Multiple Myeloma, Version 3.2017, NCCN Clinical Practice Guidelines in Oncology

Restricted access

Multiple myeloma (MM) is caused by the neoplastic proliferation of plasma cells. These neoplastic plasma cells proliferate and produce monoclonal immunoglobulin in the bone marrow causing skeletal damage, a hallmark of multiple myeloma. Other MM-related complications include hypercalcemia, renal insufficiency, anemia, and infections. The NCCN Multiple Myeloma Panel members have developed guidelines for the management of patients with various plasma cell dyscrasias, including solitary plasmacytoma, smoldering myeloma, multiple myeloma, systemic light chain amyloidosis, and Waldenström's macroglobulinemia. The recommendations specific to the diagnosis and treatment of patients with newly diagnosed MM are discussed in this article.

  • 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:730.

  • 2.

    Cancer Stat Facts: Myeloma. National Cancer Institute Surveillane, Epidemiology, and End Results Program Web site. Avilable at http://seer.cancer.gov/statfacts/html/mulmy.html. Accessed January 24, 2017.

    • Search Google Scholar
    • Export Citation
  • 3.

    Brenner H, Gondos A, Pulte D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008;111:25212526.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kumar SK, Rajkumar SV, Dispenzieri A. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;111:25162520.

  • 5.

    Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011;364:10461060.

  • 6.

    Anderson KC. Oncogenomics to target myeloma in the bone marrow microenvironment. Clin Cancer Res 2011;17:12251233.

  • 7.

    Hideshima T, Anderson K. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002;2:927937.

  • 8.

    Dispenzieri A, Kyle R, Merlini G. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23:215224.

    • Search Google Scholar
    • Export Citation
  • 9.

    Kuhnemund A, Liebisch P, Bauchmuller K. ‘Light-chain escape-multiple myeloma’-an escape phenomenon from plateau phase: report of the largest patient series using LC-monitoring. J Cancer Res Clin Oncol 2009;135:477484.

    • Search Google Scholar
    • Export Citation
  • 10.

    Durie BG, Harousseau JL, Miguel JS. International uniform response criteria for multiple myeloma. Leukemia 2006;20:14671473.

  • 11.

    Kyle RA, Gertz MA, Witzig TE. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003;78:2133.

  • 12.

    Xiong W, Wu X, Starnes S. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 2008;112:42354246.

    • Search Google Scholar
    • Export Citation
  • 13.

    Drach J, Ackermann J, Fritz E. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998;92:802809.

    • Search Google Scholar
    • Export Citation
  • 14.

    Avet-Loiseau H, Attal M, Moreau P. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109:34893495.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gertz MA, Lacy MQ, Dispenzieri A. Clinical implications of t(11;14) (q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106:28372840.

    • Search Google Scholar
    • Export Citation
  • 16.

    Gutierrez NC, Castellanos MV, Martin ML. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007;21:143150.

    • Search Google Scholar
    • Export Citation
  • 17.

    Ross FM, Avet-Loiseau H, Ameye G. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 2012;97:12721277.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hanamura I, Stewart JP, Huang Y. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006;108:17241732.

    • Search Google Scholar
    • Export Citation
  • 19.

    Carrasco DR, Tonon G, Huang Y. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006;9:313325.

    • Search Google Scholar
    • Export Citation
  • 20.

    Rosinol L, Carrio A, Blade J. Comparative genomic hybridisation identifies two variants of smoldering multiple myeloma. Br J Haematol 2005;130:729732.

    • Search Google Scholar
    • Export Citation
  • 21.

    Dispenzieri A, Rajkumar SV, Gertz MA. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 2007;82:323341.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kumar SK, Mikhael JR, Buadi FK. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin Proc 2009;84:10951110.

    • Search Google Scholar
    • Export Citation
  • 23.

    Moreau P, Attal M, Garban F. Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials. Leukemia 2007;21:20202024.

    • Search Google Scholar
    • Export Citation
  • 24.

    Fonseca R, Bergsagel PL, Drach J. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23:22102221.

    • Search Google Scholar
    • Export Citation
  • 25.

    Zhou Y, Barlogie B, Shaughnessy JD Jr. The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 2009;23:19411956.

    • Search Google Scholar
    • Export Citation
  • 26.

    Decaux O, Lode L, Magrangeas F. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol 2008;26:47984805.

    • Search Google Scholar
    • Export Citation
  • 27.

    Shaughnessy JD Jr, Zhan F, Burington BE. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007;109:22762284.

    • Search Google Scholar
    • Export Citation
  • 28.

