Drug Development Pipeline for Myeloproliferative Neoplasms: Potential Future Impact on Guidelines and Management

Authors: Prithviraj Bose MD 1 and Srdan Verstovsek MD, PhD 1
View More View Less
  • 1 From The University of Texas MD Anderson Cancer Center, Houston, Texas.
Restricted access

The unprecedented success of ruxolitinib in myelofibrosis (MF) has paved the way for the development of other Janus kinase (JAK) inhibitors and other agents representing diverse drug classes and mechanisms of action in myeloproliferative neoplasms (MPNs). In particular, the symptomatic benefits afforded by ruxolitinib have led to the recognition of “clinical improvement” in symptoms and the spleen in international consensus response criteria for MF. Ruxolitinib is also approved for the second-line treatment of polycythemia vera and is being developed for essential thrombocythemia. Appreciation of the universal role of activated JAK/signal transducer and activator of transcription (STAT) signaling in MPNs and improved understanding of the canonical and noncanonical actions of JAK2 have yielded a number of drug targets beyond JAK2 in MPNs, which form the basis for a number of ruxolitinib-based rational combinations that are being explored in MF. Other JAK inhibitors with the potential for significantly less myelosuppression or even improvement of anemia continue to be tested. Finally, agents with very distinct mechanisms of action, such as novel interferon formulations, antifibrotic agents, and telomerase inhibitors, are being pursued in polycythemia vera and MF, respectively. This article reviews the current landscape of clinical drug development in MPNs, focusing on the most promising agents and combinations.

Correspondence: Prithviraj Bose, MD, The University of Texas MD Anderson Cancer Center, Department of Leukemia, 1400 Holcombe Boulevard, Suite FC4.3062, Unit #428, Houston, TX 77030. E-mail: pbose@mdanderson.org
  • 1.

    Vannucchi AM, Barbui T, Cervantes F. Philadelphia chromosome-negative chronic myeloproliferative neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26(Suppl 5):v8599.

    • Search Google Scholar
    • Export Citation
  • 2.

    Cervantes F, Dupriez B, Passamonti F. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol 2012;30:29812987.

    • Search Google Scholar
    • Export Citation
  • 3.

    Tefferi A, Guglielmelli P, Larson DR. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014;124:25072513; quiz 2615.

    • Search Google Scholar
    • Export Citation
  • 4.

    Tefferi A, Rumi E, Finazzi G. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 2013;27:18741881.

    • Search Google Scholar
    • Export Citation
  • 5.

    Anand S, Stedham F, Gudgin E. Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood 2011;118:16101621.

    • Search Google Scholar
    • Export Citation
  • 6.

    Rampal R, Al-Shahrour F, Abdel-Wahab O. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 2014;123:e123133.

    • Search Google Scholar
    • Export Citation
  • 7.

    Baxter EJ, Scott LM, Campbell PJ. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:10541061.

    • Search Google Scholar
    • Export Citation
  • 8.

    James C, Ugo V, Le Couedic JP. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:11441148.

    • Search Google Scholar
    • Export Citation
  • 9.

    Kralovics R, Passamonti F, Buser AS. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:17791790.

  • 10.

    Levine RL, Wadleigh M, Cools J. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387397.

    • Search Google Scholar
    • Export Citation
  • 11.

    Scott LM, Tong W, Levine RL. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459468.

  • 12.

    Pardanani AD, Levine RL, Lasho T. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:34723476.

    • Search Google Scholar
    • Export Citation
  • 13.

    Pikman Y, Lee BH, Mercher T. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270.

  • 14.

    Klampfl T, Gisslinger H, Harutyunyan AS. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369:23792390.

  • 15.

    Nangalia J, Massie CE, Baxter EJ. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369:23912405.

    • Search Google Scholar
    • Export Citation
  • 16.

    Verstovsek S, Mesa RA, Gotlib J. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012;366:799807.

  • 17.

    Harrison C, Kiladjian JJ, Al-Ali HK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012;366:787798.

    • Search Google Scholar
    • Export Citation
  • 18.

    Vannucchi AM, Kiladjian JJ, Griesshammer M. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015;372:426435.

    • Search Google Scholar
    • Export Citation
  • 19.

