DNA Repair Dysfunction in Pancreatic Cancer: A Clinically Relevant Subtype for Drug Development

Authors: Talia Golan MD a , a and Milind Javle MD a
View More View Less
  • a From Department of Oncology, Sheba Medical Center, Tel HaShomer, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and The University of Texas MD Anderson Cancer Center, Houston, Texas.
Restricted access

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a 5-year survival rate of ≤7% across all stages. The limited success of conventional therapies for PDAC is at least partially attributable to its genetic heterogeneity. Precision targeting of known PDAC subtypes may positively affect the outcome of this disease. An important actionable subtype in this cancer is associated with DNA repair dysfunction, including cases with germline BRCA mutations. This subtype can be targeted by inhibitors of poly(ADP-ribose) polymerase (PARP). BRCA mutation–associated PDAC may be the first biomarker-driven subtype in this disease that can be successfully targeted. However, DNA repair defects can extend beyond the narrow spectrum of BRCA1/2 mutations in PDAC and are present in a large proportion of patients with familial PDAC. This review describes the subgroup of patients with PDAC with aberrant DNA repair and discusses diagnostic and therapeutic options.

Correspondence: Talia Golan, MD, Oncology Institute, Sheba Medical Center, Tel HaShomer 52621 Israel. E-mail: Talia.Golan@sheba.health.gov.il
  • 1.

    Cancer Stat Fact: Pancreas Cancer. SEER Web site. Available at: https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed July 6, 2017.

    • Search Google Scholar
    • Export Citation
  • 2.

    Golan T, Sela T, Margalit O. Short and long-term survival in metastatic pancreatic adenocarcinoma, 1993-2013 [abstract]. J Clin Oncol 2017;35(Suppl):Abstract 232.

    • Search Google Scholar
    • Export Citation
  • 3.

    Conroy T, Desseigne F, Ychou M. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011;364:18171825.

  • 4.

    Von Hoff DD, Ervin T, Arena FP. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:16911703.

    • Search Google Scholar
    • Export Citation
  • 5.

    Rahib L, Fleshman JM, Matrisian LM, Berlin JD. Evaluation of pancreatic cancer clinical trials and benchmarks for clinically meaningful future trials: a systematic review. JAMA Oncol 2016;2:12091216.

    • Search Google Scholar
    • Export Citation
  • 6.

    Shaw AT, Kim DW, Nakagawa K. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013;368:23852394.

  • 7.

    Di Leo A, Chan S, Paesmans M. HER-2/neu as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Breast Cancer Res Treat 2004;86:197206.

    • Search Google Scholar
    • Export Citation
  • 8.

    Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 2005;5:564573.

  • 9.

    Lynch HT. Hereditary nonpolyposis colorectal cancer (HNPCC). Cytogenet Cell Genet 1999;86:130135.

  • 10.

    King MC. Localization of the early-onset breast cancer gene. Hosp Pract 1991;26:121126.

  • 11.

    Thompson LH, Schild D. Recombinational DNA repair and human disease. Mutat Res 2002;509:4978.

  • 12.

    Holter S, Borgida A, Dodd A. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015;33:31243129.

    • Search Google Scholar
    • Export Citation
  • 13.

    Golan T, Oh DY, Reni M. POLO: a randomized phase III trial of olaparib maintenance monotherapy in patients (pts) with metastatic pancreatic cancer (mPC) who have a germline BRCA1/2 mutation (gBRCAm) [abstract]. J Clin Oncol 2016;34(Suppl):Abstract TPS4152.

    • Search Google Scholar
    • Export Citation
  • 14.

    Murphy KM, Brune KA, Griffin C. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 2002;62:37893793.

    • Search Google Scholar
    • Export Citation
  • 15.

    Stadler ZK, Salo-Mullen E, Patil SM. Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer 2012;118:493499.

    • Search Google Scholar
    • Export Citation
  • 16.

    Salo-Mullen EE, O'Reilly EM, Kelsen DP. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer 2015;121:43824388.

    • Search Google Scholar
    • Export Citation
  • 17.

    Campa D, Pastore M, Gentiluomo M. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget 2016;7:5701157020.

    • Search Google Scholar
    • Export Citation
  • 18.

    Zhen DB, Rabe KG, Gallinger S. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 2015;17:569577.

    • Search Google Scholar
    • Export Citation
  • 19.

    Grant RC, Selander I, Connor AA. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015;148:556564.

    • Search Google Scholar
    • Export Citation
  • 20.

    Petersen GM, Chaffee KG, McWilliams RR. T. Genetic heterogeneity and survival among pancreatic adenocarcinoma (PDAC) patients with positive family history [abstract]. J Clin Oncol 2016;34(Suppl):Abstract 4108.

