Cannabinoids for Symptom Management and Cancer Therapy: The Evidence

Restricted access

Cannabinoids bind not only to classical receptors (CB1 and CB2) but also to certain orphan receptors (GPR55 and GPR119), ion channels (transient receptor potential vanilloid), and peroxisome proliferator-activated receptors. Cannabinoids are known to modulate a multitude of monoamine receptors. Structurally, there are 3 groups of cannabinoids. Multiple studies, most of which are of moderate to low quality, demonstrate that tetrahydrocannabinol (THC) and oromucosal cannabinoid combinations of THC and cannabidiol (CBD) modestly reduce cancer pain. Dronabinol and nabilone are better antiemetics for chemotherapy-induced nausea and vomiting (CINV) than certain neuroleptics, but are not better than serotonin receptor antagonists in reducing delayed emesis, and cannabinoids have largely been superseded by neurokinin-1 receptor antagonists and olanzapine; both cannabinoids have been recommended for breakthrough nausea and vomiting among other antiemetics. Dronabinol is ineffective in ameliorating cancer anorexia but does improve associated cancer-related dysgeusia. Multiple cancers express cannabinoid receptors directly related to the degree of anaplasia and grade of tumor. Preclinical in vitro and in vivo studies suggest that cannabinoids may have anticancer activity. Paradoxically, cannabinoid receptor antagonists also have antitumor activity. There are few randomized smoked or vaporized cannabis trials in cancer on which to judge the benefits of these forms of cannabinoids on symptoms and the clinical course of cancer. Smoked cannabis has been found to contain Aspergillosis. Immunosuppressed patients should be advised of the risks of using “medical marijuana” in this regard.

Correspondence: Mellar P. Davis, MD, 14 Red Oak Drive, Danville, PA 17821-8417. E-mail: Banpangur70@gmail.com
  • 1.

    UngerleiderJTSarnaGFairbanksLA. THC or compazine for the cancer chemotherapy patient—the UCLA study. Part II: patient drug preference. Am J Clin Oncol1985;8:142147.

    • Search Google Scholar
    • Export Citation
  • 2.

    RybergELarssonNSjogrenS. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol2007;152:10921101.

  • 3.

    DemuthDGMollemanA. Cannabinoid signalling. Life Sci2006;78:549563.

  • 4.

    Ben-ShabatSFrideESheskinT. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol1998;353:2331.

    • Search Google Scholar
    • Export Citation
  • 5.

    GrotenhermenF. Cannabinoids. Curr Drug Targets CNS Neurol Disord2005;4:507530.

  • 6.

    MechoulamRParkerLAGallilyR. Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol2002;42(11 Suppl):11S9S.

  • 7.

    ZuardiAWCrippaJAHallakJE. A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation. Curr Pharm Des2012;18:51315140.

    • Search Google Scholar
    • Export Citation
  • 8.

    SkaperSDFacciL. Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond B Biol Sci2012;367:33123325.

    • Search Google Scholar
    • Export Citation
  • 9.

    Mattace RasoGRussoR. Palmitoylethanolamide in CNS health and disease. Pharmacol Res2014;86:3241.

  • 10.

    BettoniIComelliFColomboA. Non-neuronal cell modulation relieves neuropathic pain: efficacy of the endogenous lipid palmitoylethanolamide. CNS Neurol Disord Drug Targets2013;12:3444.

    • Search Google Scholar
    • Export Citation
  • 11.

    GattiALazzariMGianfeliceV. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med2012;13:11211130.

    • Search Google Scholar
    • Export Citation
  • 12.

    PertweeRG. Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol2008;13:147159.

  • 13.

    GriffinGFernandoSRRossRA. Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol1997;339:5361.

    • Search Google Scholar
    • Export Citation
  • 14.

    PertweeRG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther1997;74:129180.

  • 15.

    ZuardiAWHallakJECrippaJA. Interaction between cannabidiol (CBD) and (9)-tetrahydrocannabinol (THC): influence of administration interval and dose ratio between the cannabinoids. Psychopharmacology (Berl)2012;219:247249.

    • Search Google Scholar
    • Export Citation
  • 16.

    BasuSDittelBN. Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res2011;51:2638.

    • Search Google Scholar
    • Export Citation
  • 17.

    GrotenhermenF. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet2003;42:327360.

  • 18.

    PertweeRG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond)2006;30(Suppl 1):S1318.

  • 19.

    PertweeRG. Pharmacology of cannabinoid receptor ligands. Curr Med Chem1999;6:635664.

