This selection from the NCCN Guidelines for Non–Small Cell Lung Cancer (NSCLC) focuses on targeted therapies and immunotherapies for metastatic NSCLC, because therapeutic recommendations are rapidly changing for metastatic disease. For example, new recommendations were added for atezolizumab, ceritinib, osimertinib, and pembrolizumab for the 2017 updates.

  • 1.

    EttingerDSCoxJDGinsbergRJ. NCCN non-small-cell lung cancer practice guidelines. The National Comprehensive Cancer Network. Oncology (Williston Park)1996;10:81111.

    • Search Google Scholar
    • Export Citation
  • 2.

    TorreLASiegelRLJemalA. Lung cancer statistics. Adv Exp Med Biol2016;893:119.

  • 3.

    SiegelRLMillerKDJemalA. Cancer statistics, 2017. CA Cancer J Clin2017;67:730.

  • 4.

    HowladerNNooneAMKrapchoM. SEER Cancer Statistics Review 1975-2013 based on November 2015 SEER data submission posted to the SEER web site April 2016. Bethesda, MD: National Cancer Institute; 2016. Available at: http://seer.cancer.gov/csr/1975_2013/. Accessed March 3 2017.

    • Search Google Scholar
    • Export Citation
  • 5.

    JohnsonDHSchillerJHBunnPAJr. Recent clinical advances in lung cancer management. J Clin Oncol2014;32:973982.

  • 6.

    ReckMHeigenerDFMokT. Management of non-small-cell lung cancer: recent developments. Lancet2013;382:709719.

  • 7.

    FordePMEttingerDS. Targeted therapy for non-small-cell lung cancer: past, present and future. Expert Rev Anticancer Ther2013;13:745758.

    • Search Google Scholar
    • Export Citation
  • 8.

    EttingerDS. Ten years of progress in non-small cell lung cancer. J Natl Compr Canc Netw2012;10:292295.

  • 9.

    SimoffMJLallyBSladeMG. Symptom management in patients with lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest2013;143:e455S497S.

    • Search Google Scholar
    • Export Citation
  • 10.

    TravisWDBrambillaENicholsonAG. The 2015 World Health Organization Classification of Lung Tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol2015;10:12431260.

    • Search Google Scholar
    • Export Citation
  • 11.

    TravisWDBrambillaEBurkeAP. WHO Classification of Tumours of the Lung Pleura Thymus and Heart Volume 7. Lyon, France: International Agency for Research on Cancer; 2015:412.

    • Search Google Scholar
    • Export Citation
  • 12.

    SpiroSGGouldMKColiceGLAmerican College of Chest Physicians. Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest2007;132:149S160S.

    • Search Google Scholar
    • Export Citation
  • 13.

    SilvestriGAGouldMKMargolisML. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest2007;132:178S201S.

    • Search Google Scholar
    • Export Citation
  • 14.

    De WeverWVankanYStroobantsSVerschakelenJ. Detection of extrapulmonary lesions with integrated PET/CT in the staging of lung cancer. Eur Respir J2007;29:9951002.

    • Search Google Scholar
    • Export Citation
  • 15.

    LangerCJ. Epidermal growth factor receptor inhibition in mutation-positive non-small-cell lung cancer: is afatinib better or simply newer?J Clin Oncol2013;31:33033306.

    • Search Google Scholar
    • Export Citation
  • 16.

    DouillardJYOstorosGCoboM. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer2014;110:5562.

    • Search Google Scholar
    • Export Citation
  • 17.

    NelsonVZiehrJAgulnikMJohnsonM. Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC. Onco Targets Ther2013;6:135143.

    • Search Google Scholar
    • Export Citation
  • 18.

    De GreveJTeugelsEGeersC. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer2012;76:123127.

    • Search Google Scholar
    • Export Citation
  • 19.

    DungoRTKeatingGM. Afatinib: first global approval. Drugs2013;73:15031515.

  • 20.

    SequistLVYangJCYamamotoN. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol2013;31:33273334.

    • Search Google Scholar
    • Export Citation
  • 21.

    HirschFRBunnPAJr. EGFR testing in lung cancer is ready for prime time. Lancet Oncol2009;10:432433.

  • 22.

    RielyGJPolitiKAMillerVAPaoW. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res2006;12:72327241.

    • Search Google Scholar
    • Export Citation
  • 23.

    ArcilaMENafaKChaftJE. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther2013;12:220229.

    • Search Google Scholar
    • Export Citation
  • 24.

    OxnardGRLoPCNishinoM. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J Thorac Oncol2013;8:179184.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lund-IversenMKleinbergLFjellbirkelandL. Clinicopathological characteristics of 11 NSCLC patients with EGFR-exon 20 mutations. J Thorac Oncol2012;7:14711473.

    • Search Google Scholar
    • Export Citation
  • 26.

    YasudaHKobayashiSCostaDB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol2012;13:e2331.

    • Search Google Scholar
    • Export Citation
  • 27.

    RielyGJYuHA. EGFR: the paradigm of an oncogene-driven lung cancer. Clin Cancer Res2015;21:22212226.

  • 28.

    YuPPVoseJMHayesDF. Genetic cancer susceptibility testing: increased technology, increased complexity. J Clin Oncol2015;33:35333534.

  • 29.

    YuHAArcilaMERekhtmanN. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res2013;19:22402247.

    • Search Google Scholar
    • Export Citation
  • 30.

    FinlayMRAndertonMAshtonS. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem2014;57:82498267.

    • Search Google Scholar
    • Export Citation
  • 31.

    GainorJFShawAT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol2013;31:39873996.

    • Search Google Scholar
    • Export Citation
  • 32.

    PaoWMillerVAPolitiKA. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med2005;2:e73.

    • Search Google Scholar
    • Export Citation
  • 33.