    • Search Google Scholar
    • Export Citation
  • 21.

    van der Heijden MS, Yeo CJ, Hruban RH, Kern SE. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 2003;63:25852588.

  • 22.

    Lowery MA, Kelsen DP, Stadler ZK. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist 2011;16:13971402.

    • Search Google Scholar
    • Export Citation
  • 23.

    Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009;461:10711078.

  • 24.

    Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;3:155168.

  • 25.

    Bailey P, Chang DK, Nones K. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016;531:4752.

  • 26.

    Waddell N, Pajic M, Patch AM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015;518:495501.

  • 27.

    Alexandrov LB, Nik-Zainal S, Wedge DC. Signatures of mutational processes in human cancer. Nature 2013;500:415421.

  • 28.

    Connor AA, Denroche RE, Jang GH. Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol 2017;3:774783.

    • Search Google Scholar
    • Export Citation
  • 29.

    Fogelman D, Sugar EA, Oliver G. Family history as a marker of platinum sensitivity in pancreatic adenocarcinoma. Cancer Chemother Pharmacol 2015;76:489498.

    • Search Google Scholar
    • Export Citation
  • 30.

    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001;15:21772196.

  • 31.

    Brown JS, O'Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 2017;7:2037.

  • 32.

    Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer 2016;16:110120.

  • 33.

    Ledermann JA, Harter P, Gourley C. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol 2016;17:15791589.

    • Search Google Scholar
    • Export Citation
  • 34.

    Kaufman B, Shapira-Frommer R, Schmutzler RK. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244250.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mateo J, Carreira S, Sandhu S. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373:16971708.

  • 36.

    Domchek SM, Hendifar AE, McWilliams RR. RUCAPANC: an open-label, phase 2 trial of the PARP inhibitor rucaparib in patients (pts) with pancreatic cancer (PC) and a known deleterious germline or somatic BRCA mutation [abstract]. J Clin Oncol 2016;34(Suppl):Abstract 4110.

    • Search Google Scholar
    • Export Citation
  • 37.

    Fong PC, Yap TA, Boss DS. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010;28:25122519.

    • Search Google Scholar
    • Export Citation
  • 38.

    Golan T, Kanji ZS, Epelbaum R. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer 2014;111:11321138.

    • Search Google Scholar
    • Export Citation
  • 39.

    Tempero MA, Malafa MP, Al-Hawary M. NCCN Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma, Version 2.2016. Accessed July 7, 2017. To view the most recent version of these guidelines, visit NCCN.org.

    • Search Google Scholar
    • Export Citation
  • 40.

    Golan T, Sella T, O'Reilly EM. Overall survival and clinical characteristics of BRCA mutation carriers with stage I/II pancreatic cancer. Br J Cancer 2017;116:697702.

    • Search Google Scholar
    • Export Citation
  • 41.

    Peng G, Chun-Jen Lin C, Mo W. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 2014;5:3361.

  • 42.

    Graeser M, McCarthy A, Lord CJ. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 2010;16:61596168.

    • Search Google Scholar
    • Export Citation
  • 43.

    Kim H, Saka B, Knight S. Having pancreatic cancer with tumoral loss of ATM and normal TP53 protein expression is associated with a poorer prognosis. Clin Cancer Res 2014;20:18651872.

    • Search Google Scholar
    • Export Citation
  • 44.

    Bang Y, Boku N, Cjom K. LBA25 - olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy: phase III GOLD study. Available at: http://oncologypro.esmo.org/Meeting-Resources/ESMO-2016/Olaparib-in-combination-with-paclitaxel-in-patients-with-advanced-gastric-cancer-who-have-progressed-following-first-line-therapy-Phase-III-GOLD-study. Accessed July 6, 2017.

    • Search Google Scholar
    • Export Citation
  • 45.

    Rizvi NA, Hellmann MD, Snyder A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124128.

    • Search Google Scholar
    • Export Citation
  • 46.

    Strickland KC, Howitt BE, Shukla SA. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016;7:1358713598.

    • Search Google Scholar
    • Export Citation
  • 47.

    Higuchi T, Flies DB, Marjon NA. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res 2015;3:12571268.

    • Search Google Scholar
    • Export Citation
  • 48.

    Le DT, Uram JN, Wang H. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:25092520.

  • 49.

    Sherri Z, Millis BL, Baker EH. Multiplatform molecular profiling of pancreatic adenocarcinomas to identify BRCA1/2 mutations and PD-1/PD-L1 status with therapeutic implication [abstract]. J Clin Oncol 2015;33(Suppl):Abstract 4124.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 866 182 20
PDF Downloads 519 214 20
EPUB Downloads 0 0 0