    Verstovsek S, Mesa RA, Gotlib JR. Long-term outcomes of ruxolitinib (RUX) therapy in patients (pts) with myelofibrosis (MF): 5-year final efficacy and safety analysis from COMFORT-I [abstract]. J Clin Oncol 2016;35(Supp):Abstract 7012.

    • Search Google Scholar
    • Export Citation
  • 20.

    Harrison CN, Vannucchi AM, Kiladjian JJ. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia 2016;30:17011707.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mesa RA, Gotlib J, Gupta V. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol 2013;31:12851292.

    • Search Google Scholar
    • Export Citation
  • 22.

    Tefferi A, Cervantes F, Mesa R. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood 2013;122:13951398.

    • Search Google Scholar
    • Export Citation
  • 23.

    Emanuel RM, Dueck AC, Geyer HL. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012;30:40984103.

    • Search Google Scholar
    • Export Citation
  • 24.

    Guglielmelli P, Rotunno G, Bogani C. Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis. Br J Haematol 2016;173:938940.

    • Search Google Scholar
    • Export Citation
  • 25.

    Stein BL, Swords R, Hochhaus A, Giles F. Novel myelofibrosis treatment strategies: potential partners for combination therapies. Leukemia 2014;28:21392147.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kroger NM, Deeg JH, Olavarria E. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia 2015;29:21262133.

    • Search Google Scholar
    • Export Citation
  • 27.

    Spoerl S, Mathew NR, Bscheider M. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood 2014;123:38323842.

  • 28.

    Zeiser R, Burchert A, Lengerke C. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia 2015;29:20622068.

    • Search Google Scholar
    • Export Citation
  • 29.

    Landolfi R, Marchioli R, Kutti J. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004;350:114124.

  • 30.

    Cortelazzo S, Finazzi G, Ruggeri M. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995;332:11321136.

    • Search Google Scholar
    • Export Citation
  • 31.

    Harrison CN, Campbell PJ, Buck G. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005;353:3345.

  • 32.

    Gisslinger H, Gotic M, Holowiecki J. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood 2013;121:17201728.

    • Search Google Scholar
    • Export Citation
  • 33.

    Marchioli R, Finazzi G, Specchia G. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013;368:2233.

  • 34.

    Geyer HL, Scherber RM, Dueck AC. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014;123:38033810.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mesa RA, Niblack J, Wadleigh M. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 2007;109:6876.

    • Search Google Scholar
    • Export Citation
  • 36.

    Scherber R, Dueck AC, Johansson P. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 2011;118:401408.

    • Search Google Scholar
    • Export Citation
  • 37.

    Verstovsek S, Vannucchi AM, Griesshammer M. Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica 2016;101:821829.

    • Search Google Scholar
    • Export Citation
  • 38.

    Kiladjian JJ, Cassinat B, Chevret S. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008;112:30653072.

    • Search Google Scholar
    • Export Citation
  • 39.

    Quintas-Cardama A, Kantarjian H, Manshouri T. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 2009;27:54185424.

    • Search Google Scholar
    • Export Citation
  • 40.

    Masarova L, Verstovsek S, Patel KP. Efficacy and safety of pegylated interferon alpha-2a in patients with essential thrombocythemia and polycythemia vera: results after a median 7-year follow-up of a phase 2 study [abstract]. Blood 2015;126:Abstract 60.

    • Search Google Scholar
    • Export Citation
  • 41.

    Verger E, Cassinat B, Chauveau A. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood 2015;126:25852591.

    • Search Google Scholar
    • Export Citation
  • 42.

    Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood 2015;126:17621769.

    • Search Google Scholar
    • Export Citation
  • 43.

    Vannucchi AM, Verstovsek S, Guglielmelli P. Ruxolitinib (RUX) reduces JAK2V617F allele burden (AB) in patients (pts) with polycythemia vera (PV) enrolled in the response study. Presented at the 21st Congress of the European Hematology Association; June 9–12, 2016; Copenhagen, Denmark.

    • Search Google Scholar
    • Export Citation
  • 44.

    Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011;118:17231735.

    • Search Google Scholar
    • Export Citation
  • 45.

    Kralovics R, Teo SS, Li S. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006;108:13771380.

    • Search Google Scholar
    • Export Citation
  • 46.

    Ortmann CA, Kent DG, Nangalia J. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 2015;372:601612.