    KosakaTYatabeYEndohH. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res2006;12:57645769.

    • Search Google Scholar
    • Export Citation
  • 34.

    OnitsukaTUramotoHNoseN. Acquired resistance to gefitinib: the contribution of mechanisms other than the T790M, MET, and HGF status. Lung Cancer2010;68:198203.

    • Search Google Scholar
    • Export Citation
  • 35.

    RosellRCarcerenyEGervaisR. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol2012;13:239246.

    • Search Google Scholar
    • Export Citation
  • 36.

    MokTSWuYLThongprasertS. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med2009;361:947957.

  • 37.

    MokTSWuYLAhnMJ. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med2017;376:629640.

  • 38.

    RosellRMolinaMACostaC. Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations. Clin Cancer Res2011;17:11601168.

    • Search Google Scholar
    • Export Citation
  • 39.

    JannePAYangJCKimDW. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med2015;372:16891699.

  • 40.

    SequistLVWaltmanBADias-SantagataD. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med2011;3:75ra26.

    • Search Google Scholar
    • Export Citation
  • 41.

    OxnardGR. Strategies for overcoming acquired resistance to epidermal growth factor receptor: targeted therapies in lung cancer. Arch Pathol Lab Med2012;136:12051209.

    • Search Google Scholar
    • Export Citation
  • 42.

    SudaKMizuuchiHMaeharaYMitsudomiT. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation—diversity, ductility, and destiny. Cancer Metastasis Rev2012;31:807814.

    • Search Google Scholar
    • Export Citation
  • 43.

    HanSWKimTYJeonYK. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res2006;12:25382544.

    • Search Google Scholar
    • Export Citation
  • 44.

    DacicS. EGFR assays in lung cancer. Adv Anat Pathol2008;15:241247.

  • 45.

    ShollLMXiaoYJoshiV. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol2010;133:922934.

    • Search Google Scholar
    • Export Citation
  • 46.

    WestwoodMJooreMWhitingP. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: a systematic review and cost-effectiveness analysis. Health Technol Assess2014;18:1166.

    • Search Google Scholar
    • Export Citation
  • 47.

    EberhardDAGiacconeGJohnsonBENon-Small-Cell Lung Cancer Working Group. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. J Clin Oncol2008;26:983994.

    • Search Google Scholar
    • Export Citation
  • 48.

    PaoWLadanyiM. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin Cancer Res2007;13:49544955.

    • Search Google Scholar
    • Export Citation
  • 49.

    ShepherdFATsaoMS. Epidermal growth factor receptor biomarkers in non-small-cell lung cancer: a riddle, wrapped in a mystery, inside an enigma. J Clin Oncol2010;28:903905.

    • Search Google Scholar
    • Export Citation
  • 50.

    Dias-SantagataDAkhavanfardSDavidSS. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med2010;2:146158.

    • Search Google Scholar
    • Export Citation
  • 51.

    LiTKungHJMackPCGandaraDR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol2013;31:10391049.

    • Search Google Scholar
    • Export Citation
  • 52.

    MillerVARielyGJZakowskiMF. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol2008;26:14721478.

    • Search Google Scholar
    • Export Citation
  • 53.

    SequistLVMartinsRGSpigelD. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol2008;26:24422449.

    • Search Google Scholar
    • Export Citation
  • 54.

    PaikPKVargheseAMSimaCS. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component. Mol Cancer Ther2012;11:25352540.

    • Search Google Scholar
    • Export Citation
  • 55.

    MitsudomiTMoritaSYatabeY. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol2010;11:121128.

    • Search Google Scholar
    • Export Citation
  • 56.

    MaemondoMInoueAKobayashiK. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med2010;362:23802388.

    • Search Google Scholar
    • Export Citation
  • 57.

    ZhouCWuYLChenG. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol2011;12:735742.

    • Search Google Scholar
    • Export Citation
  • 58.

    ZhouCWuYLChenG. Updated efficacy and quality-of-life (QoL) analyses in OPTIMAL, a phase III, randomized, open-label study of first-line erlotinib versus gemcitabine/carboplatin in patients with EGFR-activating mutation-positive (EGFR Act Mut+) advanced non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol2011;29(Suppl 15):Abstract 7520.

    • Search Google Scholar
    • Export Citation
  • 59.

    YangJCHirshVSchulerM. Symptom control and quality of life in LUX-Lung 3: a phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol2013;31:33423350.

    • Search Google Scholar
    • Export Citation
  • 60.

    YangJCWuYLSchulerM. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol2015;16:141151.

    • Search Google Scholar
    • Export Citation
  • 61.

    KwakELBangYJCamidgeDR. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med2010;363:16931703.

  • 62.

    ShawATYeapBYMino-KenudsonM. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol2009;27:42474253.

    • Search Google Scholar
    • Export Citation
  • 63.

    SunJMLiraMPandyaK. Clinical characteristics associated with ALK rearrangements in never-smokers with pulmonary adenocarcinoma. Lung Cancer2014;83:259264.

    • Search Google Scholar
    • Export Citation
  • 64.

    WongDWLeungELSoKK. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer2009;115:17231733.

    • Search Google Scholar
    • Export Citation
  • 65.

    RogersTMRussellPAWrightG. Comparison of methods in the detection of ALK and ROS1 rearrangements in lung cancer. J Thorac Oncol2015;10:611618.

    • Search Google Scholar
    • Export Citation
  • 66.

    von LaffertMWarthAPenzelR. Multicenter immunohistochemical ALK-testing of non-small-cell lung cancer shows high concordance after harmonization of techniques and interpretation criteria. J Thorac Oncol2014;9:16851692.

    • Search Google Scholar
    • Export Citation
  • 67.