    Kuiper R, Broyl A, de Knegt Y. A gene expression signature for high-risk multiple myeloma. Leukemia 2012;26:24062413.

  • 29.

    Moulopoulos LA, Dimopoulos MA, Weber D. Magnetic resonance imaging in the staging of solitary plasmacytoma of bone. J Clin Oncol 1993;11:13111315.

    • Search Google Scholar
    • Export Citation
  • 30.

    Zamagni E, Cavo M. The role of imaging techniques in the management of multiple myeloma. Br J Haematol 2012;159:499513.

  • 31.

    Durie B, Waxman A, D'Agnolo A, Williams CM. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med 2002;43:14571463.

  • 32.

    Schirrmeister H, Bommer M, Buck AK. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002;29:361366.

    • Search Google Scholar
    • Export Citation
  • 33.

    Zamagni E, Patriarca F, Nanni C. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with upfront autologous transplantation. Blood 2011;118:59895995.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nanni C, Zamagni E, Celli M. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med 2013;38:e7479.

    • Search Google Scholar
    • Export Citation
  • 35.

    Greipp PR, Lust JA, O'Fallon WM. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 1993;81:33823387.

    • Search Google Scholar
    • Export Citation
  • 36.

    Rajkumar SV, Dimopoulos MA, Palumbo A. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538548.

    • Search Google Scholar
    • Export Citation
  • 37.

    Greipp PR, San Miguel J, Durie BGM. International Staging System for multiple myeloma. J Clin Oncol 2005;23:34123420.

  • 38.

    Palumbo A, Avet-Loiseau H, Oliva S. Revised International Staging System for Multiple Myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015;33:28632869.

    • Search Google Scholar
    • Export Citation
  • 39.

    Blade J, Samson D, Reece D. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 1998;102:11151123.

    • Search Google Scholar
    • Export Citation
  • 40.

    Rajkumar SV. Multiple myeloma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 2011;86:5765.

  • 41.

    Palumbo A, Rajkumar SV, San Miguel JF. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol 2014;32:587600.

    • Search Google Scholar
    • Export Citation
  • 42.

    Kumar S, Paiva B, Anderson KC. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17:e328346.

    • Search Google Scholar
    • Export Citation
  • 43.

    Avet-Loiseau H, Leleu X, Roussel M. Bortezomib plus dexamethasone induction improves outcome of patients With t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol 2010;28:46304634.

    • Search Google Scholar
    • Export Citation
  • 44.

    Mateos MV. Management of treatment-related adverse events in patients with multiple myeloma. Cancer Treat Rev 2010;36(Suppl 2):S2432.

  • 45.

    Siegel D, Martin T, Nooka A. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica 2013;98:17531761.

    • Search Google Scholar
    • Export Citation
  • 46.

    Chanan-Khan A, Sonneveld P, Schuster M. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol 2008;26:47844790.

    • Search Google Scholar
    • Export Citation
  • 47.

    Mateos M, Hernandez J, Hernandez M. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 2006;108:21652172.

    • Search Google Scholar
    • Export Citation
  • 48.

    Richardson P, Sonneveld P, Schuster M. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352:24872498.

  • 49.

    Kyprolis (carfilzomib) for injection. FDA Web site. Available at: http://www.fda.gov/safety/medwatch/safetyinformation/ucm441458.htm. Accessed January 24, 2017.

    • Search Google Scholar
    • Export Citation
  • 50.

    Moreau P, Pylypenko H, Grosicki S. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 2011;12:431440.

    • Search Google Scholar
    • Export Citation
  • 51.

    Arnulf B, Pylypenko H, Grosicki S. Updated survival analysis of a randomized, phase 3 study of subcutaneous versus intravenous bortezomib in patients with relapsed multiple myeloma. Haematologica 2012;97:19251928.

    • Search Google Scholar
    • Export Citation
  • 52.

    Richardson PG, Weller E, Lonial S. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010;116:679686.

    • Search Google Scholar
    • Export Citation
  • 53.

    Kumar S, Flinn I, Richardson PG. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 2012;119:43754382.

    • Search Google Scholar
    • Export Citation
  • 54.

    Roussel M, Lauwers-Cances V, Robillard N. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myelome. J Clin Oncol 2014;32:27122717.

    • Search Google Scholar
    • Export Citation
  • 55.

    Durie B, Hoering A, Rajkumar SV. Bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT): results of the randomized phase III trial SWOG S0777 [abtract]. Blood 2015;126:Abstract 25.

    • Search Google Scholar
    • Export Citation
  • 56.

    Reeder CB, Reece DE, Kukreti V. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia 2009;23:13371341.