  • 20.

    EngelsFKde JongFASparreboomA. Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. Oncologist2007;12:291300.

    • Search Google Scholar
    • Export Citation
  • 21.

    WaissengrinBUrbanDLeshemY. Patterns of use of medical cannabis among Israeli cancer patients: a single institution experience. J Pain Symptom Manage2015;49:223230.

    • Search Google Scholar
    • Export Citation
  • 22.

    St-AmantHWareMAJulienNLacasseA. Prevalence and determinants of cannabinoid prescription for the management of chronic noncancer pain: a postal survey of physicians in the Abitibi-Temiscamingue region of Quebec. CMAJ Open2015;3:E251257.

    • Search Google Scholar
    • Export Citation
  • 23.

    WhitingPFWolffRFDeshpandeS. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA2015;313:24562473.

  • 24.

    NoyesRJrBrunkSFBaramDACanterA. Analgesic effect of delta-9-tetrahydrocannabinol. J Clin Pharmacol1975;15:139143.

  • 25.

    NoyesRJrBrunkSFAveryDACanterAC. The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther1975;18:8489.

    • Search Google Scholar
    • Export Citation
  • 26.

    Martin-SanchezEFurukawaTATaylorJMartinJL. Systematic review and meta-analysis of cannabis treatment for chronic pain. Pain Med2009;10:13531368.

    • Search Google Scholar
    • Export Citation
  • 27.

    JohnsonJRBurnell-NugentMLossignolD. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Symptom Manage2010;39:167179.

    • Search Google Scholar
    • Export Citation
  • 28.

    PortenoyRKGanae-MotanEDAllendeS. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain2012;13:438449.

    • Search Google Scholar
    • Export Citation
  • 29.

    HoggartBRatcliffeSEhlerE. A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain. J Neurol2015;262:2740.

    • Search Google Scholar
    • Export Citation
  • 30.

    TramerMRCarrollDCampbellFA. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ2001;323:16-21.

    • Search Google Scholar
    • Export Citation
  • 31.

    Ben AmarM. Cannabinoids in medicine: a review of their therapeutic potential. J Ethnopharmacol2006;105:125.

  • 32.

    BarannMMolderingsGBrussM. Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br J Pharmacol2002;137:589596.

    • Search Google Scholar
    • Export Citation
  • 33.

    MeiriEJhangianiHVredenburghJJ. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr Med Res Opin2007;23:533543.

    • Search Google Scholar
    • Export Citation
  • 34.

    DuranMPerezEAbanadesS. Preliminary efficacy and safety of an oromucosal standardized cannabis extract in chemotherapy-induced nausea and vomiting. Br J Clin Pharmacol2010;70:656663.

    • Search Google Scholar
    • Export Citation
  • 35.

    WareMADaeninckPMaidaV. A review of nabilone in the treatment of chemotherapy-induced nausea and vomiting. Ther Clin Risk Manage2008;4:99107.

    • Search Google Scholar
    • Export Citation
  • 36.

    DavisMP. Oral nabilone capsules in the treatment of chemotherapy-induced nausea and vomiting and pain. Expert Opin Investig Drugs2008;17:8595.

    • Search Google Scholar
    • Export Citation
  • 37.

    NavariRMNagyCKGraySE. The use of olanzapine versus metoclopramide for the treatment of breakthrough chemotherapy-induced nausea and vomiting in patients receiving highly emetogenic chemotherapy. Support Care Cancer2013;21:16551663.

    • Search Google Scholar
    • Export Citation
  • 38.

    NavariRMGraySEKerrAC. Olanzapine versus aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a randomized phase III trial. J Support Oncol2011;9:188195.

    • Search Google Scholar
    • Export Citation
  • 39.

    TodaroB. Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting. J Natl Compr Canc Netw2012;10:487492.

  • 40.

    RoilaFHerrstedtJAaproM. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol2010;21(Suppl 5):v232243.

    • Search Google Scholar
    • Export Citation
  • 41.

    SmithLAAzariahFLavenderVT. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy. Cochrane Database Syst Rev2015;11:CD009464.

    • Search Google Scholar
    • Export Citation
  • 42.

    DavisMPHallerbergGPalliative Medicine Study Group of the Multinational Association of Supportive Care in Cancer. A systematic review of the treatment of nausea and/or vomiting in cancer unrelated to chemotherapy or radiation. J Pain Symptom Manage2010;39:756767.

    • Search Google Scholar
    • Export Citation
  • 43.