    WynesMWShollLMDietelM. An international interpretation study using the ALK IHC antibody D5F3 and a sensitive detection kit demonstrates high concordance between ALK IHC and ALK FISH and between evaluators. J Thorac Oncol2014;9:631638.

    • Search Google Scholar
    • Export Citation
  • 68.

    AliGProiettiAPelliccioniS. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med2014;138:14491458.

    • Search Google Scholar
    • Export Citation
  • 69.

    ZhouJZhaoJSunK. Accurate and economical detection of ALK positive lung adenocarcinoma with semiquantitative immunohistochemical screening. PLoS One2014;9:e92828.

    • Search Google Scholar
    • Export Citation
  • 70.

    LindemanNICaglePTBeasleyMB. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol2013;8:823859.

    • Search Google Scholar
    • Export Citation
  • 71.

    ThunnissenEBubendorfLDietelM. EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations. Virchows Arch2012;461:245257.

    • Search Google Scholar
    • Export Citation
  • 72.

    KimHYooSBChoeJY. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J Thorac Oncol2011;6:13591366.

    • Search Google Scholar
    • Export Citation
  • 73.

    RodigSJMino-KenudsonMDacicS. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res2009;15:52165223.

    • Search Google Scholar
    • Export Citation
  • 74.

    Mino-KenudsonMChirieacLRLawK. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res2010;16:15611571.

    • Search Google Scholar
    • Export Citation
  • 75.

    AliSMHensingTSchrockAB. Comprehensive genomic profiling identifies a subset of crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist2016;21:762770.

    • Search Google Scholar
    • Export Citation
  • 76.

    WallanderMLGeiersbachKBTrippSRLayfieldLJ. Comparison of reverse transcription-polymerase chain reaction, immunohistochemistry, and fluorescence in situ hybridization methodologies for detection of echinoderm microtubule-associated proteinlike 4-anaplastic lymphoma kinase fusion-positive non-small cell lung carcinoma: implications for optimal clinical testing. Arch Pathol Lab Med2012;136:796803.

    • Search Google Scholar
    • Export Citation
  • 77.

    WeickhardtAJAisnerDLFranklinWA. Diagnostic assays for identification of anaplastic lymphoma kinase-positive non-small cell lung cancer. Cancer2013;119:14671477.

    • Search Google Scholar
    • Export Citation
  • 78.

    KazandjianDBlumenthalGMChenHY. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist2014;19:e511.

    • Search Google Scholar
    • Export Citation
  • 79.

    AwadMMOxnardGRJackmanDM. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol2016;34:721730.

    • Search Google Scholar
    • Export Citation
  • 80.

    MazieresJZalcmanGCrinoL. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol2015;33:992999.

    • Search Google Scholar
    • Export Citation
  • 81.

    SolomonBJMokTKimDW. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med2014;371:21672177.

  • 82.

    ShawATKimDWNakagawaK. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med2013;368:23852394.

  • 83.

    CrinoLKimDRielyGJ. Initial phase II results with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005 [abstract]. J Clin Oncol2011;29(Suppl 15):Abstract 7514.

    • Search Google Scholar
    • Export Citation
  • 84.

    CamidgeDRBangYKwakEL. Progression-free survival (PFS) from a phase I study of crizotinib (PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol2011;29(Suppl 15):Abstract 2501.

    • Search Google Scholar
    • Export Citation
  • 85.

    RodigSJShapiroGI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs2010;11:14771490.

    • Search Google Scholar
    • Export Citation
  • 86.

    CostaDBShawATOuSH. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol2015;33:18811888.

    • Search Google Scholar
    • Export Citation
  • 87.

    CamidgeDRBangYJKwakEL. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol2012;13:10111019.

    • Search Google Scholar
    • Export Citation
  • 88.

    ShawATYeapBYSolomonBJ. Impact of crizotinib on survival in patients with advanced, ALK-positive NSCLC compared with historical controls [abstract]. J Clin Oncol2011;29(Suppl 15):Abstract 7507.

    • Search Google Scholar
    • Export Citation
  • 89.

    RothensteinJMLetarteN. Managing treatment-related adverse events associated with Alk inhibitors. Curr Oncol2014;21:1926.

  • 90.

    BrosnanEMWeickhardtAJLuX. Drug-induced reduction in estimated glomerular filtration rate in patients with ALK-positive non-small cell lung cancer treated with the ALK inhibitor crizotinib. Cancer2014;120:664674.

    • Search Google Scholar
    • Export Citation
  • 91.

    BangYJ. Treatment of ALK-positive non-small cell lung cancer. Arch Pathol Lab Med2012;136:12011204.

  • 92.

    ChoiYLSodaMYamashitaY. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med2010;363:17341739.

  • 93.

    FramptonJE. Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer. Drugs2013;73:20312051.

    • Search Google Scholar
    • Export Citation
  • 94.

    KimDWTiseoMAhnMJ. Brigatinib (BRG) in patients (pts) with crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): first report of efficacy and safety from a pivotal randomized phase (ph) 2 trial (ALTA) [abstract]. J Clin Oncol2016;34(Suppl):Abstract 9007.

    • Search Google Scholar
    • Export Citation
  • 95.

    OuSIAhnJSDe PetrisL. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J Clin Oncol2016;34:661668.

    • Search Google Scholar
    • Export Citation
  • 96.

    GadgeelSMGandhiLRielyGJ. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol2014;15:11191128.

    • Search Google Scholar
    • Export Citation
  • 97.

    StinchcombeTE. Novel agents in development for advanced non-small cell lung cancer. Ther Adv Med Oncol2014;6:240253.

  • 98.

    ShawATKimDWMehraR. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med2014;370:11891197.

  • 99.

    SolomonBWilnerKDShawAT. Current status of targeted therapy for anaplastic lymphoma kinase-rearranged non-small cell lung cancer. Clin Pharmacol Ther2014;95:1523.