    • Search Google Scholar
    • Export Citation
  • 57.

    Einsele H, Liebisch P, Langer C. Velcade, intravenous cyclophosphamide and dexamethasone (VCD) induction for previously untreated multiple myeloma (German DSMM XIa Trial) [abstract]. Blood 2009;114:Abstract 131.

    • Search Google Scholar
    • Export Citation
  • 58.

    Reeder CB, Reece DE, Kukreti V. Long-term survival with cyclophosphamide, bortezomib and dexamethasone induction therapy in patients with newly diagnosed multiple myeloma. Br J Haematol 2014;167:563565.

    • Search Google Scholar
    • Export Citation
  • 59.

    Reeder CB, Reece DE, Kukreti V. Once- versus twice-weekly bortezomib induction therapy with CyBorD in newly diagnosed multiple myeloma. Blood 2010;115:34163417.

    • Search Google Scholar
    • Export Citation
  • 60.

    Sonneveld P, Schmidt-Wolf IG, van der Holt B. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol 2012;30:29462955.

    • Search Google Scholar
    • Export Citation
  • 61.

    Harousseau JL, Attal M, Avet-Loiseau H. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol 2010;28:46214629.

    • Search Google Scholar
    • Export Citation
  • 62.

    Richardson PG, Barlogie B, Berenson J. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:26092617.

  • 63.

    Moreau P, Avet-Loiseau H, Facon T. Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood 2011;118:57525758; quiz 5982.

    • Search Google Scholar
    • Export Citation
  • 64.

    Zonder JA, Crowley J, Hussein MA. Superiority of lenalidomide (Len) plus high-dose dexamethasone (HD) compared to HD alone as treatment of newly-diagnosed multiple myeloma (NDMM): results of the randomized, double-blinded, placebo-controlled SWOG Trial S0232 [abstract]. Blood 2007;110:Abstract 77.

    • Search Google Scholar
    • Export Citation
  • 65.

    Rajkumar SV, Jacobus S, Callander N. A randomized trial of lenalidomide plus high-dose dexamethasone (RD) versus lenalidomide plus low-dose dexamethasone (Rd) in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the Eastern Cooperative Oncology Group [abstract]. Blood 2007;110:Abstract 74.

    • Search Google Scholar
    • Export Citation
  • 66.

    Rajkumar SV, Jacobus S, Callander NS. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 2010;11:2937.

    • Search Google Scholar
    • Export Citation
  • 67.

    Zangari M, Tricot G, Polavaram L. Survival effect of venous thromboembolism in patients with multiple myeloma treated with lenalidomide and high-dose dexamethasone. J Clin Oncol 2010;28:132135.

    • Search Google Scholar
    • Export Citation
  • 68.

    Palumbo A, Rajkumar SV, Dimopoulos MA. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008;22:414423.

    • Search Google Scholar
    • Export Citation
  • 69.

    Kumar S, Dispenzieri A, Lacy MQ. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 2007;21:20352042.

    • Search Google Scholar
    • Export Citation
  • 70.

    Paripati H, Stewart AK, Cabou S. Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia 2008;22:12821284.

    • Search Google Scholar
    • Export Citation
  • 71.

    Kumar S, Giralt S, Stadtmauer EA. Mobilization in myeloma revisited: IMWG consensus perspectives on stem cell collection following initial therapy with thalidomide-, lenalidomide-, or bortezomib-containing regimens. Blood 2009;114:17291735.

    • Search Google Scholar
    • Export Citation
  • 72.

    Mark T, Stern J, Furst JR. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant 2008;14:795798.

    • Search Google Scholar
    • Export Citation
  • 73.

    Nademanee AP, DiPersio JF, Maziarz RT. Plerixafor plus granulocyte colony-stimulating factor versus placebo plus granulocyte colony-stimulating factor for mobilization of CD34(+) hematopoietic stem cells in patients with multiple myeloma and low peripheral blood CD34(+) cell count: results of a subset analysis of a randomized trial. Biol Blood Marrow Transplant 2012;18:15641572.

    • Search Google Scholar
    • Export Citation
  • 74.

    Duarte RF, Shaw BE, Marin P. Plerixafor plus granulocyte CSF can mobilize hematopoietic stem cells from multiple myeloma and lymphoma patients failing previous mobilization attempts: EU compassionate use data. Bone Marrow Transplant 2011;46:5258.

    • Search Google Scholar
    • Export Citation
  • 75.

    Cavo M, Tacchetti P, Patriarca F. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 2010;376:20752085.

