Drug Development Pipeline for Myeloproliferative Neoplasms: Potential Future Impact on Guidelines and Management

Restricted access

The unprecedented success of ruxolitinib in myelofibrosis (MF) has paved the way for the development of other Janus kinase (JAK) inhibitors and other agents representing diverse drug classes and mechanisms of action in myeloproliferative neoplasms (MPNs). In particular, the symptomatic benefits afforded by ruxolitinib have led to the recognition of “clinical improvement” in symptoms and the spleen in international consensus response criteria for MF. Ruxolitinib is also approved for the second-line treatment of polycythemia vera and is being developed for essential thrombocythemia. Appreciation of the universal role of activated JAK/signal transducer and activator of transcription (STAT) signaling in MPNs and improved understanding of the canonical and noncanonical actions of JAK2 have yielded a number of drug targets beyond JAK2 in MPNs, which form the basis for a number of ruxolitinib-based rational combinations that are being explored in MF. Other JAK inhibitors with the potential for significantly less myelosuppression or even improvement of anemia continue to be tested. Finally, agents with very distinct mechanisms of action, such as novel interferon formulations, antifibrotic agents, and telomerase inhibitors, are being pursued in polycythemia vera and MF, respectively. This article reviews the current landscape of clinical drug development in MPNs, focusing on the most promising agents and combinations.

Correspondence: Prithviraj Bose, MD, The University of Texas MD Anderson Cancer Center, Department of Leukemia, 1400 Holcombe Boulevard, Suite FC4.3062, Unit #428, Houston, TX 77030. E-mail: pbose@mdanderson.org
  • 1.

    VannucchiAMBarbuiTCervantesF. Philadelphia chromosome-negative chronic myeloproliferative neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol2015;26(Suppl 5):v8599.

    • Search Google Scholar
    • Export Citation
  • 2.

    CervantesFDupriezBPassamontiF. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol2012;30:29812987.

    • Search Google Scholar
    • Export Citation
  • 3.

    TefferiAGuglielmelliPLarsonDR. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood2014;124:25072513; quiz 2615.

    • Search Google Scholar
    • Export Citation
  • 4.

    TefferiARumiEFinazziG. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia2013;27:18741881.

    • Search Google Scholar
    • Export Citation
  • 5.

    AnandSStedhamFGudginE. Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood2011;118:16101621.

    • Search Google Scholar
    • Export Citation
  • 6.

    RampalRAl-ShahrourFAbdel-WahabO. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood2014;123:e123133.

    • Search Google Scholar
    • Export Citation
  • 7.

    BaxterEJScottLMCampbellPJ. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet2005;365:10541061.

    • Search Google Scholar
    • Export Citation
  • 8.

    JamesCUgoVLe CouedicJP. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature2005;434:11441148.

    • Search Google Scholar
    • Export Citation
  • 9.

    KralovicsRPassamontiFBuserAS. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med2005;352:17791790.

  • 10.

    LevineRLWadleighMCoolsJ. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell2005;7:387397.

    • Search Google Scholar
    • Export Citation
  • 11.

    ScottLMTongWLevineRL. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med2007;356:459468.

  • 12.

    PardananiADLevineRLLashoT. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood2006;108:34723476.

    • Search Google Scholar
    • Export Citation
  • 13.

    PikmanYLeeBHMercherT. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med2006;3:e270.

  • 14.

    KlampflTGisslingerHHarutyunyanAS. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med2013;369:23792390.

  • 15.

    NangaliaJMassieCEBaxterEJ. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med2013;369:23912405.

    • Search Google Scholar
    • Export Citation
  • 16.

    VerstovsekSMesaRAGotlibJ. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med2012;366:799807.

  • 17.

    HarrisonCKiladjianJJAl-AliHK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med2012;366:787798.

    • Search Google Scholar
    • Export Citation
  • 18.

    VannucchiAMKiladjianJJGriesshammerM. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med2015;372:426435.

    • Search Google Scholar
    • Export Citation
  • 19.

    VerstovsekSMesaRAGotlibJR. Long-term outcomes of ruxolitinib (RUX) therapy in patients (pts) with myelofibrosis (MF): 5-year final efficacy and safety analysis from COMFORT-I [abstract]. J Clin Oncol2016;35(Supp):Abstract 7012.

