Myeloproliferative Neoplasms, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology

Restricted access

Myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) are a group of heterogeneous disorders of the hematopoietic system collectively known as Philadelphia chromosome–negative myeloproliferative neoplasms (MPNs). The diagnosis and the management of patients with MPNs have evolved since the identification of mutations that activate the JAK pathway (JAK2, CALR, and MPL mutations) and the development of targeted therapies has resulted in significant improvements in disease-related symptoms and quality of life. This manuscript discusses the recommendations outlined in the NCCN Guidelines for the diagnostic workup of MPN (MF, PV, and ET), risk stratification, treatment, and supportive care strategies for the management of MF.

  • 1.

    Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma 2014;55:595600.

  • 2.

    Anderson LA, James G, Duncombe AS. Myeloproliferative neoplasm patient symptom burden and quality of life: evidence of significant impairment compared to controls. Am J Hematol 2015;90:864870.

    • Search Google Scholar
    • Export Citation
  • 3.

    Mesa R, Miller CB, Thyne M. Myeloproliferative neoplasms (MPNs) have a significant impact on patients' overall health and productivity: the MPN Landmark survey. BMC Cancer 2016;16:167.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kundranda MN, Tibes R, Mesa RA. Transformation of a chronic myeloproliferative neoplasm to acute myelogenous leukemia: does anything work? Curr Hematol Malig Rep 2012;7:7886.

    • Search Google Scholar
    • Export Citation
  • 5.

    Geyer HL, Scherber RM, Dueck AC. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014;123:38033810.

    • Search Google Scholar
    • Export Citation
  • 6.

    Price GL, Davis KL, Karve S. Survival patterns in United States (US) medicare enrollees with non-CML myeloproliferative neoplasms (MPN). PLoS One 2014;9:e90299.

    • Search Google Scholar
    • Export Citation
  • 7.

    Arber DA, Orazi A, Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:23912405.

    • Search Google Scholar
    • Export Citation
  • 8.

    Tefferi A. Myeloproliferative neoplasms: a decade of discoveries and treatment advances. Am J Hematol 2016;91:5058.

  • 9.

    Stein BL, Gotlib J, Arcasoy M. Historical views, conventional approaches, and evolving management strategies for myeloproliferative neoplasms. J Natl Compr Canc Netw 2015;13:424434.

    • Search Google Scholar
    • Export Citation
  • 10.

    Baxter EJ, Scott LM, Campbell PJ. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:10541061.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kralovics R, Passamonti F, Buser AS. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:17791790.

  • 12.

    Levine RL, Wadleigh M, Cools J. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387397.

    • Search Google Scholar
    • Export Citation
  • 13.

    Scott LM, Tong W, Levine RL. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459468.

  • 14.

    Pietra D, Li S, Brisci A. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008;111:16861689.

    • Search Google Scholar
    • Export Citation
  • 15.

    Pardanani AD, Levine RL, Lasho T. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:34723476.

    • Search Google Scholar
    • Export Citation
  • 16.

    Pikman Y, Lee BH, Mercher T. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270.

  • 17.

    Beer PA, Campbell PJ, Scott LM. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008;112:141149.

  • 18.

    Guglielmelli P, Pancrazzi A, Bergamaschi G. Anaemia characterises patients with myelofibrosis harbouring MPL mutation. Br J Haematol 2007;137:244247.

    • Search Google Scholar
    • Export Citation
  • 19.

    Klampfl T, Gisslinger H, Harutyunyan AS. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369:23792390.

  • 20.

    Nangalia J, Massie CE, Baxter EJ. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369:23912405.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pietra D, Rumi E, Ferretti VV. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2016;30:431438.

    • Search Google Scholar
    • Export Citation
  • 22.

    Tefferi A, Lasho TL, Finke C. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia 2014;28:15681570.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tefferi A, Lasho TL, Tischer A. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood 2014;124:24652466.

    • Search Google Scholar
    • Export Citation
  • 24.

    Rumi E, Pietra D, Pascutto C. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014;124:10621069.

  • 25.

    Tefferi A, Lasho TL, Finke CM. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014;28:14721477.

    • Search Google Scholar
    • Export Citation
  • 26.

    Milosevic Feenstra JD, Nivarthi H, Gisslinger H. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 2016;127:325332.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nangalia J, Green TR. The evolving genomic landscape of myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2014;2014:287296.

    • Search Google Scholar
    • Export Citation
  • 28.