    • Search Google Scholar
    • Export Citation
  • 76.

    Kaufman JL, Nooka A, Vrana M. Bortezomib, thalidomide, and dexamethasone as induction therapy for patients with symptomatic multiple myeloma: a retrospective study. Cancer 2010;116:31433151.

    • Search Google Scholar
    • Export Citation
  • 77.

    Rosinol L, Oriol A, Teruel AI. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood 2012;120:15891596.

    • Search Google Scholar
    • Export Citation
  • 78.

    Moreau P, Hulin C, MACRO M. Bortezomib, thalidomide and dexamethasone (VTD) is superior to bortezomib, cyclophosphamide and dexamethasone (VCD) prior to autologous stem cell transplantation for patients with de novo multiple myeloma. Results of the prospective IFM 2013-04 trial. Blood 2015;126:393393.

    • Search Google Scholar
    • Export Citation
  • 79.

    Arastu-Kapur S, Anderl JL, Kraus M. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 2011;17:27342743.

    • Search Google Scholar
    • Export Citation
  • 80.

    Kirk CJ, Jiang J, Muchamuel T. The selective proteasome inhibitor carfilzomib is well tolerated in experimental animals with dose intensive administration [abstract]. Blood 2008;112:Abstract 2765.

    • Search Google Scholar
    • Export Citation
  • 81.

    Siegel DS, Martin T, Wang M. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012;120:28172825.

    • Search Google Scholar
    • Export Citation
  • 82.

    Vij R, Wang M, Kaufman JL. An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 2012;119:56615670.

    • Search Google Scholar
    • Export Citation
  • 83.

    Vij R, Wang M, Orlowski R. Initial results of PX-171-003, an open-label, single-arm, phase II study of carfilzomib (CFZ) in patients with relapsed and refractory multiple myeloma (MM) [abstract]. Blood 2008;112:Abstract 865.

    • Search Google Scholar
    • Export Citation
  • 84.

    Jakubowiak AJ, Dytfeld D, Griffith KA. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood 2012;120:18011809.

    • Search Google Scholar
    • Export Citation
  • 85.

    Korde N, Zingone A, Kwok M. Phase II clinical and correlative study of carfilzomib, lenalidomide, and dexamethasone (CRd) in newly diagnosed Multiple Myeloma (MM) patients [abstract]. Blood 2012;120:Abstract 732.

    • Search Google Scholar
    • Export Citation
  • 86.

    Korde N, Zingone A, Kwok M. Phase II clinical and correlative study of carfilzomib, lenalidomide, and dexamethasone followed by lenalidomide extended dosing (CRD-R) induces high rates of MRD negativity in newly diagnosed multiple myeloma (MM) patients [abstract]. Blood 2013;122:Abstract 538.

    • Search Google Scholar
    • Export Citation
  • 87.

    Kumar SK, Berdeja JG, Niesvizky R. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol 2014;15:15031512.

    • Search Google Scholar
    • Export Citation
  • 88.

    Dytfeld D, Jasielec J, Griffith KA. Carfilzomib, lenalidomide, and low-dose dexamethasone in elderly patients with newly diagnosed multiple myeloma. Haematologica 2014;99:e162164.

    • Search Google Scholar
    • Export Citation
  • 89.

    Zepeda J, H. V, Duggan P. Cyclophosphamide, bortezomib and dexamethasone (CyBORD) is a feasible and active regimen for non-transplant eligible multiple myeloma patients [abstract]. Blood 2014;124:Abstract 5751.

    • Search Google Scholar
    • Export Citation
  • 90.

    Richardson P, Weller E, Lonial S. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010;116:679686.

    • Search Google Scholar
    • Export Citation
  • 91.

    Rajkumar SV, Jacobus S, Callander N. A randomized phase III trial of lenalidomide pus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the eastern Cooperative Oncology Group [abstract]. Blood 2006;108:Abstract 799.

    • Search Google Scholar
    • Export Citation
  • 92.

    Benboubker L, Dimopoulos MA, Dispenzieri A. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med 2014;371:906917.

    • Search Google Scholar
    • Export Citation
  • 93.

    Attal M, Lauwers-Cances V, Marit G. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012;366:17821791.

    • Search Google Scholar
    • Export Citation
  • 94.

    McCarthy PL, Owzar K, Hofmeister CC. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med 2012;366:17701781.

  • 95.

    Usmani S, Sexton R, Hoering A. Second malignancies in total therapy 3 trials for newly diagnosed multiple myeloma: influence of lenalidomide versus thalidomide in maintenance phases [abstract]. Blood 2011;118:Abstract 823.