  • 47.

    Kiladjian JJ, Masse A, Cassinat B. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia 2010;24:15191523.

    • Search Google Scholar
    • Export Citation
  • 48.

    Pieri L, Pancrazzi A, Pacilli A. JAK2V617F complete molecular remission in polycythemia vera/essential thrombocythemia patients treated with ruxolitinib. Blood 2015;125:33523353.

    • Search Google Scholar
    • Export Citation
  • 49.

    Baerlocher GM, Oppliger Leibundgut E, Ottmann OG. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N Engl J Med 2015;373:920928.

    • Search Google Scholar
    • Export Citation
  • 50.

    Guerini V, Barbui V, Spinelli O. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 2008;22:740747.

    • Search Google Scholar
    • Export Citation
  • 51.

    Akada H, Akada S, Gajra A. Efficacy of vorinostat in a murine model of polycythemia vera. Blood 2012;119:37793789.

  • 52.

    Andersen CL, McMullin MF, Ejerblad E. A phase II study of vorinostat (MK-0683) in patients with polycythaemia vera and essential thrombocythaemia. Br J Haematol 2013;162:498508.

    • Search Google Scholar
    • Export Citation
  • 53.

    Rambaldi A, Dellacasa CM, Finazzi G. A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol 2010;150:446455.

    • Search Google Scholar
    • Export Citation
  • 54.

    Finazzi G, Vannucchi AM, Martinelli V. A phase II study of Givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br J Haematol 2013;161:688694.

    • Search Google Scholar
    • Export Citation
  • 55.

    Cervantes F. How I treat myelofibrosis. Blood 2014;124:26352642.

  • 56.

    Harrison CN, Vannucchi AM, Kiladjian J. Long-term efficacy and safety in COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for the treatment of myelofibrosis: 5-year final study results. Blood 2015;126:59.

    • Search Google Scholar
    • Export Citation
  • 57.

    Vannucchi AM, Lasho TL, Guglielmelli P. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27:18611869.

  • 58.

    Parganas E, Wang D, Stravopodis D. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998;93:385395.

  • 59.

    Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res 2014;20:20512059.

    • Search Google Scholar
    • Export Citation
  • 60.

    Daver N, Cortes J, Newberry K. Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica 2015;100:10581063.

    • Search Google Scholar
    • Export Citation
  • 61.

    Gowin KM, Kosiorek HE, Dueck AC. Final analysis of a multicenter pilot phase 2 study of ruxolitinib and danazol in patients with myelofibrosis [abstract]. Blood 2015;126:Abstract 1618.

    • Search Google Scholar
    • Export Citation
  • 62.

    Dussiot M, Maciel TT, Fricot A. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nat Med 2014;20:398407.

    • Search Google Scholar
    • Export Citation
  • 63.

    Giagounidis A, Platzbecker U, Germing U. Luspatercept treatment leads to long term increases in hemoglobin and reductions in transfusion burden in patients with low or intermediate-1 risk myelodysplastic syndromes (MDS): preliminary results from the phase 2 PACE-MDS Extension Study [abstract]. Blood 2015;126:Abstract 92.

    • Search Google Scholar
    • Export Citation
  • 64.

    Mascarenhas J, Roper N, Chaurasia P, Hoffman R. Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin Epigenetics 2011;2:197212.

    • Search Google Scholar
    • Export Citation
  • 65.

    Bali P, Pranpat M, Bradner J. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005;280:2672926734.

    • Search Google Scholar
    • Export Citation
  • 66.

    Wang Y, Fiskus W, Chong DG. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 2009;114:50245033.

    • Search Google Scholar
    • Export Citation
  • 67.

    Mascarenhas J, Lu M, Li T. A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). Br J Haematol 2013;161:6875.

    • Search Google Scholar
    • Export Citation
  • 68.

    DeAngelo DJ, Mesa RA, Fiskus W. Phase II trial of panobinostat, an oral pan-deacetylase inhibitor in patients with primary myelofibrosis, post-essential thrombocythaemia, and post-polycythaemia vera myelofibrosis. Br J Haematol 2013;162:326335.

    • Search Google Scholar
    • Export Citation
  • 69.

    Quintas-Cardama A, Kantarjian H, Estrov Z. Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk Res 2012;36:11241127.