    • Search Google Scholar
    • Export Citation
  • 20.

    HarrisonCNVannucchiAMKiladjianJJ. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia2016;30:17011707.

    • Search Google Scholar
    • Export Citation
  • 21.

    MesaRAGotlibJGuptaV. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol2013;31:12851292.

    • Search Google Scholar
    • Export Citation
  • 22.

    TefferiACervantesFMesaR. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood2013;122:13951398.

    • Search Google Scholar
    • Export Citation
  • 23.

    EmanuelRMDueckACGeyerHL. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol2012;30:40984103.

    • Search Google Scholar
    • Export Citation
  • 24.

    GuglielmelliPRotunnoGBoganiC. Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis. Br J Haematol2016;173:938940.

    • Search Google Scholar
    • Export Citation
  • 25.

    SteinBLSwordsRHochhausAGilesF. Novel myelofibrosis treatment strategies: potential partners for combination therapies. Leukemia2014;28:21392147.

    • Search Google Scholar
    • Export Citation
  • 26.

    KrogerNMDeegJHOlavarriaE. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia2015;29:21262133.

    • Search Google Scholar
    • Export Citation
  • 27.

    SpoerlSMathewNRBscheiderM. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood2014;123:38323842.

  • 28.

    ZeiserRBurchertALengerkeC. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia2015;29:20622068.

    • Search Google Scholar
    • Export Citation
  • 29.

    LandolfiRMarchioliRKuttiJ. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med2004;350:114124.

  • 30.

    CortelazzoSFinazziGRuggeriM. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med1995;332:11321136.

    • Search Google Scholar
    • Export Citation
  • 31.

    HarrisonCNCampbellPJBuckG. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med2005;353:3345.

  • 32.

    GisslingerHGoticMHolowieckiJ. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood2013;121:17201728.

    • Search Google Scholar
    • Export Citation
  • 33.

    MarchioliRFinazziGSpecchiaG. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med2013;368:2233.

  • 34.

    GeyerHLScherberRMDueckAC. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood2014;123:38033810.

    • Search Google Scholar
    • Export Citation
  • 35.

    MesaRANiblackJWadleighM. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer2007;109:6876.

    • Search Google Scholar
    • Export Citation
  • 36.

    ScherberRDueckACJohanssonP. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood2011;118:401408.

    • Search Google Scholar
    • Export Citation
  • 37.

    VerstovsekSVannucchiAMGriesshammerM. Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica2016;101:821829.

    • Search Google Scholar
    • Export Citation
  • 38.

    KiladjianJJCassinatBChevretS. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood2008;112:30653072.

    • Search Google Scholar
    • Export Citation
  • 39.

    Quintas-CardamaAKantarjianHManshouriT. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol2009;27:54185424.

    • Search Google Scholar
    • Export Citation
  • 40.

    MasarovaLVerstovsekSPatelKP. Efficacy and safety of pegylated interferon alpha-2a in patients with essential thrombocythemia and polycythemia vera: results after a median 7-year follow-up of a phase 2 study [abstract]. Blood2015;126:Abstract 60.

    • Search Google Scholar
    • Export Citation
  • 41.

    VergerECassinatBChauveauA. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood2015;126:25852591.

    • Search Google Scholar
    • Export Citation
  • 42.

    GisslingerHZagrijtschukOBuxhofer-AuschV. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood2015;126:17621769.

    • Search Google Scholar
    • Export Citation
  • 43.

    VannucchiAMVerstovsekSGuglielmelliP. Ruxolitinib (RUX) reduces JAK2V617F allele burden (AB) in patients (pts) with polycythemia vera (PV) enrolled in the response study. Presented at the 21st Congress of the European Hematology Association; June9–122016; Copenhagen, Denmark.

    • Search Google Scholar
    • Export Citation
  • 44.

    VainchenkerWDelhommeauFConstantinescuSNBernardOA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood2011;118:17231735.

    • Search Google Scholar
    • Export Citation
  • 45.

    KralovicsRTeoSSLiS. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood2006;108:13771380.