    • Search Google Scholar
    • Export Citation
  • 96.

    Palumbo A, Bringhen S, Kumar SK. Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data. Lancet Oncol 2014;15:333342.

    • Search Google Scholar
    • Export Citation
  • 97.

    Dimopoulos MA, Cheung MC, Roussel M. Impact of renal impairment on outcomes with lenalidomide and dexamethasone treatment in the FIRST trial, a randomized, open-label phase 3 trial in transplant-ineligible patients with multiple myeloma. Haematologica 2016;101:363370.

    • Search Google Scholar
    • Export Citation
  • 98.

    Niesvizky R, Flinn IW, Rifkin R. Efficacy and safety of three bortezomib-based combinations in elderly, newly diagnosed multiple myeloma patients: results from all randomized patients in the community-based, phase 3b UPFRONT study [abstract]. Blood 2011;118:Abstract 478.

    • Search Google Scholar
    • Export Citation
  • 99.

    Korde N, Roschewski M, Zingone A. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol 2015;1:746754.

    • Search Google Scholar
    • Export Citation
  • 100.

    Srikanth M, Davies FE, Wu P. Survival and outcome of blastoid variant myeloma following treatment with the novel thalidomide containing regime DT-PACE. Eur J Haematol 2008;81:432436.

    • Search Google Scholar
    • Export Citation
  • 101.

    Badros A, Barlogie B, Morris C. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001;97:25742579.

    • Search Google Scholar
    • Export Citation
  • 102.

    Kroger N, Sayer HG, Schwerdtfeger R. Unrelated stem cell transplantation in multiple myeloma after a reduced-intensity conditioning with pretransplantation antithymocyte globulin is highly effective with low transplantation-related mortality. Blood 2002;100:39193924.

    • Search Google Scholar
    • Export Citation
  • 103.

    Moreau P, Facon T, Attal M. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 2002;99:731735.

    • Search Google Scholar
    • Export Citation
  • 104.

    Somlo G, Spielberger R, Frankel P. Total marrow irradiation: a new ablative regimen as part of tandem autologous stem cell transplantation for patients with multiple myeloma. Clin Cancer Res 2011;17:174182.

    • Search Google Scholar
    • Export Citation
  • 105.

    Attal M, Harousseau JL, Stoppa AM. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996;335:9197.

    • Search Google Scholar
    • Export Citation
  • 106.

    Child J, Morgan G, Davies F. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003;348:18751883.

    • Search Google Scholar
    • Export Citation
  • 107.

    Barlogie B, Kyle R, Anderson K. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006;24:929936.

    • Search Google Scholar
    • Export Citation
  • 108.

    Fermand J, Katsahian S, Divine M. High-dose therapy and autologous blood stem-cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: long-term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol 2005;23:92279233.

    • Search Google Scholar
    • Export Citation
  • 109.

    Cavo M, Tacchetti P, Patriarca F. Superior complete response rate and progression-free survival after autologous transplantation with upfront velcade-thalidomide-dexamethasone compared with thalidomide-dexamethasone in newly diagnosed multiple myeloma [abstract]. Blood 2008;112:Abstract 158.

    • Search Google Scholar
    • Export Citation
  • 110.

    Fermand JP, Ravaud P, Chevret S. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998;92:31313136.

    • Search Google Scholar
    • Export Citation
  • 111.

    Palumbo A, Cavallo F, Gay F. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 2014;371:895905.

  • 112.

    Palumbo A, Cavallo F, Gay F. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 2014;371:895905.

  • 113.

    Cavo M, Tacchetti P, Patriarca F. A phase III study of double autotransplantation incorporating bortezomib-thalidomide-dexamethasone (VTD) or thalidomide-dexamethasone (TD) for multiple myeloma: superior clinical outcomes with VTD compared to TD [abstract]. Blood 2009;114:Abstract 351.

    • Search Google Scholar
    • Export Citation
  • 114.

    Hahn T, Wingard J, Anderson K. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of multiple myeloma: an evidence-based review. Biol Blood Marrow Transplant 2003;9:437.

    • Search Google Scholar
    • Export Citation
  • 115.

    Kumar S, Lacy MQ, Dispenzieri A. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant 2004;34:161167.

    • Search Google Scholar
    • Export Citation
  • 116.

    Attal M, Harousseau J, Facon T. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003;349:24952502.

    • Search Google Scholar
    • Export Citation
  • 117.

    Stadtmauer EA. Multiple myeloma, 2004—one or two transplants? N Engl J Med 2003;349:25512553.

  • 118.