    • Search Google Scholar
    • Export Citation
  • 100.

    SavasPHughesBSolomonB. Targeted therapy in lung cancer: IPASS and beyond, keeping abreast of the explosion of targeted therapies for lung cancer. J Thorac Dis2013;5(Suppl 5):S579592.

    • Search Google Scholar
    • Export Citation
  • 101.

    KatayamaRKhanTMBenesC. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A2011;108:75357540.

    • Search Google Scholar
    • Export Citation
  • 102.

    SequistLVGettingerSSenzerNN. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol2010;28:49534960.

    • Search Google Scholar
    • Export Citation
  • 103.

    ZhangSWangFKeatsF. AP26113 a potent ALK inhibitor overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066) [abstract]. Presented at the Proceedings of the American Association for Cancer Research 101st Annual Meeting; April17–212010; Washington, DC. Abstract LB-298.

    • Search Google Scholar
    • Export Citation
  • 104.

    ChengMOttGR. Anaplastic lymphoma kinase as a therapeutic target in anaplastic large cell lymphoma, non-small cell lung cancer and neuroblastoma. Anticancer Agents Med Chem2010;10:236249.

    • Search Google Scholar
    • Export Citation
  • 105.

    KhozinSBlumenthalGMZhangL. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res2015;21:24362439.

    • Search Google Scholar
    • Export Citation
  • 106.

    ShawATGandhiLGadgeelS. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol2016;17:234242.

    • Search Google Scholar
    • Export Citation
  • 107.

    LarkinsEBlumenthalGMChenH. FDA approval: alectinib for the treatment of metastatic ALK-positive non-small cell lung cancer following crizotinib. Clin Cancer Res2016;22:51715176.

    • Search Google Scholar
    • Export Citation
  • 108.

    GainorJFVargheseAMOuSH. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res2013;19:42734281.

    • Search Google Scholar
    • Export Citation
  • 109.

    TakahashiTSonobeMKobayashiM. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann Surg Oncol2010;17:889897.

    • Search Google Scholar
    • Export Citation
  • 110.

    ShawATForcioneDGDigumarthySRIafrateAJ. Case records of the Massachusetts General Hospital. Case 21-2011. A 31-year-old man with ALK-positive adenocarcinoma of the lung. N Engl J Med2011;365:158167.

    • Search Google Scholar
    • Export Citation
  • 111.

    BrowningETWeickhardtAJCamidgeDR. Response to crizotinib rechallenge after initial progression and intervening chemotherapy in ALK lung cancer. J Thorac Oncol2013;8:e21.

    • Search Google Scholar
    • Export Citation
  • 112.

    WestHOxnardGRDoebeleRC. Acquired resistance to targeted therapies in advanced non-small cell lung cancer: new strategies and new agents. Am Soc Clin Oncol Educ Book2013:272278.

    • Search Google Scholar
    • Export Citation
  • 113.

    OuSHJannePABartlettCH. Clinical benefit of continuing ALK inhibition with crizotinib beyond initial disease progression in patients with advanced ALK-positive NSCLC. Ann Oncol2014;25:415422.

    • Search Google Scholar
    • Export Citation
  • 114.

    RobinsonDRWuYMLinSF. The protein tyrosine kinase family of the human genome. Oncogene2000;19:55485557.

  • 115.

    ShawATOuSHBangYJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med2014;371:19631971.

  • 116.

    BergethonKShawATOuSH. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol2012;30:863870.

  • 117.

    KimHRLimSMKimHJ. The frequency and impact of ROS1 rearrangement on clinical outcomes in never smokers with lung adenocarcinoma. Ann Oncol2013;24:23642370.

    • Search Google Scholar
    • Export Citation
  • 118.

    KazandjianDBlumenthalGMLuoL. Benefit-risk summary of crizotinib for the treatment of patients with ROS1 alteration-positive, metastatic non-small cell lung cancer. Oncologist2016;21:974980.

    • Search Google Scholar
    • Export Citation
  • 119.

    ClaveSGimenoJMunoz-MarmolAM. ROS1 copy number alterations are frequent in non-small cell lung cancer. Oncotarget2016;7:80198028.

  • 120.

    BubendorfLButtnerRAl-DayelF. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch2016;469:489503.

    • Search Google Scholar
    • Export Citation
  • 121.

    DaviesKDLeATTheodoroMF. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res2012;18:45704579.

  • 122.

    SolomonBJBauerTMFelipE. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol2016;34(Suppl):Abstract 9009.

    • Search Google Scholar
    • Export Citation
  • 123.

    FaragoAFLeLPZhengZ. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol2015;10:16701674.

    • Search Google Scholar
    • Export Citation
  • 124.

    ZouHYLiQEngstromLD. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc Natl Acad Sci U S A2015;112:34933498.

    • Search Google Scholar
    • Export Citation
  • 125.

    KatayamaRKobayashiYFribouletL. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res2015;21:166174.

    • Search Google Scholar
    • Export Citation
  • 126.

    CardarellaSOrtizTMJoshiVA. The introduction of systematic genomic testing for patients with non-small-cell lung cancer. J Thorac Oncol2012;7:17671774.

    • Search Google Scholar
    • Export Citation
  • 127.

    SequistLVHeistRSShawAT. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol2011;22:26162624.

    • Search Google Scholar
    • Export Citation
  • 128.

    EberhardDAJohnsonBEAmlerLC. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol2005;23:59005909.

    • Search Google Scholar
    • Export Citation
  • 129.

    TsaoMSAviel-RonenSDingK. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol2007;25:52405247.

    • Search Google Scholar
    • Export Citation
  • 130.