    • Search Google Scholar
    • Export Citation
  • 70.

    Harrison CN, Kiladjian JJ, Heidel FH. Efficacy, safety, and confirmation of the recommended phase 2 starting dose of the combination of ruxolitinib (RUX) and panobinostat (PAN) in patients (pts) with myelofibrosis (MF) [abstract]. Blood 2015;126:Abstract 4060.

    • Search Google Scholar
    • Export Citation
  • 71.

    Cervantes F, Dupriez B, Pereira A. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113:28952901.

    • Search Google Scholar
    • Export Citation
  • 72.

    Nischal S, Bhattacharyya S, Christopeit M. Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms. Cancer Res 2013;73:10761085.

    • Search Google Scholar
    • Export Citation
  • 73.

    Quintas-Cardama A, Tong W, Kantarjian H. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 2008;22:965970.

    • Search Google Scholar
    • Export Citation
  • 74.

    Daver NG, Cortes JE, Zhou L. Ruxolitinib (RUX) in combination with 5-azacytidine (AZA) as therapy for patients (pts) with myelofibrosis (MF) [abstract]. Haematologica 2015;15(Suppl 2):Abstract 808.

    • Search Google Scholar
    • Export Citation
  • 75.

    Thepot S, Itzykson R, Seegers V. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood 2010;116:37353742.

    • Search Google Scholar
    • Export Citation
  • 76.

    Badar T, Kantarjian HM, Ravandi F. Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase. Leuk Res 2015;39:950956.

    • Search Google Scholar
    • Export Citation
  • 77.

    Kamishimoto J, Tago K, Kasahara T, Funakoshi-Tago M. Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation. Cell Signal 2011;23:849856.

    • Search Google Scholar
    • Export Citation
  • 78.

    Fiskus W, Verstovsek S, Manshouri T. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther 2013;12:577588.

    • Search Google Scholar
    • Export Citation
  • 79.

    Durrant S, Nagler A, Vannucchi AM. An open-label, multicenter, 2-arm, dose-finding, phase 1b study of the combination of ruxolitinib and buparlisib (BKM120) in patients with myelofibrosis: results from HARMONY study [abstract]. Blood 2015;126:Abstract 827.

    • Search Google Scholar
    • Export Citation
  • 80.

    Guglielmelli P, Barosi G, Rambaldi A. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood 2011;118:20692076.

    • Search Google Scholar
    • Export Citation
  • 81.

    Klein C, Zwick A, Kissel S. Ptch2 loss drives myeloproliferation and myeloproliferative neoplasm progression. J Exp Med 2016;213:273290.

  • 82.

    Bhagwat N, Keller MD, Rampal R. Improved efficacy of combination of JAK2 and hedgehog inhibitors in myelofibrosis [abstract]. Blood 2013;122:Abstract 666.

    • Search Google Scholar
    • Export Citation
  • 83.

    Gupta V, Harrison CN, Hasselbalch HC. Phase 1b/2 study of the efficacy and safety of sonidegib (LDE225) in combination with ruxolitinib (INC424) in patients with myelofibrosis [abstract]. Blood 2015;126:Abstract 825.

    • Search Google Scholar
    • Export Citation
  • 84.

    Geyer HL, Mesa RA. Therapy for myeloproliferative neoplasms: when, which agent, and how? Blood 2014;124:35293537.

  • 85.

    Pardanani A, Laborde RR, Lasho TL. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 2013;27:13221327.

  • 86.

    Asshoff M, Warr M, Haschka D. The Jak1/Jak2 inhibitor momelotinib inhibits Alk2, decreases hepcidin production and ameliorates anemia of chronic disease (ACD) in rodents [abstract]. Blood 2015;126:Abstract 538.

    • Search Google Scholar
    • Export Citation
  • 87.

    Pardanani A, Gotlib JR, Gupta V. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis [abstract]. Blood 2013;122:Abstract 108.

    • Search Google Scholar
    • Export Citation
  • 88.

    Gupta V, Mesa RA, Deininger MW. A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis [published online ahead of print September 15, 2016]. Haematologica, pii: haematol.2016.148924.

    • Search Google Scholar
    • Export Citation
  • 89.

    Abdelrahman RA, Begna KH, Al-Kali A. Momelotinib treatment-emergent neuropathy: prevalence, risk factors and outcome in 100 patients with myelofibrosis. Br J Haematol 2015;169:7780.