    Rampal R, Ahn J, Abdel-Wahab O. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci U S A 2014;111:E54015410.

    • Search Google Scholar
    • Export Citation
  • 29.

    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:22922302.

  • 30.

    Vardiman JW, Thiele J, Arber DA. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:937951.

    • Search Google Scholar
    • Export Citation
  • 31.

    Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J 2015;5:e337.

    • Search Google Scholar
    • Export Citation
  • 32.

    Vannucchi AM, Lasho TL, Guglielmelli P. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27:18611869.

  • 33.

    Guglielmelli P, Lasho TL, Rotunno G. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 2014;28:18041810.

    • Search Google Scholar
    • Export Citation
  • 34.

    Mesa RA, Verstovsek S, Cervantes F. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res 2007;31:737740.

    • Search Google Scholar
    • Export Citation
  • 35.

    Barbui T, Thiele J, Passamonti F. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 2011;29:31793184.

    • Search Google Scholar
    • Export Citation
  • 36.

    Barbui T, Thiele J, Gisslinger H. Masked polycythemia vera (mPV): results of an international study. Am J Hematol 2014;89:5254.

  • 37.

    Barosi G, Mesa RA, Thiele J. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 2008;22:437438.

    • Search Google Scholar
    • Export Citation
  • 38.

    McMahon B, Stein BL. Thrombotic and bleeding complications in classical myeloproliferative neoplasms. Semin Thromb Hemost 2013;39:101111.

    • Search Google Scholar
    • Export Citation
  • 39.

    Kaifie A, Kirschner M, Wolf D. Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol 2016;9:18.

    • Search Google Scholar
    • Export Citation
  • 40.

    Federici AB, Rand JH, Bucciarelli P. Acquired von Willebrand syndrome: data from an international registry. Thromb Haemost 2000;84:345349.

  • 41.

    Lippi G, Franchini M, Salvagno GL. Correlation between von Willebrand factor antigen, von Willebrand factor ristocetin cofactor activity and factor VIII activity in plasma. J Thromb Thrombolysis 2008;26:150153.

    • Search Google Scholar
    • Export Citation
  • 42.

    Mesa RA, Niblack J, Wadleigh M. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 2007;109:6876.

    • Search Google Scholar
    • Export Citation
  • 43.

    Mesa RA, Schwager S, Radia D. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009;33:11991203.

    • Search Google Scholar
    • Export Citation
  • 44.

    Mesa RA, Kantarjian H, Tefferi A. Evaluating the serial use of the Myelofibrosis Symptom Assessment Form for measuring symptomatic improvement: performance in 87 myelofibrosis patients on a JAK1 and JAK2 inhibitor (INCB018424) clinical trial. Cancer 2011;117:48694877.

    • Search Google Scholar
    • Export Citation
  • 45.

    Scherber R, Dueck AC, Johansson P. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 2011;118:401408.

    • Search Google Scholar
    • Export Citation
  • 46.

    Emanuel RM, Dueck AC, Geyer HL. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012;30:40984103.

    • Search Google Scholar
    • Export Citation
  • 47.

    Mesa RA, Gotlib J, Gupta V. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol 2013;31:12851292.

    • Search Google Scholar
    • Export Citation
  • 48.

    Tefferi A, Guglielmelli P, Larson DR. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014;124:25072513; quiz 2615.

    • Search Google Scholar
    • Export Citation
  • 49.

    Guglielmelli P, Rotunno G, Fanelli T. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J 2015;5:e360.

    • Search Google Scholar
    • Export Citation
  • 50.

    Panagiota V, Thol F, Markus B. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Leukemia 2014;28:15521555.

    • Search Google Scholar
    • Export Citation
  • 51.

    Guglielmelli P, Biamonte F, Score J. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 2011;118:52275234.

  • 52.

    Tefferi A, Jimma T, Sulai NH. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia 2012;26:475480.

    • Search Google Scholar
    • Export Citation
  • 53.

    Lundberg P, Karow A, Nienhold R. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014;123:22202228.

    • Search Google Scholar
    • Export Citation
  • 54.

    Tefferi A, Guglielmelli P, Lasho TL. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014;28:14941500.

    • Search Google Scholar
    • Export Citation
  • 55.

    Cervantes F, Dupriez B, Pereira A. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113:28952901.

    • Search Google Scholar
    • Export Citation
  • 56.

    Passamonti F, Cervantes F, Vannucchi AM. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010;115:17031708.

    • Search Google Scholar
    • Export Citation
  • 57.