    SlebosRJHrubanRHDalesioO. Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J Natl Cancer Inst1991;83:10241027.

    • Search Google Scholar
    • Export Citation
  • 131.

    SlebosRJKibbelaarREDalesioO. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med1990;323:561565.

    • Search Google Scholar
    • Export Citation
  • 132.

    MitsudomiTSteinbergSMOieHK. ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res1991;51:49995002.

    • Search Google Scholar
    • Export Citation
  • 133.

    RobertsPJStinchcombeTE. KRAS mutation: should we test for it, and does it matter?J Clin Oncol2013;31:11121121.

  • 134.

    ShollLMAisnerDLVarella-GarciaM. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium experience. J Thorac Oncol2015;10:768777.

    • Search Google Scholar
    • Export Citation
  • 135.

    FebboPGLadanyiMAldapeKD. NCCN Task Force report: evaluating the clinical utility of tumor markers in oncology. J Natl Compr Canc Netw2011;9(Suppl 5):S132; quiz S33.

    • Search Google Scholar
    • Export Citation
  • 136.

    KerrKMBubendorfLEdelmanMJ. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol2014;25:16811690.

    • Search Google Scholar
    • Export Citation
  • 137.

    CallesALiaoXShollLM. Expression of PD-1 and its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol2015;10:17261735.

    • Search Google Scholar
    • Export Citation
  • 138.

    JannePAShawATPereiraJR. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol2013;14:3847.

    • Search Google Scholar
    • Export Citation
  • 139.

    BesseBAdjeiABaasP. 2nd ESMO Consensus Conference on Lung Cancer: non-small-cell lung cancer first-line/second and further lines of treatment in advanced disease. Ann Oncol2014;25:14751484.

    • Search Google Scholar
    • Export Citation
  • 140.

    SandlerABJohnsonDHHerbstRS. Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clin Cancer Res2004;10:4258s4262s.

    • Search Google Scholar
    • Export Citation
  • 141.

    GiacconeG. Epidermal growth factor receptor inhibitors in the treatment of non-small-cell lung cancer. J Clin Oncol2005;23:32353242.

    • Search Google Scholar
    • Export Citation
  • 142.

    CohenMHJohnsonJRChenYF. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist2005;10:461466.

  • 143.

    KhozinSBlumenthalGMJiangX. U.S. Food and Drug Administration approval summary: erlotinib for the first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 (L858R) substitution mutations. Oncologist2014;19:774779.

    • Search Google Scholar
    • Export Citation
  • 144.

    SequistLVJoshiVAJannePA. Response to treatment and survival of patients with non-small cell lung cancer undergoing somatic EGFR mutation testing. Oncologist2007;12:9098.

    • Search Google Scholar
    • Export Citation
  • 145.

    InoueAKobayashiKUsuiK. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol2009;27:13941400.

    • Search Google Scholar
    • Export Citation
  • 146.

    FukuokaMWuYLThongprasertS. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol2011;29:28662874.

    • Search Google Scholar
    • Export Citation
  • 147.

    KazandjianDBlumenthalGMYuanW. FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res2016;22:13071312.

    • Search Google Scholar
    • Export Citation
  • 148.

    BurottoMManasanchEEWilkersonJFojoT. Gefitinib and erlotinib in metastatic non-small cell lung cancer: a meta-analysis of toxicity and efficacy of randomized clinical trials. Oncologist2015;20:400410.

    • Search Google Scholar
    • Export Citation
  • 149.

    HaspingerERAgustoniFTorriV. Is there evidence for different effects among EGFR-TKIs? Systematic review and meta-analysis of EGFR tyrosine kinase inhibitors (TKIs) versus chemotherapy as first-line treatment for patients harboring EGFR mutations. Crit Rev Oncol Hematol2015;94:213227.

    • Search Google Scholar
    • Export Citation
  • 150.

    JackmanDMMillerVACioffrediLA. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res2009;15:52675273.

    • Search Google Scholar
    • Export Citation
  • 151.

    GridelliCCiardielloFGalloC. First-line erlotinib followed by second-line cisplatin-gemcitabine chemotherapy in advanced non-small-cell lung cancer: the TORCH randomized trial. J Clin Oncol2012;30:30023011.

    • Search Google Scholar
    • Export Citation
  • 152.

    KeedyVLTeminSSomerfieldMR. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol2011;29:21212127.

    • Search Google Scholar
    • Export Citation
  • 153.

    FelipEGridelliCBaasP. Metastatic non-small-cell lung cancer: consensus on pathology and molecular tests, first-line, second-line, and third-line therapy: 1st ESMO Consensus Conference in Lung Cancer; Lugano 2010. Ann Oncol2011;22:15071519.

    • Search Google Scholar
    • Export Citation
  • 154.

    JannePAWangXSocinskiMA. Randomized phase II trial of erlotinib alone or with carboplatin and paclitaxel in patients who were never or light former smokers with advanced lung adenocarcinoma: CALGB 30406 trial. J Clin Oncol2012;30:20632069.

    • Search Google Scholar
    • Export Citation
  • 155.

    MastersGATeminSAzzoliCG. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol2015;33:34883515.

    • Search Google Scholar
    • Export Citation
  • 156.

    UrataYKatakamiNMoritaS. Randomized phase III study comparing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108L. J Clin Oncol2016;34:32483257.

    • Search Google Scholar
    • Export Citation
  • 157.

    FDA approves afatinib for advanced lung cancer. Oncology (Williston Park)2013;27:813814.

  • 158.

    SoriaJCFelipECoboM. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol2015;16:897907.

    • Search Google Scholar
    • Export Citation
  • 159.

    ParkKTanEHO'ByrneK. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol2016;17:577589.

    • Search Google Scholar
    • Export Citation
  • 160.