    Cavo M, Tosi P, Zamagni E. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol 2007;25:24342441.

    • Search Google Scholar
    • Export Citation
  • 119.

    Sonneveld P, van der Holt B, Segeren C. Intensive versus double intensive therapy in untreated multiple myeloma: Updated analysis of the randomized phase III study HOVON 24 MM [abstract]. Blood 2004;104:Abstract 948.

    • Search Google Scholar
    • Export Citation
  • 120.

    Goldschmidt H. Single vs double high-dose therapy in multiple myeloma: second analysis of the GMMG-HD2 trial [abstract]. Haematologica 2005;90(s1):Abstract 38.

    • Search Google Scholar
    • Export Citation
  • 121.

    Barlogie B, Attal M, Crowley J. Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the Intergroupe Francophone du Myelome, Southwest Oncology Group, and University of Arkansas for Medical Sciences. J Clin Oncol 2010;28:12091214.

    • Search Google Scholar
    • Export Citation
  • 122.

    Cook G, Liakopoulou E, Pearce R. Factors influencing the outcome of a second autologous stem cell transplant (ASCT) in relapsed multiple myeloma: a study from the British Society of Blood and Marrow Transplantation Registry. Biol Blood Marrow Transplant 2011;17:16381645.

    • Search Google Scholar
    • Export Citation
  • 123.

    Olin RL, Vogl DT, Porter DL. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant 2009;43:417422.

    • Search Google Scholar
    • Export Citation
  • 124.

    Burzynski JA, Toro JJ, Patel RC. Toxicity of a second autologous peripheral blood stem cell transplant in patients with relapsed or recurrent multiple myeloma. Leuk Lymphoma 2009;50:14421447.

    • Search Google Scholar
    • Export Citation
  • 125.

    Alvares CL, Davies FE, Horton C. The role of second autografts in the management of myeloma at first relapse. Haematologica 2006;91:141142.

  • 126.

    Fenk R, Liese V, Neubauer F. Predictive factors for successful salvage high-dose therapy in patients with multiple myeloma relapsing after autologous blood stem cell transplantation. Leuk Lymphoma 2011;52:14551462.

    • Search Google Scholar
    • Export Citation
  • 127.

    Cook G, Williams C, Brown JM. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:874885.

    • Search Google Scholar
    • Export Citation
  • 128.

    Stadtmauer A, Pasquini M, Blackwell B. Comparison of autologous hematopoietic cell transplant (autoHCT), bortezomib, lenalidomide (Len) and dexamethasone (RVD) consolidation with len maintenance (ACM), tandem autohct with len maintenance (TAM) and autohct with len maintenance (AM) for up-front treatment of patients with multiple myeloma (MM): primary results from the randomized phase III trial of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0702 – StaMINA trial) [abstract]. Blood 2016;128:Absrtact LBA-1.

    • Search Google Scholar
    • Export Citation
  • 129.

    Cavo M, Petrucci MT, Di Raimondo F. Upfront single versus double autologous stem cell transplantation for newly diagnosed multiple myeloma: an intergroup, multicenter, phase III study of the European Myeloma Network (EMN02/HO95 MM trial). Presented at the 58th Annual Meeting & Exposition; December 3–6, 2016; San Diego, California.

    • Search Google Scholar
    • Export Citation
  • 130.

    Auner HW, Szydlo R, Rone A. Salvage autologous stem cell transplantation for multiple myeloma relapsing or progressing after upfront autologous transplantation. Leuk Lymphoma 2013;54:22002204.

    • Search Google Scholar
    • Export Citation
  • 131.

    Jimenez-Zepeda VH, Mikhael J, Winter A. Second autologous stem cell transplantation as salvage therapy for multiple myeloma: Impact on progression-free and overall survival. Biol Blood Marrow Transplant 2012;18:773779.

    • Search Google Scholar
    • Export Citation
  • 132.

    Sellner L, Heiss C, Benner A. Autologous retransplantation for patients with recurrent multiple myeloma: A single-center experience with 200 patients. Cancer 2013;119:24382446.

    • Search Google Scholar
    • Export Citation
  • 133.

    Shah N, Ahmed F, Bashir Q. Durable remission with salvage second autotransplants in patients with multiple myeloma. Cancer 2012;118:35493555.

    • Search Google Scholar
    • Export Citation
  • 134.

    Kyle RA. High-dose therapy in multiple myeloma and primary amyloidosis: an overview. Semin Oncol 1999;26:7483.

  • 135.

    Kumar A, Loughran T, Alsina M. Management of multiple myeloma: a systematic review and critical appraisal of published studies. Lancet Oncol 2003;4:293304.