    WalshDKirkovaJDavisMP. The efficacy and tolerability of long-term use of dronabinol in cancer-related anorexia: a case series. J Pain Symptom Manage2005;30:493495.

    • Search Google Scholar
    • Export Citation
  • 44.

    JatoiAWindschitlHELoprinziCL. Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group study. J Clin Oncol2002;20:567573.

    • Search Google Scholar
    • Export Citation
  • 45.

    Cannabis-In-Cachexia-Study-GroupStrasserFLuftnerD. Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. J Clin Oncol2006;24:33943400.

    • Search Google Scholar
    • Export Citation
  • 46.

    NavariRMBrennerMC. Treatment of cancer-related anorexia with olanzapine and megestrol acetate: a randomized trial. Support Care Cancer2010;18:951956.

    • Search Google Scholar
    • Export Citation
  • 47.

    MantovaniGMaccioAMadedduC. Randomized phase III clinical trial of five different arms of treatment in 332 patients with cancer cachexia. Oncologist2010;15:200211.

    • Search Google Scholar
    • Export Citation
  • 48.

    NagrajSKNareshSSrinivasK. Interventions for the management of taste disturbances. Cochrane Database Syst Rev2014;11:CD010470.

  • 49.

    BrisboisTDde KockIHWatanabeSM. Delta-9-tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: results of a randomized, double-blind, placebo-controlled pilot trial. Ann Oncol2011;22:20862093.

    • Search Google Scholar
    • Export Citation
  • 50.

    PisantiSBifulcoM. Endocannabinoid system modulation in cancer biology and therapy. Pharmacol Res2009;60:107116.

  • 51.

    PortellaGLaezzaCLaccettiP. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J2003;17:17711773.

    • Search Google Scholar
    • Export Citation
  • 52.

    PreetAQamriZNasserMW. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila)2011;4:6575.

    • Search Google Scholar
    • Export Citation
  • 53.

    HermansonDJMarnettLJ. Cannabinoids, endocannabinoids, and cancer. Cancer Metastasis Rev2011;30:599612.

  • 54.

    MarcuJPChristianRTLauD. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol Cancer Ther2010;9:180189.

    • Search Google Scholar
    • Export Citation
  • 55.

    GuzmanMDuarteMJBlazquezC. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer2006;95:197203.

    • Search Google Scholar
    • Export Citation
  • 56.

    PisantiSPicardiPD'AlessandroA. The endocannabinoid signaling system in cancer. Trends Pharmacol Sci2013;34:273282.

  • 57.

    MukhopadhyayBSchuebelKMukhopadhyayP. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology2015;61:16151626.

    • Search Google Scholar
    • Export Citation
  • 58.

    SarnataroDPisantiSSantoroA. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Mol Pharmacol2006;70:12981306.

    • Search Google Scholar
    • Export Citation
  • 59.

    MarshallADLagutinaIGrosveldGC. PAX3-FOXO1 induces cannabinoid receptor 1 to enhance cell invasion and metastasis. Cancer Res2011;71:74717480.

    • Search Google Scholar
    • Export Citation
  • 60.

    SantoroAPisantiSGrimaldiC. Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon. Int J Cancer2009;125:9961003.

    • Search Google Scholar
    • Export Citation
  • 61.

    PisantiSPicardiPProtaL. Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. Blood2011;117:55415550.

    • Search Google Scholar
    • Export Citation
  • 62.

    McKallipRJNagarkattiMNagarkattiPS. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J Immunol2005;174:32813289.

    • Search Google Scholar
    • Export Citation
  • 63.

    YuanMKiertscherSMChengQ. Delta 9-tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol2002;133:124131.

    • Search Google Scholar
    • Export Citation
  • 64.

    Van den HoveLEVan GoolSWVan PoppelH. Phenotype, cytokine production and cytolytic capacity of fresh (uncultured) tumour-infiltrating T lymphocytes in human renal cell carcinoma. Clin Exp Immunol1997;109:501509.

    • Search Google Scholar
    • Export Citation
  • 65.

    PardollDM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer2012;12:252264.

  • 66.

    TaubeJMKleinABrahmerJR. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res2014;20:50645074.

    • Search Google Scholar
    • Export Citation
  • 67.

    RuchlemerRAmit-KohnMRavehDHanusL. Inhaled medicinal cannabis and the immunocompromised patient. Support Care Cancer2015;23:819822.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1142 1142 216
PDF Downloads 362 362 59
EPUB Downloads 0 0 0