    YangJCAhnMRamalingamSS. AZD9291 in pre-treated T790M positive advanced NSCLC: AURA study phase II extension cohort [abstract]. Presented at the 16th World Conference on Lung Cancer; September6–92015; Denver, CO. Abstract 943.

    • Search Google Scholar
    • Export Citation
  • 161.

    MitsudomiTTsaiCShepherdF. AZD9291 in pre-treated T790M positive advanced NSCLC: AURA2 phase II study [abstract]. Presented at the 16th World Conference on Lung Cancer; September6–92015; Denver, CO. Abstract 1406.

    • Search Google Scholar
    • Export Citation
  • 162.

    OxnardGRThressKSAldenRS. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol2016;34:33753382.

    • Search Google Scholar
    • Export Citation
  • 163.

    SacherAGPaweletzCDahlbergSE. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol2016;2:10141022.

    • Search Google Scholar
    • Export Citation
  • 164.

    HochmairMJHolzerSFilipitsM. EGFR T790M resistance mutation in NSCLC: real-life data of patients treated with osimertinib [abstract]. J Clin Oncol2016;34:Abstract e20572.

    • Search Google Scholar
    • Export Citation
  • 165.

    RicciutiBChiariRChiariniP. Osimertinib (AZD9291) and CNS response in two radiotherapy-naïve patients with EGFR-mutant and T790M-positive advanced non-small cell lung cancer. Clin Drug Investig2016;36:683686.

    • Search Google Scholar
    • Export Citation
  • 166.

    ReicheggerHJochumWForbsD. Rapid intracranial response to osimertinib in a patient with epidermal growth factor receptor T790M-positive adenocarcinoma of the lung. Oncol Res Treat2016;39:461463.

    • Search Google Scholar
    • Export Citation
  • 167.

    BallardPYatesJWYangZ. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin Cancer Res2016;22:51305140.

    • Search Google Scholar
    • Export Citation
  • 168.

    KimDWMehraRTanDS. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol2016;17:452463.

    • Search Google Scholar
    • Export Citation
  • 169.

    CrinoLAhnMJDe MarinisF. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol2016;34:28662873.

    • Search Google Scholar
    • Export Citation
  • 170.

    SoriaJCTanDSChiariR. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet2017;389:917929.

    • Search Google Scholar
    • Export Citation
  • 171.

    BorghaeiHPaz-AresLHornL. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med2015;373:16271639.

    • Search Google Scholar
    • Export Citation
  • 172.

    RibasA. Releasing the brakes on cancer immunotherapy. N Engl J Med2015;373:14901492.

  • 173.

    BrahmerJRHammersHLipsonEJ. Nivolumab: targeting PD-1 to bolster antitumor immunity. Future Oncol2015;11:13071326.

  • 174.

    MeloskyBChuQJuergensR. Pointed progress in second-line advanced non-small-cell lung cancer: the rapidly evolving field of checkpoint inhibition. J Clin Oncol2016;34:16761688.

    • Search Google Scholar
    • Export Citation
  • 175.

    BrahmerJReckampKLBaasP. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med2015;373:123135.

    • Search Google Scholar
    • Export Citation
  • 176.

    HerbstRSBaasPKimDW. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet2016;387:15401550.

    • Search Google Scholar
    • Export Citation
  • 177.

    ChiouVLBurottoM. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol2015;33:35413543.

  • 178.

    RittmeyerABarlesiFWaterkampD. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet2017;389:255265.

    • Search Google Scholar
    • Export Citation
  • 179.

    GaronEBRizviNAHuiR. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med2015;372:20182028.

  • 180.

    RizviNAHellmannMDSnyderA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science2015;348:124128.

    • Search Google Scholar
    • Export Citation
  • 181.

    LeDTUramJNWangH. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med2015;372:25092520.

  • 182.

    NishinoMGiobbie-HurderAHatabuH. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol2016;2:16071616.

    • Search Google Scholar
    • Export Citation
  • 183.

    NaidooJWangXWooKM. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol2017;35:709717.

    • Search Google Scholar
    • Export Citation
  • 184.

    SgambatoACasaluceFSaccoPC. Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced non-small cell lung cancer (NSCLC): a review on toxicity profile and its management. Curr Drug Saf2016;11:6268.

    • Search Google Scholar
    • Export Citation
  • 185.

    GettingerSNHornLGandhiL. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol2015;33:20042012.

    • Search Google Scholar
    • Export Citation
  • 186.

    RizviNAMazieresJPlanchardD. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol2015;16:257265.

    • Search Google Scholar
    • Export Citation
  • 187.

    PostowMACallahanMKWolchokJD. Immune checkpoint blockade in cancer therapy. J Clin Oncol2015;33:19741982.

  • 188.

    ChapmanPBD'AngeloSPWolchokJD. Rapid eradication of a bulky melanoma mass with one dose of immunotherapy. N Engl J Med2015;372:20732074.

    • Search Google Scholar
    • Export Citation
  • 189.

    KhojaLButlerMOKangSP. Pembrolizumab. J Immunother Cancer2015;3:36.

  • 190.

    KazandjianDSuzmanDLBlumenthalG. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist2016;21:634642.

    • Search Google Scholar
    • Export Citation
  • 191.

    PhillipsTSimmonsPInzunzaHD. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer. Appl Immunohistochem Mol Morphol2015;23:541549.

    • Search Google Scholar
    • Export Citation
  • 192.

    KerrKMTsaoMSNicholsonAG. Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art?J Thorac Oncol2015;10:985989.

    • Search Google Scholar
    • Export Citation
  • 193.

    ReckMRodriguez-AbreuDRobinsonAG. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med2016;375:18231833.

    • Search Google Scholar
    • Export Citation
  • 194.