    • Search Google Scholar
    • Export Citation
  • 46.

    OrtmannCAKentDGNangaliaJ. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med2015;372:601612.

  • 47.

    KiladjianJJMasseACassinatB. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia2010;24:15191523.

    • Search Google Scholar
    • Export Citation
  • 48.

    PieriLPancrazziAPacilliA. JAK2V617F complete molecular remission in polycythemia vera/essential thrombocythemia patients treated with ruxolitinib. Blood2015;125:33523353.

    • Search Google Scholar
    • Export Citation
  • 49.

    BaerlocherGMOppliger LeibundgutEOttmannOG. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N Engl J Med2015;373:920928.

    • Search Google Scholar
    • Export Citation
  • 50.

    GueriniVBarbuiVSpinelliO. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia2008;22:740747.

    • Search Google Scholar
    • Export Citation
  • 51.

    AkadaHAkadaSGajraA. Efficacy of vorinostat in a murine model of polycythemia vera. Blood2012;119:37793789.

  • 52.

    AndersenCLMcMullinMFEjerbladE. A phase II study of vorinostat (MK-0683) in patients with polycythaemia vera and essential thrombocythaemia. Br J Haematol2013;162:498508.

    • Search Google Scholar
    • Export Citation
  • 53.

    RambaldiADellacasaCMFinazziG. A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol2010;150:446455.

    • Search Google Scholar
    • Export Citation
  • 54.

    FinazziGVannucchiAMMartinelliV. A phase II study of Givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br J Haematol2013;161:688694.

    • Search Google Scholar
    • Export Citation
  • 55.

    CervantesF. How I treat myelofibrosis. Blood2014;124:26352642.

  • 56.

    HarrisonCNVannucchiAMKiladjianJ. Long-term efficacy and safety in COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for the treatment of myelofibrosis: 5-year final study results. Blood2015;126:59.

    • Search Google Scholar
    • Export Citation
  • 57.

    VannucchiAMLashoTLGuglielmelliP. Mutations and prognosis in primary myelofibrosis. Leukemia2013;27:18611869.

  • 58.

    ParganasEWangDStravopodisD. Jak2 is essential for signaling through a variety of cytokine receptors. Cell1998;93:385395.

  • 59.

    MeyerSCLevineRL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res2014;20:20512059.

    • Search Google Scholar
    • Export Citation
  • 60.

    DaverNCortesJNewberryK. Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica2015;100:10581063.

    • Search Google Scholar
    • Export Citation
  • 61.

    GowinKMKosiorekHEDueckAC. Final analysis of a multicenter pilot phase 2 study of ruxolitinib and danazol in patients with myelofibrosis [abstract]. Blood2015;126:Abstract 1618.

    • Search Google Scholar
    • Export Citation
  • 62.

    DussiotMMacielTTFricotA. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nat Med2014;20:398407.

    • Search Google Scholar
    • Export Citation
  • 63.

    GiagounidisAPlatzbeckerUGermingU. Luspatercept treatment leads to long term increases in hemoglobin and reductions in transfusion burden in patients with low or intermediate-1 risk myelodysplastic syndromes (MDS): preliminary results from the phase 2 PACE-MDS Extension Study [abstract]. Blood2015;126:Abstract 92.

    • Search Google Scholar
    • Export Citation
  • 64.

    MascarenhasJRoperNChaurasiaPHoffmanR. Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin Epigenetics2011;2:197212.

    • Search Google Scholar
    • Export Citation
  • 65.

    BaliPPranpatMBradnerJ. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem2005;280:2672926734.

    • Search Google Scholar
    • Export Citation
  • 66.

    WangYFiskusWChongDG. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood2009;114:50245033.

    • Search Google Scholar
    • Export Citation
  • 67.

    MascarenhasJLuMLiT. A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). Br J Haematol2013;161:6875.

    • Search Google Scholar
    • Export Citation
  • 68.

    DeAngeloDJMesaRAFiskusW. Phase II trial of panobinostat, an oral pan-deacetylase inhibitor in patients with primary myelofibrosis, post-essential thrombocythaemia, and post-polycythaemia vera myelofibrosis. Br J Haematol2013;162:326335.

