Emerging Role of CAR T Cells in Non-Hodgkin's Lymphoma

Authors: Mauro P. Avanzi MD, PhD a and Renier J. Brentjens MD, PhD a , a
View More View Less
  • a From Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medicine, New York, New York.
Restricted access

Adoptive T-cell therapy with chimeric antigen receptor T cells (CAR-Ts) has produced impressive clinical responses among patients with B-cell malignancies, and several groups have published positive results using anti-CD19 CAR-Ts for the treatment of B-cell acute lymphoblastic leukemia. Recently, new data from clinical trials have demonstrated the benefits of CAR-T therapy in the non-Hodgkin's lymphoma (NHL) setting. This review describes some of the most recent and promising advances in engineered T-cell therapy, with particular emphasis on the clinical benefits of NHL treatment.

Correspondence: Renier J. Brentjens, MD, PhD, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Mailbox 242, New York, NY 10065. E-mail: brentjer@mskcc.org
  • 1.

    Brentjens RJ, Davila ML, Riviere I. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177ra138.

    • Search Google Scholar
    • Export Citation
  • 2.

    Lee DW, Kochenderfer JN, Stetler-Stevenson M. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015;385:517528.

    • Search Google Scholar
    • Export Citation
  • 3.

    Maude SL, Frey N, Shaw PA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371:15071517.

  • 4.

    Davila ML, Riviere I, Wang X. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra225.

    • Search Google Scholar
    • Export Citation
  • 5.

    Swerdlow SH, Campo E, Pileri SA. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127:23752390.

    • Search Google Scholar
    • Export Citation
  • 6.

    Weinstock DM, Dalla-Favera R, Gascoyne RD. A roadmap for discovery and translation in lymphoma. Blood 2015;125:21752177.

  • 7.

    Kuppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Invest 2012;122:34393447.

  • 8.

    Intlekofer AM, Younes A. Precision therapy for lymphoma—current state and future directions. Nat Rev Clin Oncol 2014;11:585596.

  • 9.

    Dann EJ, Daugherty CK, Larson RA. Allogeneic bone marrow transplantation for relapsed and refractory Hodgkin's disease and non-Hodgkin's lymphoma. Bone Marrow Transplant 1997;20:369374.

    • Search Google Scholar
    • Export Citation
  • 10.

    Heslop HE, Slobod KS, Pule MA. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 2010;115:925935.

    • Search Google Scholar
    • Export Citation
  • 11.

    Zhao Z, Condomines M, van der Stegen SJ. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 2015;28:415428.

    • Search Google Scholar
    • Export Citation
  • 12.

    Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol 2015;36:494502.

  • 13.

    Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res 2107;27:3858.

  • 14.

    Abramson JS, Feldman T, Kroll-Desrosiers AR. Peripheral T-cell lymphomas in a large US multicenter cohort: prognostication in the modern era including impact of frontline therapy. Ann Oncol 2014;25:22112217.

    • Search Google Scholar
    • Export Citation
  • 15.

    Vose J, Armitage J, Weisenburger Don behalf of the International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008;26:41244130.

    • Search Google Scholar
    • Export Citation
  • 16.

    Kehrl JH, Riva A, Wilson GL, Thevenin C. Molecular mechanisms regulating CD19, CD20 and CD22 gene expression. Immunol Today 1994;15:432436.

  • 17.

    Raponi S, De Propris MS, Intoppa S. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma 2011;52:10981107.

    • Search Google Scholar
    • Export Citation
  • 18.

    Dijoseph JF, Dougher MM, Armellino DC. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 2007;21:22402245.

    • Search Google Scholar
    • Export Citation
  • 19.

    Horton HM, Bernett MJ, Pong E. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 2008;68:80498057.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hekman A, Honselaar A, Vuist WM. Initial experience with treatment of human B cell lymphoma with anti-CD19 monoclonal antibody. Cancer Immunol Immunother 1991;32:364372.

    • Search Google Scholar
    • Export Citation
  • 21.

    McLaughlin P, Grillo-Lopez AJ, Link BK. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998;16:28252833.

    • Search Google Scholar
    • Export Citation
  • 22.

    Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 2015;126:983992.