    GadgeelSMStevensonJLangerC. Pembrolizumab (pembro) plus chemotherapy as front-line therapy for advanced NSCLC: KEYNOTE-021 cohorts A-C [abstract]. J Clin Oncol2016;34(Suppl):Abstract 9016.

    • Search Google Scholar
    • Export Citation
  • 195.

    KerrKMNicolsonMC. Non-small cell lung cancer, PD-L1, and the pathologist. Arch Pathol Lab Med2016;140:249254.

  • 196.

    KerrKMHirschFR. Programmed death ligand-1 immunohistochemistry: friend or foe?Arch Pathol Lab Med2016;140:326331.

  • 197.

    SulJBlumenthalGMJiangX. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist2016;21:643650.

    • Search Google Scholar
    • Export Citation
  • 198.

    AntoniaSJLopez-MartinJABendellJ. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol2016;17:883895.

    • Search Google Scholar
    • Export Citation
  • 199.

    AntoniaSJKimSWSpiraAI. Safety and clinical activity of durvalumab (MEDI4736), an anti-PD-L1 antibody, in treatment-naïve patients with advanced non–small-cell lung cancer [abstract]. J Clin Oncol2016;34(Suppl):Abstract 9029.

    • Search Google Scholar
    • Export Citation
  • 200.

    FehrenbacherLSpiraABallingerM. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet2016;387:18371846.

    • Search Google Scholar
    • Export Citation
  • 201.

    BarlesiFParkKCiardielloF. Primary analysis from OAK a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC [abstract]. Presented at the European Society for Medical Oncology 2016 Congress (ESMO 2016); October7–102016; Copenhagen, Denmark. Abstract LBA44.

    • Search Google Scholar
    • Export Citation
  • 202.

    ScagliottiGVParikhPvon PawelJ. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol2008;26:35433551.

    • Search Google Scholar
    • Export Citation
  • 203.

    SakumaYMatsukumaSYoshiharaM. Distinctive evaluation of nonmucinous and mucinous subtypes of bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: confirmation of the correlations with histologic subtypes and gene mutations. Am J Clin Pathol2007;128:100108.

    • Search Google Scholar
    • Export Citation
  • 204.

    ShawATYeapBYSolomonBJ. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol2011;12:10041012.

    • Search Google Scholar
    • Export Citation
  • 205.

    OuSHKwakELSiwak-TappC. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol2011;6:942946.

    • Search Google Scholar
    • Export Citation
  • 206.

    RobertsPJ. Clinical use of crizotinib for the treatment of non-small cell lung cancer. Biologics2013;7:91101.

  • 207.

    PlanchardD. Identification of driver mutations in lung cancer: first step in personalized cancer. Target Oncol2013;8:314.

  • 208.

    TravisWDBrambillaENoguchiM. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol2011;6:244285.

    • Search Google Scholar
    • Export Citation
  • 209.

    ForbesSABhamraGBamfordS. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet2008;Chapter 10:Unit 10 11.

  • 210.

    LeeSYKimMJJinG. Somatic mutations in epidermal growth factor receptor signaling pathway genes in non-small cell lung cancers. J Thorac Oncol2010;5:17341740.

    • Search Google Scholar
    • Export Citation
  • 211.

    RekhtmanNPaikPKArcilaME. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res2012;18:11671176.

    • Search Google Scholar
    • Export Citation
  • 212.

    RielyGJKrisMGZhaoB. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res2007;13:51505155.

    • Search Google Scholar
    • Export Citation
  • 213.

    von MinckwitzGdu BoisASchmidtM. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03-05 study. J Clin Oncol2009;27:19992006.

    • Search Google Scholar
    • Export Citation
  • 214.

    SimoneCB2ndBurriSHHeinzerlingJH. Novel radiotherapy approaches for lung cancer: combining radiation therapy with targeted and immunotherapies. Transl Lung Cancer Res2015;4:545552.

    • Search Google Scholar
    • Export Citation
  • 215.

    CampoMAl-HalabiHKhandekarM. Integration of stereotactic body radiation therapy with tyrosine kinase inhibitors in stage IV oncogene-driven lung cancer. Oncologist2016;21:964973.

    • Search Google Scholar
    • Export Citation
  • 216.

    IyengarPKavanaghBDWardakZ. Phase II trial of stereotactic body radiation therapy combined with erlotinib for patients with limited but progressive metastatic non-small-cell lung cancer. J Clin Oncol2014;32:38243830.

    • Search Google Scholar
    • Export Citation
  • 217.

    BeckerKXuY. Management of tyrosine kinase inhibitor resistance in lung cancer with EGFR mutation. World J Clin Oncol2014;5:560567.

  • 218.

    MillerVAHirshVCadranelJ. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol2012;13:528538.

    • Search Google Scholar
    • Export Citation
  • 219.

    KatakamiNAtagiSGotoK. LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol2013;31:33353341.

    • Search Google Scholar
    • Export Citation
  • 220.

    HirshVCadranelJCongXJ. Symptom and quality of life benefit of afatinib in advanced non-small-cell lung cancer patients previously treated with erlotinib or gefitinib: results of a randomized phase IIb/III trial (LUX-Lung 1). J Thorac Oncol2013;8:229237.

    • Search Google Scholar
    • Export Citation
  • 221.

    OuSH. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit Rev Oncol Hematol2012;83:407421.

    • Search Google Scholar
    • Export Citation
  • 222.

    NguyenKSKobayashiSCostaDB. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer2009;10:281289.

    • Search Google Scholar
    • Export Citation
  • 223.

    GazdarAF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene2009;28(Suppl 1)0:S2431.

    • Search Google Scholar
    • Export Citation
  • 224.

    ChaftJEOxnardGRSimaCS. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res2011;17:62986303.

    • Search Google Scholar
    • Export Citation
  • 225.