    • Search Google Scholar
    • Export Citation
  • 69.

    Quintas-CardamaAKantarjianHEstrovZ. Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk Res2012;36:11241127.

    • Search Google Scholar
    • Export Citation
  • 70.

    HarrisonCNKiladjianJJHeidelFH. Efficacy, safety, and confirmation of the recommended phase 2 starting dose of the combination of ruxolitinib (RUX) and panobinostat (PAN) in patients (pts) with myelofibrosis (MF) [abstract]. Blood2015;126:Abstract 4060.

    • Search Google Scholar
    • Export Citation
  • 71.

    CervantesFDupriezBPereiraA. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood2009;113:28952901.

    • Search Google Scholar
    • Export Citation
  • 72.

    NischalSBhattacharyyaSChristopeitM. Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms. Cancer Res2013;73:10761085.

    • Search Google Scholar
    • Export Citation
  • 73.

    Quintas-CardamaATongWKantarjianH. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia2008;22:965970.

    • Search Google Scholar
    • Export Citation
  • 74.

    DaverNGCortesJEZhouL. Ruxolitinib (RUX) in combination with 5-azacytidine (AZA) as therapy for patients (pts) with myelofibrosis (MF) [abstract]. Haematologica2015;15(Suppl 2):Abstract 808.

    • Search Google Scholar
    • Export Citation
  • 75.

    ThepotSItzyksonRSeegersV. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood2010;116:37353742.

    • Search Google Scholar
    • Export Citation
  • 76.

    BadarTKantarjianHMRavandiF. Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase. Leuk Res2015;39:950956.

    • Search Google Scholar
    • Export Citation
  • 77.

    KamishimotoJTagoKKasaharaTFunakoshi-TagoM. Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation. Cell Signal2011;23:849856.

    • Search Google Scholar
    • Export Citation
  • 78.

    FiskusWVerstovsekSManshouriT. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther2013;12:577588.

    • Search Google Scholar
    • Export Citation
  • 79.

    DurrantSNaglerAVannucchiAM. An open-label, multicenter, 2-arm, dose-finding, phase 1b study of the combination of ruxolitinib and buparlisib (BKM120) in patients with myelofibrosis: results from HARMONY study [abstract]. Blood2015;126:Abstract 827.

    • Search Google Scholar
    • Export Citation
  • 80.

    GuglielmelliPBarosiGRambaldiA. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood2011;118:20692076.

    • Search Google Scholar
    • Export Citation
  • 81.

    KleinCZwickAKisselS. Ptch2 loss drives myeloproliferation and myeloproliferative neoplasm progression. J Exp Med2016;213:273290.

  • 82.

    BhagwatNKellerMDRampalR. Improved efficacy of combination of JAK2 and hedgehog inhibitors in myelofibrosis [abstract]. Blood2013;122:Abstract 666.

    • Search Google Scholar
    • Export Citation
  • 83.

    GuptaVHarrisonCNHasselbalchHC. Phase 1b/2 study of the efficacy and safety of sonidegib (LDE225) in combination with ruxolitinib (INC424) in patients with myelofibrosis [abstract]. Blood2015;126:Abstract 825.

    • Search Google Scholar
    • Export Citation
  • 84.

    GeyerHLMesaRA. Therapy for myeloproliferative neoplasms: when, which agent, and how?Blood2014;124:35293537.

  • 85.

    PardananiALabordeRRLashoTL. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia2013;27:13221327.

  • 86.

    AsshoffMWarrMHaschkaD. The Jak1/Jak2 inhibitor momelotinib inhibits Alk2, decreases hepcidin production and ameliorates anemia of chronic disease (ACD) in rodents [abstract]. Blood2015;126:Abstract 538.

    • Search Google Scholar
    • Export Citation
  • 87.

    PardananiAGotlibJRGuptaV. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis [abstract]. Blood2013;122:Abstract 108.

    • Search Google Scholar
    • Export Citation
  • 88.

    GuptaVMesaRADeiningerMW. A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis[published online ahead of print September 15 2016]. Haematologicapii: haematol.2016.148924.

    • Search Google Scholar
    • Export Citation
  • 89.