    • Search Google Scholar
    • Export Citation
  • 136.

    Bruno B, Rotta M, Patriarca F. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007;356:11101120.

  • 137.

    Rosinol L, Perez-Simon JA, Sureda A. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood 2008;112:35913593.

    • Search Google Scholar
    • Export Citation
  • 138.

    Garban F, Attal M, Michallet M. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood 2006;107:34743480.

    • Search Google Scholar
    • Export Citation
  • 139.

    Krishnan A, Pasquini MC, Logan B. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. Lancet Oncol 2011;12:11951203.

    • Search Google Scholar
    • Export Citation
  • 140.

    Bjorkstrand B, Iacobelli S, Hegenbart U. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up. J Clin Oncol 2011;29:30163022.

    • Search Google Scholar
    • Export Citation
  • 141.

    Badros A, Barlogie B, Morris C. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001;97:25742579.

    • Search Google Scholar
    • Export Citation
  • 142.

    Maloney D, Molina A, Sahebi F. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003;102:34473454.

    • Search Google Scholar
    • Export Citation
  • 143.

    Crawley C, Lalancette M, Szydlo R. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 2005;105:45324539.

    • Search Google Scholar
    • Export Citation
  • 144.

    de Lavallade H, El-Cheikh J, Faucher C. Reduced-intensity conditioning allogeneic SCT as salvage treatment for relapsed multiple myeloma. Bone Marrow Transplant 2008;41:953960.

    • Search Google Scholar
    • Export Citation
  • 145.

    Putkonen M, Kairisto V, Juvonen V. Depth of response assessed by quantitative ASO-PCR predicts the outcome after stem cell transplantation in multiple myeloma. Eur J Haematol 2010;85:416423.

    • Search Google Scholar
    • Export Citation
  • 146.

    Zeiser R, Bertz H, Spyridonidis A. Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant 2004;34:923928.

    • Search Google Scholar
    • Export Citation
  • 147.

    van de Donk NW, Kroger N, Hegenbart U. Prognostic factors for donor lymphocyte infusions following non-myeloablative allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant 2006;37:11351141.

    • Search Google Scholar
    • Export Citation
  • 148.

    Lokhorst HM, Wu K, Verdonck LF. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 2004;103:43624364.

    • Search Google Scholar
    • Export Citation
  • 149.

    Lokhorst HM, Schattenberg A, Cornelissen JJ. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000;18:30313037.

    • Search Google Scholar
    • Export Citation
  • 150.

    Lokhorst HM, Schattenberg A, Cornelissen JJ. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997;90:42064211.

    • Search Google Scholar
    • Export Citation
  • 151.

    Salama M, Nevill T, Marcellus D. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000;26:11791184.

  • 152.

    Tricot G, Vesole DH, Jagannath S. Graft-versus-myeloma effect: proof of principle. Blood 1996;87:11961198.

  • 153.

    Ayuk F, Shimoni A, Nagler A. Efficacy and toxicity of low-dose escalating donor lymphocyte infusion given after reduced intensity conditioning allograft for multiple myeloma. Leukemia 2004;18:659662.

    • Search Google Scholar
    • Export Citation
  • 154.

    Paiva B, Vidriales MB, Cervero J. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008;112:40174023.

    • Search Google Scholar
    • Export Citation
  • 155.

    Rawstron AC, Child JA, de Tute RM. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 2013;31:25402547.

    • Search Google Scholar
    • Export Citation
  • 156.

    Kneppers E, van der Holt B, Kersten MJ. Lenalidomide maintenance following non-myeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 trial. Blood 2011;118:24132419.

    • Search Google Scholar
    • Export Citation
  • 157.

    Alsina M, Becker PS, Zhong X. Lenalidomide maintenance for high-risk multiple myeloma after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014;20:11831189.

    • Search Google Scholar
    • Export Citation
  • 158.

    Palumbo A, Hajek R, Delforge M. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 2012;366:17591769.

  • 159.

    Usmani SZ, Sexton R, Hoering A. Second malignancies in total therapy 2 and 3 for newly diagnosed multiple myeloma: influence of thalidomide and lenalidomide during maintenance. Blood 2012;120:15971600.

    • Search Google Scholar
    • Export Citation
  • 160.

    Singh PP, Kumar SK, LaPlant BR. Lenalidomide maintenance therapy in multiple myeloma: a meta-analysis of randomized trials [asbtract]. Blood 2013;22:Abstract 407.

    • Search Google Scholar
    • Export Citation
  • 161.