    MeoniGCecereFLLucheriniEDi CostanzoF. Medical treatment of advanced non-small cell lung cancer in elderly patients: a review of the role of chemotherapy and targeted agents. J Geriatr Oncol2013;4:282290.

    • Search Google Scholar
    • Export Citation
  • 226.

    WeissJMStinchcombeTE. Second-line therapy for advanced NSCLC. Oncologist2013;18:947953.

  • 227.

    van PuttenJWBaasPCodringtonH. Activity of single-agent gemcitabine as second-line treatment after previous chemotherapy or radiotherapy in advanced non-small-cell lung cancer. Lung Cancer2001;33:289298.

    • Search Google Scholar
    • Export Citation
  • 228.

    CrinoLMosconiAMScagliottiG. Gemcitabine as second-line treatment for advanced non-small-cell lung cancer: a phase II trial. J Clin Oncol1999;17:20812085.

    • Search Google Scholar
    • Export Citation
  • 229.

    AndersonHHopwoodPStephensRJ. Gemcitabine plus best supportive care (BSC) vs BSC in inoperable non-small cell lung cancer—a randomized trial with quality of life as the primary outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J Cancer2000;83:447453.

    • Search Google Scholar
    • Export Citation
  • 230.

    SculierJPLafitteJJBerghmansT. A phase II trial testing gemcitabine as second-line chemotherapy for non small cell lung cancer. The European Lung Cancer Working Party. Lung Cancer2000;29:6773.

    • Search Google Scholar
    • Export Citation
  • 231.

    FossellaFVDeVoreRKerrRN. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol2000;18:23542362.

    • Search Google Scholar
    • Export Citation
  • 232.

    ShepherdFADanceyJRamlauR. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol2000;18:20952103.

    • Search Google Scholar
    • Export Citation
  • 233.

    HannaNShepherdFAFossellaFV. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol2004;22:15891597.

    • Search Google Scholar
    • Export Citation
  • 234.

    ShepherdFARodrigues PereiraJCiuleanuT. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med2005;353:123132.

  • 235.

    AdesFYamaguchiN. WHO, RECIST, and immune-related response criteria: is it time to revisit pembrolizumab results?Ecancermedicalscience2015;9:604.

    • Search Google Scholar
    • Export Citation
  • 236.

    EisenhauerEATherassePBogaertsJ. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer2009;45:228247.

    • Search Google Scholar
    • Export Citation
  • 237.

    WolchokJDHoosAO'DayS. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res2009;15:74127420.

    • Search Google Scholar
    • Export Citation
  • 238.

    JanjigianYYSmitEFGroenHJ. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov2014;4:10361045.

    • Search Google Scholar
    • Export Citation
  • 239.

    GainorJFShawATSequistLV. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res2016;22:45854593.

    • Search Google Scholar
    • Export Citation
  • 240.

    SacherAGJannePAOxnardGR. Management of acquired resistance to epidermal growth factor receptor kinase inhibitors in patients with advanced non-small cell lung cancer. Cancer2014;120:22892298.

    • Search Google Scholar
    • Export Citation
  • 241.

    CicenasSGeaterSLPetrovP. Maintenance erlotinib versus erlotinib at disease progression in patients with advanced non-small-cell lung cancer who have not progressed following platinum-based chemotherapy (IUNO study). Lung Cancer2016;102:3037.

    • Search Google Scholar
    • Export Citation
  • 242.

    GaronEBCiuleanuTEArrietaO. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet2014;384:665673.

    • Search Google Scholar
    • Export Citation
  • 243.

    DemarinisFPaulSHannaN. Survival update for the phase III study of pemetrexed vs docetaxel in non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol2006;24(Suppl 18):Abstract 7133.

    • Search Google Scholar
    • Export Citation
  • 244.

    CiuleanuTBrodowiczTZielinskiC. Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet2009;374:14321440.

    • Search Google Scholar
    • Export Citation
  • 245.

    GarassinoMCMartelliOBrogginiM. Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): a randomised controlled trial. Lancet Oncol2013;14:981988.

    • Search Google Scholar
    • Export Citation
  • 246.

    KawaguchiTAndoMAsamiK. Randomized phase III trial of erlotinib versus docetaxel as second- or third-line therapy in patients with advanced non-small-cell lung cancer: Docetaxel and Erlotinib Lung Cancer Trial (DELTA). J Clin Oncol2014;32:19021908.

    • Search Google Scholar
    • Export Citation
  • 247.

    YatesPSchofieldPZhaoICurrowD. Supportive and palliative care for lung cancer patients. J Thorac Dis2013;5(Suppl 5):S623628.

  • 248.

    FordDWKochKARayDESeleckyPA. Palliative and end-of-life care in lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest2013;143:e498S512S.

    • Search Google Scholar
    • Export Citation
  • 249.

    EcclesBKGeldartTRLaurenceVM. Experience of first- and subsequent-line systemic therapy in the treatment of non-small cell lung cancer. Ther Adv Med Oncol2011;3:163170.

    • Search Google Scholar
    • Export Citation
  • 250.

    SandlerAGrayRPerryMC. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med2006;355:25422550.

    • Search Google Scholar
    • Export Citation
  • 251.

    LangerCJMokTPostmusPE. Targeted agents in the third-/fourth-line treatment of patients with advanced (stage III/IV) non-small cell lung cancer (NSCLC). Cancer Treat Rev2013;39:252260.

    • Search Google Scholar
    • Export Citation
  • 252.

    NobleJEllisPMMackayJA. Second-line or subsequent systemic therapy for recurrent or progressive non-small cell lung cancer: a systematic review and practice guideline. J Thorac Oncol2006;1:10421058.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 0
Full Text Views 7535 7535 686
PDF Downloads 1994 1994 181
EPUB Downloads 0 0 0