    AbdelrahmanRABegnaKHAl-KaliA. Momelotinib treatment-emergent neuropathy: prevalence, risk factors and outcome in 100 patients with myelofibrosis. Br J Haematol2015;169:7780.

    • Search Google Scholar
    • Export Citation
  • 90.

    SingerJWAl-FayoumiSMaH. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol2016;8:1119.

    • Search Google Scholar
    • Export Citation
  • 91.

    DupriezBMorelPDemoryJL. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood1996;88:10131018.

    • Search Google Scholar
    • Export Citation
  • 92.

    KomrokjiRSSeymourJFRobertsAW. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood2015;125:26492655.

    • Search Google Scholar
    • Export Citation
  • 93.

    MesaRASchwagerSRadiaD. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res2009;33:11991203.

    • Search Google Scholar
    • Export Citation
  • 94.

    MesaRAEgyedMSzokeA. Pacritinib (PAC) vs best available therapy (BAT) in myelofibrosis (MF): 60 week follow-up of the phase III PERSIST-1 trial [abstract]. J Clin Oncol2016;34:Abstract 7065.

    • Search Google Scholar
    • Export Citation
  • 95.

    VerstovsekSTalpazMRitchieE. A Phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis[published online ahead of print September 2 2016]. Leukemiadoi: 10.1038/leu.2016.215.

    • Search Google Scholar
    • Export Citation
  • 96.

    DuffieldJSLupherMLJr. PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect2010;23:305315.

    • Search Google Scholar
    • Export Citation
  • 97.

    PassamontiFCervantesFVannucchiAM. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood2010;115:17031708.

    • Search Google Scholar
    • Export Citation
  • 98.

    VerstovsekSMesaRAFoltzLM. Phase 2 trial of PRM-151, an anti-fibrotic agent, in patients with myelofibrosis: stage 1 results [abstract]. Blood2014;124:Abstract 713.

    • Search Google Scholar
    • Export Citation
  • 99.

    VerstovsekSMesaRAFoltzLM. PRM-151 in myelofibrosis: durable efficacy and safety at 72 weeks [abstract]. Blood2015;126:Abstract 56.

  • 100.

    GangatNCaramazzaDVaidyaR. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol2011;29:392397.

    • Search Google Scholar
    • Export Citation
  • 101.

    TefferiALashoTLBegnaKH. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med2015;373:908919.

  • 102.

    Geron Provides Update on Imetelstat Trials Being Conducted by Janssen. Geron Web site. Available at: http://ir.geron.com/phoenix.zhtml?c=67323&p=irol-newsArticle&ID=2201055. Accessed September 18 2016.

    • Search Google Scholar
    • Export Citation
  • 103.

    MascarenhasJHoffmanR. A comprehensive review and analysis of the effect of ruxolitinib therapy on the survival of patients with myelofibrosis. Blood2013;121:48324837.

    • Search Google Scholar
    • Export Citation
  • 104.

    BarosiGBirgegardGFinazziG. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol2010;148:961963.

    • Search Google Scholar
    • Export Citation
  • 105.

    BarosiGBirgegardGFinazziG. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood2009;113:48294833.

    • Search Google Scholar
    • Export Citation
  • 106.

    TefferiAVerstovsekSBarosiG. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol2009;27:45634569.

    • Search Google Scholar
    • Export Citation
  • 107.

    TefferiAPassamontiFBarbuiT. Phase 3 study of pomalidomide in myeloproliferative neoplasm (MPN)-associated myelofibrosis with RBC-transfusion-dependence [abstract]. Blood2013;122:Abstract 394.

    • Search Google Scholar
    • Export Citation
  • 108.

    RadinAIKimHTGrantBW. Phase II study of alpha2 interferon in the treatment of the chronic myeloproliferative disorders (E5487): a trial of the Eastern Cooperative Oncology Group. Cancer2003;98:100109.

    • Search Google Scholar
    • Export Citation
  • 109.

    JabbourEKantarjianHCortesJ. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer2007;110:20122018.

    • Search Google Scholar
    • Export Citation
  • 110.

    SilverRTVandrisKGoldmanJJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood2011;117:66696672.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 248 16
PDF Downloads 57 47 5
EPUB Downloads 0 0 0