report from the childhood cancer survivor study. J Clin Oncol2014;32:36433650.

    • Search Google Scholar
    • Export Citation
  • 38.

    JonesLWHabelLAWeltzienE. Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. J Clin Oncol2016;34:27432749.

    • Search Google Scholar
    • Export Citation
  • 39.

    RockEDeMicheleA. Nutritional approaches to late toxicities of adjuvant chemotherapy in breast cancer survivors. J Nutr2003;133:3785S3793S.

    • Search Google Scholar
    • Export Citation
  • 40.

    SturgeonKMKyBLibonatiJRSchmitzKH. The effects of exercise on cardiovascular outcomes before, during, and after treatment for breast cancer. Breast Cancer Res Treat2014;143:219226.

    • Search Google Scholar
    • Export Citation
  • 41.

    HuntSABakerDWChinMH. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol2001;38:21012113.

    • Search Google Scholar
    • Export Citation
  • 42.

    JonesLWEvesNDHaykowskyM. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol2009;10:598605.

    • Search Google Scholar
    • Export Citation
  • 43.

    The Criteria Committee of the New York Heart Association. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels (9th ed). Boston, MA: Little & Brown; 1994.

    • Search Google Scholar
    • Export Citation
  • 44.

    CarverJRShapiroCLNgA. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol2007;25:39914008.

    • Search Google Scholar
    • Export Citation
  • 45.

    ShankarSMMarinaNHudsonMM. Monitoring for cardiovascular disease in survivors of childhood cancer: report from the Cardiovascular Disease Task Force of the Children's Oncology Group. Pediatrics2008;121:e387396.

    • Search Google Scholar
    • Export Citation
  • 46.

    EarleCC. Cancer survivorship research and guidelines: maybe the cart should be beside the horse. J Clin Oncol2007;25:38003801.

  • 47.

    ArmenianSHHudsonMMMulderRL. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol2015;16:e123136.

    • Search Google Scholar
    • Export Citation
  • 48.

    YehJMNohriaADillerL. Routine echocardiography screening for asymptomatic left ventricular dysfunction in childhood cancer survivors: a model-based estimation of the clinical and economic effects. Ann Intern Med2014;160:661671.

    • Search Google Scholar
    • Export Citation
  • 49.

    SteingartRMLiuJEOeffingerKC. Cost-effectiveness of screening for asymptomatic left ventricular dysfunction in childhood cancer survivors. Ann Intern Med2014;160:731732.

    • Search Google Scholar
    • Export Citation
  • 50.

    PlanaJCGalderisiMBaracA. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr2014;27:911939.

    • Search Google Scholar
    • Export Citation
  • 51.

    ArmenianSHLacchettiCBaracA. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol2017;35:893911.

    • Search Google Scholar
    • Export Citation
  • 52.

    YancyCWJessupMBozkurtB. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol2013;62:e147239.

    • Search Google Scholar
    • Export Citation
  • 53.

    WangKEblanMJDealAM. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol2017;35:13871394.

    • Search Google Scholar
    • Export Citation
  • 54.

    BowlesEJWellmanRFeigelsonHS. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst2012;104:12931305.

    • Search Google Scholar
    • Export Citation
  • 55.

    GuenanciaCLefebvreACardinaleD. Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol2016;34:31573165.

    • Search Google Scholar
    • Export Citation
  • 56.

    HershmanDLTillCShenS. Association of cardiovascular risk factors with cardiac events and survival outcomes among patients with breast cancer enrolled in SWOG clinical trials. J Clin Oncol2018:27102717.

    • Search Google Scholar
    • Export Citation
  • 57.

    Tan-ChiuEYothersGRomondE. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol2005;23:78117819.

    • Search Google Scholar
    • Export Citation
  • 58.

    GroarkeJDNguyenPLNohriaA. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease. Eur Heart J2014;35:612623.

    • Search Google Scholar
    • Export Citation
  • 59.

    ThavendiranathanPPoulinFLimKD. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol2014;63:27512768.

    • Search Google Scholar
    • Export Citation
  • 60.

    MonsuezJJ. Detection and prevention of cardiac complications of cancer chemotherapy. Arch Cardiovasc Dis2012;105:593604.

  • 61.

    SawayaHSebagIAPlanaJC. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging2012;5:596603.