    • Search Google Scholar
    • Export Citation
  • 90.

    Singer JW, Al-Fayoumi S, Ma H. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol 2016;8:1119.

    • Search Google Scholar
    • Export Citation
  • 91.

    Dupriez B, Morel P, Demory JL. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 1996;88:10131018.

    • Search Google Scholar
    • Export Citation
  • 92.

    Komrokji RS, Seymour JF, Roberts AW. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood 2015;125:26492655.

    • Search Google Scholar
    • Export Citation
  • 93.

    Mesa RA, Schwager S, Radia D. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009;33:11991203.

    • Search Google Scholar
    • Export Citation
  • 94.

    Mesa RA, Egyed M, Szoke A. Pacritinib (PAC) vs best available therapy (BAT) in myelofibrosis (MF): 60 week follow-up of the phase III PERSIST-1 trial [abstract]. J Clin Oncol 2016;34:Abstract 7065.

    • Search Google Scholar
    • Export Citation
  • 95.

    Verstovsek S, Talpaz M, Ritchie E. A Phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis [published online ahead of print September 2, 2016]. Leukemia, doi: 10.1038/leu.2016.215.

    • Search Google Scholar
    • Export Citation
  • 96.

    Duffield JS, Lupher ML Jr. PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect 2010;23:305315.

    • Search Google Scholar
    • Export Citation
  • 97.

    Passamonti F, Cervantes F, Vannucchi AM. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010;115:17031708.

    • Search Google Scholar
    • Export Citation
  • 98.

    Verstovsek S, Mesa RA, Foltz LM. Phase 2 trial of PRM-151, an anti-fibrotic agent, in patients with myelofibrosis: stage 1 results [abstract]. Blood 2014;124:Abstract 713.

    • Search Google Scholar
    • Export Citation
  • 99.

    Verstovsek S, Mesa RA, Foltz LM. PRM-151 in myelofibrosis: durable efficacy and safety at 72 weeks [abstract]. Blood 2015;126:Abstract 56.

  • 100.

    Gangat N, Caramazza D, Vaidya R. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011;29:392397.

    • Search Google Scholar
    • Export Citation
  • 101.

    Tefferi A, Lasho TL, Begna KH. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med 2015;373:908919.

  • 102.

    Geron Provides Update on Imetelstat Trials Being Conducted by Janssen. Geron Web site. Available at: http://ir.geron.com/phoenix.zhtml?c=67323&p=irol-newsArticle&ID=2201055. Accessed September 18, 2016.

    • Search Google Scholar
    • Export Citation
  • 103.

    Mascarenhas J, Hoffman R. A comprehensive review and analysis of the effect of ruxolitinib therapy on the survival of patients with myelofibrosis. Blood 2013;121:48324837.

    • Search Google Scholar
    • Export Citation
  • 104.

    Barosi G, Birgegard G, Finazzi G. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol 2010;148:961963.

    • Search Google Scholar
    • Export Citation
  • 105.

    Barosi G, Birgegard G, Finazzi G. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 2009;113:48294833.

    • Search Google Scholar
    • Export Citation
  • 106.

    Tefferi A, Verstovsek S, Barosi G. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol 2009;27:45634569.

    • Search Google Scholar
    • Export Citation
  • 107.

    Tefferi A, Passamonti F, Barbui T. Phase 3 study of pomalidomide in myeloproliferative neoplasm (MPN)-associated myelofibrosis with RBC-transfusion-dependence [abstract]. Blood 2013;122:Abstract 394.

    • Search Google Scholar
    • Export Citation
  • 108.

    Radin AI, Kim HT, Grant BW. Phase II study of alpha2 interferon in the treatment of the chronic myeloproliferative disorders (E5487): a trial of the Eastern Cooperative Oncology Group. Cancer 2003;98:100109.

    • Search Google Scholar
    • Export Citation
  • 109.

    Jabbour E, Kantarjian H, Cortes J. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer 2007;110:20122018.

    • Search Google Scholar
    • Export Citation
  • 110.

    Silver RT, Vandris K, Goldman JJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood 2011;117:66696672.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 327 153 7
PDF Downloads 94 53 4
EPUB Downloads 0 0 0