    Mellqvist UH, Gimsing P, Hjertner O. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood 2013;121:46474654.

    • Search Google Scholar
    • Export Citation
  • 162.

    Niesvizky R, Flinn IW, Rifkin RM. Phase 3b UPFRONT study: safety and efficacy of weekly bortezomib maintenance therapy after bortezomib-based induction regimens in elderly, newly diagnosed multiple myeloma patients [abstract]. Blood 2010;116:Abstract 619.

    • Search Google Scholar
    • Export Citation
  • 163.

    Berenson JR, Lichtenstein A, Porter L. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998;16:593602.

    • Search Google Scholar
    • Export Citation
  • 164.

    Berenson JR, Lichtenstein A, Porter L. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996;334:488493.

    • Search Google Scholar
    • Export Citation
  • 165.

    Major P, Lortholary A, Hon J. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558567.

    • Search Google Scholar
    • Export Citation
  • 166.

    Zervas K, Verrou E, Teleioudis Z. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: a single-centre experience in 303 patients. Br J Haematol 2006;134:620623.

    • Search Google Scholar
    • Export Citation
  • 167.

    Morgan GJ, Davies FE, Gregory WM. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 2010;376:19891999.

    • Search Google Scholar
    • Export Citation
  • 168.

    Boyd K, Morgan G, Davies F. Does zoledronic acid (ZOL) reduce skeletal-related events (SREs) and improve progression-free survival (PFS) in patients (Pts) with multiple myeloma (MM) with or without bone disease? MRC myeloma IX study results [abstract]. J Clin Oncol 2011;29:Abstract 8010.

    • Search Google Scholar
    • Export Citation
  • 169.

    Morgan GJ, Davies F, Gregory W. Defining the biological subgroup of multiple myeloma patients which benefits maximally from the overall survival (OS) benefit associated with treatment with zoledronic acid (ZOL) [abstract]. J Clin Oncol 2011;29:Abstract 8083.

    • Search Google Scholar
    • Export Citation
  • 170.

    Morgan GJ, Davies FE, Gregory WM. Long-term follow-up of MRC Myeloma IX trial: Survival outcomes with bisphosphonate and thalidomide treatment. Clin Cancer Res 2013;19:60306038.

    • Search Google Scholar
    • Export Citation
  • 171.

    Mhaskar R, Redzepovic J, Wheatley K. Bisphosphonates in multiple myeloma: a network meta-analysis. Cochrane Database Syst Rev 2012;5:CD003188.

  • 172.

    Hu K, Yahalom J. Radiotherapy in the management of plasma cell tumors. Oncology (Williston Park) 2000;14:101108.

  • 173.

    Major PP, Coleman RE. Zoledronic acid in the treatment of hypercalcemia of malignancy: results of the international clinical development program. Semin Oncol 2001;28:1724.

    • Search Google Scholar
    • Export Citation
  • 174.

    Major P, Lortholary A, Hon J. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558567.

    • Search Google Scholar
    • Export Citation
  • 175.

    Pecherstorfer M, Steinhauer EU, Rizzoli R. Efficacy and safety of ibandronate in the treatment of hypercalcemia of malignancy: a randomized multicentric comparison to pamidronate. Support Care Cancer 2003;11:539547.

    • Search Google Scholar
    • Export Citation
  • 176.

    Lindsley H, Teller D, Noonan B. Hyperviscosity syndrome in multiple myeloma. A reversible, concentration-dependent aggregation of the myeloma protein. Am J Med 1973;54:682688.

    • Search Google Scholar
    • Export Citation
  • 177.

    Ludwig H, Fritz E, Kotzmann H. Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med 1990;322:16931699.

  • 178.

    Osterborg A, Boogaerts MA, Cimino R. Recombinant human erythropoietin in transfusion-dependent anemic patients with multiple myeloma and non-Hodgkin's lymphoma—a randomized multicenter study. The European Study Group of Erythropoietin (Epoetin Beta) Treatment in Multiple Myeloma and Non-Hodgkin's Lymphoma. Blood 1996;87:26752682.

    • Search Google Scholar
    • Export Citation
  • 179.

    Ikhlaque N, Seshadri V, Kathula S, Baumann M. Efficacy of prophylactic warfarin for prevention of thalidomide-related deep venous thrombosis. Am J Hematol 2006;81:420422.

    • Search Google Scholar
    • Export Citation
  • 180.

    Baz R, Li L, Kottke-Marchant K. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma. Mayo Clin Proc 2005;80:15681574.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 2132 1395 112
PDF Downloads 763 538 57
EPUB Downloads 0 0 0