    • Search Google Scholar
    • Export Citation
  • 62.

    ThigpenSCGeraciSA. Prediction of anthracycline-induced left ventricular dysfunction by cardiac troponins. South Med J2012;105:659664.

    • Search Google Scholar
    • Export Citation
  • 63.

    ScottJMKhakooAMackeyJR. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation2011;124:642650.

    • Search Google Scholar
    • Export Citation
  • 64.

    BeckjordEBReynoldsKAvan LondenGJ. Population-level trends in posttreatment cancer survivors' concerns and associated receipt of care: results from the 2006 and 2010 LIVESTRONG surveys. J Psychosoc Oncol2014;32:125151.

    • Search Google Scholar
    • Export Citation
  • 65.

    Ribeiro PereiraACPKoifmanRJBergmannA. Incidence and risk factors of lymphedema after breast cancer treatment: 10 years of follow-up. Breast2017;36:6773.

    • Search Google Scholar
    • Export Citation
  • 66.

    HayesSCJandaMWardLC. Lymphedema following gynecological cancer: results from a prospective, longitudinal cohort study on prevalence, incidence and risk factors. Gynecol Oncol2017;146:623629.

    • Search Google Scholar
    • Export Citation
  • 67.

    GjorupCAGroenvoldMHendelHW. Health-related quality of life in melanoma patients: Impact of melanoma-related limb lymphoedema. Eur J Cancer2017;85:122132.

    • Search Google Scholar
    • Export Citation
  • 68.

    VassardDOlsenMHZinckernagelL. Psychological consequences of lymphoedema associated with breast cancer: a prospective cohort study. Eur J Cancer2010;46:32113218.

    • Search Google Scholar
    • Export Citation
  • 69.

    SyrowatkaAMotulskyAKurtevaS. Predictors of distress in female breast cancer survivors: a systematic review. Breast Cancer Res Treat2017;165:229245.

    • Search Google Scholar
    • Export Citation
  • 70.

    DominickSANatarajanLPierceJP. The psychosocial impact of lymphedema-related distress among breast cancer survivors in the WHEL Study. Psychooncology2014;23:10491056.

    • Search Google Scholar
    • Export Citation
  • 71.

    HormesJMBryanCLytleLA. Impact of lymphedema and arm symptoms on quality of life in breast cancer survivors. Lymphology2010;43:113.

  • 72.

    McWayneJHeineySP. Psychologic and social sequelae of secondary lymphedema: a review. Cancer2005;104:457466.

  • 73.

    BoyagesJKalfaSXuY. Worse and worse off: the impact of lymphedema on work and career after breast cancer. Springerplus2016;5:657.

  • 74.

    AsdourianMSSwaroopMNSayeghHE. Association between precautionary behaviors and breast cancer-related lymphedema in patients undergoing bilateral surgery. J Clin Oncol2017;35:39343941.

    • Search Google Scholar
    • Export Citation
  • 75.

    DiSipioTRyeSNewmanBHayesS. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol2013;14:500515.

    • Search Google Scholar
    • Export Citation
  • 76.

    KilbreathSLRefshaugeKMBeithJM. Risk factors for lymphoedema in women with breast cancer: a large prospective cohort. Breast2016;28:2936.

    • Search Google Scholar
    • Export Citation
  • 77.

    KurodaKYamamotoYYanagisawaM. Risk factors and a prediction model for lower limb lymphedema following lymphadenectomy in gynecologic cancer: a hospital-based retrospective cohort study. BMC Womens Health2017;17:50.

    • Search Google Scholar
    • Export Citation
  • 78.

    BlackDMJiangJKuererHM. Racial disparities in adoption of axillary sentinel lymph node biopsy and lymphedema risk in women with breast cancer. JAMA Surg2014;149:788796.

    • Search Google Scholar
    • Export Citation
  • 79.

    LiCZZhangPLiRW. Axillary lymph node dissection versus sentinel lymph node biopsy alone for early breast cancer with sentinel node metastasis: a meta-analysis. Eur J Surg Oncol2015;41:958966.

    • Search Google Scholar
    • Export Citation
  • 80.

    NormanSALocalioARKallanMJ. Risk factors for lymphedema after breast cancer treatment. Cancer Epidemiol Biomarkers Prev2010;19:27342746.