    • Search Google Scholar
    • Export Citation
  • 23.

    Herbst H, Tippelmann G, Anagnostopoulos I. Immunoglobulin and T-cell receptor gene rearrangements in Hodgkin's disease and Ki-1-positive anaplastic large cell lymphoma: dissociation between phenotype and genotype. Leuk Res 1989;13:103116.

    • Search Google Scholar
    • Export Citation
  • 24.

    Pizzolo G, Romagnani S. CD30 molecule (Ki-1 Ag): more than just a marker of CD30+ lymphoma. Haematologica 1995;80:357366.

  • 25.

    van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 2015;14:499509.

    • Search Google Scholar
    • Export Citation
  • 26.

    Jensen MC, Popplewell L, Cooper LJ. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 2010;16:12451256.

    • Search Google Scholar
    • Export Citation
  • 27.

    Brentjens RJ, Santos E, Nikhamin Y. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 2007;13:54265435.

    • Search Google Scholar
    • Export Citation
  • 28.

    Kochenderfer JN, Wilson WH, Janik JE. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116:40994102.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kochenderfer JN, Dudley ME, Feldman SA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012;119:27092720.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kochenderfer JN, Dudley ME, Kassim SH. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015;33:540549.

    • Search Google Scholar
    • Export Citation
  • 31.

    Kochenderfer JN, Somerville RP, Lu T. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther 2017;25:22452253.

    • Search Google Scholar
    • Export Citation
  • 32.

    da Silva DG, Mukherjee M, Srinivasan M. Direct comparison of in vivo fate of second and third-generation CD19-specific chimeric antigen receptor (CAR)-T cells in patients with B-cell lymphoma: reversal of toxicity from tonic signaling [abstract]. Blood 2016;128:Abstract 1851.

    • Search Google Scholar
    • Export Citation
  • 33.

    Turtle CJ, Hanafi LA, Berger C. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 2016;8:355ra116.

    • Search Google Scholar
    • Export Citation
  • 34.

    Brudno JN, Shi V, Stroncek D. T cells expressing a novel fully-human anti-CD19 chimeric antigen receptor induce remissions of advanced lymphoma in a first-in-humans clinical trial [abstract]. Blood 2016;128:Abstract 999.

    • Search Google Scholar
    • Export Citation
  • 35.

    Schuster SJ, Svoboda J, Nasta SD. Treatment with chimeric antigen receptor modified T cells directed against CD19 (CTL019) results in durable remissions in patients with relapsed or refractory diffuse large B cell lymphomas of germinal center and non-germinal center origin, “double hit” diffuse large B cell lymphomas, and transformed follicular to diffuse large B cell lymphomas [abstract]. Blood 2016;128:Abstract 3026.

    • Search Google Scholar
    • Export Citation
  • 36.

    Locke FL, Neelapu SS, Bartlett NL. Clinical and biologic covariates of outcomes in ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (r-NHL) [abstract]. J Clin Oncol 2017;35(Suppl):Abstract 7512.

    • Search Google Scholar
    • Export Citation
  • 37.

    Novartis interim results from global, pivotal CTL019 trial show durable complete responses in adults with r/r DLBCL. Available at: https://www.novartis.com/news/media-releases/novartis-interim-results-global-pivotal-ctl019-trial-show-durable-complete. Accessed October 10, 2017.

    • Search Google Scholar
    • Export Citation
  • 38.

    Abramson JS, Palomba L, Gordon L. Transcend NHL 001: immunotherapy with the CD19-directed CAR T-cell product JCAR017 results in high complete response rates in relapsed or refractory B-cell non-hodgkin lymphoma [abstract]. Blood 2016;128:Abstract 4192.

    • Search Google Scholar
    • Export Citation
  • 39.

    Crump M, Neelapu SS, Farooq U. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study [published online ahead of print August 3, 2017]. Blood, doi: 10.1182/blood-2017-03-769620.

    • Search Google Scholar
    • Export Citation
  • 40.

    Sotillo E, Barrett DM, Black KL. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015;5:12821295.

    • Search Google Scholar
    • Export Citation
  • 41.

    Yang W, Agrawal N, Patel J. Diminished expression of CD19 in B-cell lymphomas. Cytometry B Clin Cytom 2005;63:2835.