    • Search Google Scholar
    • Export Citation
  • 81.

    de VriesMHoekstraHJHoekstra-WeebersJE. Quality of life after axillary or groin sentinel lymph node biopsy, with or without completion lymph node dissection, in patients with cutaneous melanoma. Ann Surg Oncol2009;16:28402847.

    • Search Google Scholar
    • Export Citation
  • 82.

    HuangJYuNWangXLongX. Incidence of lower limb lymphedema after vulvar cancer: a systematic review and meta-analysis. Medicine (Baltimore)2017;96:e8722.

    • Search Google Scholar
    • Export Citation
  • 83.

    AhmedRLSchmitzKHPrizmentAEFolsomAR. Risk factors for lymphedema in breast cancer survivors, the Iowa Women's Health Study. Breast Cancer Res Treat2011;130:981991.

    • Search Google Scholar
    • Export Citation
  • 84.

    DominickSAMadlenskyLNatarajanLPierceJP. Risk factors associated with breast cancer-related lymphedema in the WHEL Study. J Cancer Surviv2013;7:115123.

    • Search Google Scholar
    • Export Citation
  • 85.

    AsdourianMSSkolnyMNBrunelleC. Precautions for breast cancer-related lymphoedema: risk from air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and cellulitis. Lancet Oncol2016;17:e392405.

    • Search Google Scholar
    • Export Citation
  • 86.

    FergusonCMSwaroopMNHorickN. Impact of ipsilateral blood draws, injections, blood pressure measurements, and air travel on the risk of lymphedema for patients treated for breast cancer. J Clin Oncol2016;34:691698.

    • Search Google Scholar
    • Export Citation
  • 87.

    LiLYuanLChenX. Current treatments for breast cancer-related lymphoedema: a systematic review. Asian Pac J Cancer Prev2016;17:48754883.

    • Search Google Scholar
    • Export Citation
  • 88.

    PaskettEDDeanJAOliveriJMHarropJP. Cancer-related lymphedema risk factors, diagnosis, treatment, and impact: a review. J Clin Oncol2012;30:37263733.

    • Search Google Scholar
    • Export Citation
  • 89.

    Lymphology ISo. The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology2013;46:111.

    • Search Google Scholar
    • Export Citation
  • 90.

    SmileTDTendulkarRSchwarzG. A review of treatment for breast cancer-related lymphedema: Paradigms for clinical practice. Am J Clin Oncol2018;41:178190.

    • Search Google Scholar
    • Export Citation
  • 91.

    Stout GergichNLPfalzerLAMcGarveyC. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer2008;112:28092819.

    • Search Google Scholar
    • Export Citation
  • 92.

    EzzoJManheimerEMcNeelyML. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database Syst Rev2015:CD003475.

    • Search Google Scholar
    • Export Citation
  • 93.

    ShaoYZhongDS. Manual lymphatic drainage for breast cancer-related lymphoedema. Eur J Cancer Care (Engl)2017;26.

  • 94.

    BrownJCJohnGMSegalS. Physical activity and lower limb lymphedema among uterine cancer survivors. Med Sci Sports Exerc2013;45:20912097.

    • Search Google Scholar
    • Export Citation
  • 95.

    CourneyaKSSegalRJMackeyJR. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol2007;25:43964404.

    • Search Google Scholar
    • Export Citation
  • 96.

    HayesSCSpeckRMReimetE. Does the effect of weight lifting on lymphedema following breast cancer differ by diagnostic method: results from a randomized controlled trial. Breast Cancer Res Treat2011;130:227234.

    • Search Google Scholar
    • Export Citation
  • 97.

    NelsonNL. Breast cancer-related lymphedema and resistance exercise: a systematic review. J Strength Cond Res2016;30:26562665.

  • 98.

    SchmitzKHAhmedRLTroxelA. Weight lifting in women with breast-cancer-related lymphedema. N Engl J Med2009;361:664673.

  • 99.

    SchmitzKHAhmedRLTroxelAB. Weight lifting for women at risk for breast cancer-related lymphedema: a randomized trial. JAMA2010;304:26992705.

    • Search Google Scholar
    • Export Citation
  • 100.

    SchmitzKHCourneyaKSMatthewsC. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc2010;42:14091426.

    • Search Google Scholar
    • Export Citation
  • 101.

    Position Statement of the National Lymphedema Network: Exercise. NLN Medical Advisory Committee; 2011. Available at: https://nationallymphedemanetwork.org/assets/docs/position_papers/Exercise.pdf. Accessed June 26 2018.

    • Search Google Scholar
    • Export Citation
  • 102.

    IrwinM ed ACSM's Guide to Exercise and Cancer Survivorship. Champaign, IL: The American College of Sports Medicine; 2012.

  • 103.

    BrownJCTroxelABSchmitzKH. Safety of weightlifting among women with or at risk for breast cancer-related lymphedema: musculoskeletal injuries and health care use in a weightlifting rehabilitation trial. Oncologist2012;17:11201128.

    • Search Google Scholar
    • Export Citation
  • 104.

    HarrisSRHugiMROlivottoIA. Clinical practice guidelines for the care and treatment of breast cancer: 11. Lymphedema. CMAJ2001;164:191199.

    • Search Google Scholar
    • Export Citation
  • 105.

    FifeCEFarrowWHebertAA. Skin and wound care in lymphedema patients. Advances in Skin & Wound Care2017;30:305318.

  • 106.

    AhnSPortER. Lymphedema precautions: time to abandon old practices?J Clin Oncol2016;34:655658.

  • 107.

    ChengCTDeitchJMHainesIE. Do medical procedures in the arm increase the risk of lymphoedema after axillary surgery? A review. ANZ J Surg2014;84:510514.

    • Search Google Scholar
    • Export Citation
  • 108.

    JakesADTwelvesC. Breast cancer-related lymphoedema and venepuncture: a review and evidence-based recommendations. Breast Cancer Res Treat2015;154:455461.

    • Search Google Scholar
    • Export Citation
  • 109.

    McLaughlinSA. Lymphedema: separating fact from fiction. Oncology (Williston Park)2012;26:242249.

  • 110.

    Position Statement of the National Lymphedema Network: Lymphedema Risk Reduction Practices. NLN Medical Advisory Committee; 2012. Available at: https://nationallymphedemanetwork.org/assets/docs/position_papers/Risk.Reduction.pdfAccessed June 26 2018.

    • Search Google Scholar
    • Export Citation
  • 111.

    PaskettEDLiuHOliveriJ. Effects of a lymphedema prevention intervention on range of motion among women receiving lymph node dissection for breast cancer treatment (Alliance) CALGB 70305 [abstract]. J Clin Oncol2018;36 (suppl 7S): Abstract 123.

    • Search Google Scholar
    • Export Citation
  • 112.

    KwonHJLeeJWChungNG. Assessment of serologic immunity to diphtheria-tetanus-pertussis after treatment of Korean pediatric hematology and oncology patients. J Korean Med Sci2012;27:7883.

    • Search Google Scholar
    • Export Citation
  • 113.

    LjungmanPCordonnierCEinseleH. Vaccination of hematopoietic cell transplant recipients. Bone Marrow Transplant2009;44:521526.

  • 114.

    KloskyJLGambleHLSpuntSL. Human papillomavirus vaccination in survivors of childhood cancer. Cancer2009;115:56275636.

  • 115.

    UnderwoodJMTownsendJSStewartSL. Surveillance of demographic characteristics and health behaviors among adult cancer survivors--Behavioral Risk Factor Surveillance System, United States, 2009. MMWR Surveill Summ2012;61:123.

    • Search Google Scholar
    • Export Citation
  • 116.

    SnyderCFFrickKDPeairsKS. Comparing care for breast cancer survivors to non-cancer controls: a five-year longitudinal study. J Gen Intern Med2009;24:469474.

    • Search Google Scholar
    • Export Citation
  • 117.

    LocherJLRucksACSpencerSA. Influenza immunization in older adults with and without cancer. J Am Geriatr Soc2012;60:20992103.

  • 118.

    KawanoYSuzukiMKawadaJ. Effectiveness and safety of immunization with live-attenuated and inactivated vaccines for pediatric liver transplantation recipients. Vaccine2015;33:14401445.

    • Search Google Scholar
    • Export Citation
  • 119.

    ShahGLShuneLPurtillD. Robust vaccine responses in adult and pediatric cord blood transplantation recipients treated for hematologic malignancies. Biol Blood Marrow Transplant2015;21:21602166.