  • 42.

    Gardner R, Wu D, Cherian S. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016;127:24062410.

    • Search Google Scholar
    • Export Citation
  • 43.

    Gardner RA, Finney O, Annesley C. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017;129:33223331.

    • Search Google Scholar
    • Export Citation
  • 44.

    Budde LE, Berger C, Lin Y. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS One 2013;8:e82742.

    • Search Google Scholar
    • Export Citation
  • 45.

    Haso W, Lee DW, Shah NN. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 2013;121:11651174.

    • Search Google Scholar
    • Export Citation
  • 46.

    Wang Y, Zhang WY, Han QW. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol 2014;155:160175.

    • Search Google Scholar
    • Export Citation
  • 47.

    Zhang W, Wang Y, Guo Y. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther 2016;1:16002.

    • Search Google Scholar
    • Export Citation
  • 48.

    Till BG, Jensen MC, Wang J. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012;119:39403950.

    • Search Google Scholar
    • Export Citation
  • 49.

    Ramos CA, Savoldo B, Torrano V. Clinical responses with T lymphocytes targeting malignancy-associated k light chains. J Clin Invest 2016;126:25882596.

    • Search Google Scholar
    • Export Citation
  • 50.

    Sauter CS, Riviere I, Bernal Y. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CAR-T) post-high dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL) [abstract]. J Clin Oncol 2015;33(Suppl):Abstract 8515.

    • Search Google Scholar
    • Export Citation
  • 51.

    Wang X, Popplewell LL, Wagner JR. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 2016;127:29802990.

    • Search Google Scholar
    • Export Citation
  • 52.

    Berger C, Jensen MC, Lansdorp PM. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008;118:294305.

    • Search Google Scholar
    • Export Citation
  • 53.

    Wang X, Berger C, Wong CW. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011;117:18881898.

    • Search Google Scholar
    • Export Citation
  • 54.

    Graef P, Buchholz VR, Stemberger C. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells. Immunity 2014;41:116126.

    • Search Google Scholar
    • Export Citation
  • 55.

    Josting A, Franklin J, May M. New prognostic score based on treatment outcome of patients with relapsed Hodgkin's lymphoma registered in the database of the German Hodgkin's lymphoma study group. J Clin Oncol 2002;20:221230.

    • Search Google Scholar
    • Export Citation
  • 56.

    Yung L, Linch D. Hodgkin's lymphoma. Lancet 2003;361:943951.

  • 57.

    Santoro A, Bonadonna G, Valagussa P. Long-term results of combined chemotherapy-radiotherapy approach in Hodgkin's disease: superiority of ABVD plus radiotherapy versus MOPP plus radiotherapy. J Clin Oncol 1987;5:2737.

    • Search Google Scholar
    • Export Citation
  • 58.

    Gomes-Silva D, Srinivasan M, Sharma S. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 2017;130:285296.

    • Search Google Scholar
    • Export Citation
  • 59.

    Ruella M, Klichinksy M, Kenderian SS. Overcoming the immunosuppressive tumor microenvironment of hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov 2017;7:11541167.

    • Search Google Scholar
    • Export Citation
  • 60.

    Savoldo B, Rooney CM, Di Stasi A. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007;110:26202630.

    • Search Google Scholar
    • Export Citation
  • 61.

    Ramos CA, Ballard B, Liu E. Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas [abstract]. Blood 2015;126:Abstract 185.

  • 62.

    Pegram HJ, Lee JC, Hayman EG. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012;119:41334141.

    • Search Google Scholar
    • Export Citation
  • 63.

    John LB, Devaud C, Duong CP. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 2013;19:56365646.

    • Search Google Scholar
    • Export Citation
  • 64.

    John LB, Kershaw MH, Darcy PK. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2013;2:e26286.

  • 65.

    Avanzi MP, van Leeuwen DG, Li X. IL-18 secreting CAR T cells enhance cell persistence, induce prolonged B cell aplasia and eradicate CD19+ tumor cells without need for prior conditioning [abstract]. Blood 2016;128:Abstract 816.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 760 411 3
PDF Downloads 296 151 1
EPUB Downloads 0 0 0