    • Search Google Scholar
    • Export Citation
  • 120.

    SmallTNZelenetzADNoyA. Pertussis immunity and response to tetanus-reduced diphtheria-reduced pertussis vaccine (Tdap) after autologous peripheral blood stem cell transplantation. Biol Blood Marrow Transplant2009;15:15381542.

    • Search Google Scholar
    • Export Citation
  • 121.

    Committee to Advise on Tropical Medicine and Travel (CATMAT). The immunocompromised traveller. An Advisory Committee Statement (ACS). Can Commun Dis Rep2007;33:124.

    • Search Google Scholar
    • Export Citation
  • 122.

    GradelKONorgaardMDethlefsenC. Increased risk of zoonotic Salmonella and Campylobacter gastroenteritis in patients with haematological malignancies: a population-based study. Ann Hematol2009;88:761767.

    • Search Google Scholar
    • Export Citation
  • 123.

    LortholaryOCharlierCLebeauxD. Fungal infections in immunocompromised travelers. Clin Infect Dis2013;56:861869.

  • 124.

    ManiIMaguireJH. Small animal zoonoses and immuncompromised pet owners. Top Companion Anim Med2009;24:164174.

  • 125.

    Partridge-HinckleyKLiddellGMAlmyroudisNGSegalBH. Infection control measures to prevent invasive mould diseases in hematopoietic stem cell transplant recipients. Mycopathologia2009;168:329337.

    • Search Google Scholar
    • Export Citation
  • 126.

    VisserLG. The immunosuppressed traveler. Infect Dis Clin North Am2012;26:609624.

  • 127.

    TramsenLSalzmann-ManriqueEBochennekK. Lack of effectiveness of neutropenic diet and social restrictions as anti-infective measures in children with acute myeloid leukemia: an analysis of the AML-BFM 2004 trial. J Clin Oncol2016;34:27762783.

    • Search Google Scholar
    • Export Citation
  • 128.

    ShahMK. The immunocompromised traveler. Oncology (Williston Park)2016;30:142145–146159.

  • 129.

    KimDKRileyLEHunterP. Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older - United States, 2018. MMWR Morb Mortal Wkly Rep2018;67:158160.

    • Search Google Scholar
    • Export Citation
  • 130.

    RubinLGLevinMJLjungmanP. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis2014;58:309318.

    • Search Google Scholar
    • Export Citation
  • 131.

    TomczykSBennettNMStoeckerC. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep2014;63:822825.

    • Search Google Scholar
    • Export Citation
  • 132.

    Centers for Disease C Prevention. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine for adults with immunocompromising conditions: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep2012;61:816819.

    • Search Google Scholar
    • Export Citation
  • 133.

    ChiouWYLeeMSHungSK. Effectiveness of 23-valent pneumococcal polysaccharide vaccine on elderly long-term cancer survivors: a population-based propensity score matched cohort study. BMJ Open2018;8:e019364.

    • Search Google Scholar
    • Export Citation
  • 134.

    GartenRBlantonLElalAIA. Update: influenza activity in the United States during the 2017-18 season and composition of the 2018-19 influenza vaccine. MMWR Morb Mortal Wkly Rep2018;67:634642.

    • Search Google Scholar
    • Export Citation
  • 135.

    GrohskopfLASokolowLZFryAM. Update: ACIP recommendations for the use of quadrivalent live attenuated influenza vaccine (LAIV4) - United States, 2018-19 influenza season. MMWR Morb Mortal Wkly Rep2018;67:643645.

    • Search Google Scholar
    • Export Citation
  • 136.

    DiazGranadosCADunningAJKimmelM. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med2014;371:635645.

    • Search Google Scholar
    • Export Citation
  • 137.

    DoolingKLGuoAPatelM. Recommendations of the Advisory Committee on Immunization Practices for use of herpes zoster vaccines. MMWR Morb Mortal Wkly Rep2018;67:103108.

    • Search Google Scholar
    • Export Citation
  • 138.

    HalesCMHarpazROrtega-SanchezI. Update on recommendations for use of herpes zoster vaccine. MMWR Morb Mortal Wkly Rep2014;63:729731.

All Time Past Year Past 30 Days
Abstract Views 2 2 0
Full Text Views 1539 1539 106
PDF Downloads 430 430 30
EPUB Downloads 0 0 0