    Gangat N, Caramazza D, Vaidya R. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011;29:392397.

    • Search Google Scholar
    • Export Citation
  • 58.

    Vannucchi AM, Guglielmelli P, Rotunno G. Mutation-enhanced International Prognostic Scoring System (MIPSS) for primary myelofibrosis: an AGIMM and IWG-MRT Project [abstract]. Blood 2014;124:Abstract 405.

    • Search Google Scholar
    • Export Citation
  • 59.

    Tefferi A, Guglielmelli P, Finke C. Integration of mutations and karyotype towards a Genetics-Based Prognostic Scoring System (GPSS) for primary myelofibrosis [abstract]. Blood 2014;124:Abstract 406.

    • Search Google Scholar
    • Export Citation
  • 60.

    Patnaik MM, Caramazza D, Gangat N. Age and platelet count are IPSS-independent prognostic factors in young patients with primary myelofibrosis and complement IPSS in predicting very long or very short survival. Eur J Haematol 2010;84:105108.

    • Search Google Scholar
    • Export Citation
  • 61.

    Tefferi A, Siragusa S, Hussein K. Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis—prognostic relevance is independent of IPSS or karyotype. Am J Hematol 2010;85:1417.

    • Search Google Scholar
    • Export Citation
  • 62.

    Hussein K, Pardanani AD, Van Dyke DL. International Prognostic Scoring System-independent cytogenetic risk categorization in primary myelofibrosis. Blood 2010;115:496499.

    • Search Google Scholar
    • Export Citation
  • 63.

    Caramazza D, Begna KH, Gangat N. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia 2011;25:8288.

    • Search Google Scholar
    • Export Citation
  • 64.

    Tefferi A, Barosi G, Mesa RA. International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood 2006;108:14971503.

    • Search Google Scholar
    • Export Citation
  • 65.

    Tefferi A, Cervantes F, Mesa R. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood 2013;122:13951398.

    • Search Google Scholar
    • Export Citation
  • 66.

    Jabbour E, Kantarjian H, Cortes J. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer 2007;110:20122018.

    • Search Google Scholar
    • Export Citation
  • 67.

    Silver RT, Vandris K, Goldman JJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood 2011;117:66696672.

    • Search Google Scholar
    • Export Citation
  • 68.

    Silver RT, Feldman EJ, Ritchie E. Recombinant interferon alpha (rIFN) may retard progression of early myelofibrosis by reducing splenomegaly and by decreasing marrow fibrosis [abstract]. Blood 2013;122:Abstract 4053.

    • Search Google Scholar
    • Export Citation
  • 69.

    Ianotto JC, Boyer-Perrard F, Gyan E. Efficacy and safety of pegylated-interferon alpha-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol 2013;162:783791.

    • Search Google Scholar
    • Export Citation
  • 70.

    Verstovsek S, Mesa RA, Gotlib J. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012;366:799807.

  • 71.

    Harrison C, Kiladjian JJ, Al-Ali HK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012;366:787798.

    • Search Google Scholar
    • Export Citation
  • 72.

    Mead AJ, Milojkovic D, Knapper S. Response to ruxolitinib in patients with intermediate-1-, intermediate-2-, and high-risk myelofibrosis: results of the UK ROBUST Trial. Br J Haematol 2015;170:2939.

    • Search Google Scholar
    • Export Citation
  • 73.

    Tavares R, Palumbo GA, Le Coutre P. Safety and efficacy of ruxolitinib in an 1869-patient cohort of JUMP: an open-label, multicenter, single-arm, expanded-access study in patients with myelofibrosis [abstract]. Blood 2015;126:Abstract 2799.

    • Search Google Scholar
    • Export Citation
  • 74.

    Davis KL, Kaye JA, Cote I. Real-world assessment of clinical outcomes in lower-risk myelofibrosis patients receiving treatment with ruxolitinib [abstract[. Blood 2014;124:Abstract 1857.

    • Search Google Scholar
    • Export Citation
  • 75.

    Verstovsek S, Mesa RA, Gotlib J. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica 2015;100:479488.

    • Search Google Scholar
    • Export Citation
  • 76.

    Gupta V, Verstovsek S, Mesa RA. Long-term outcomes of ruxolitinib (RUX) therapy in patients (pts) with myelofibrosis (MF): 5-year update from COMFORT-I [abstract]. J Clin Oncol 2016;34(15 Suppl):Abstract 7012.

    • Search Google Scholar
    • Export Citation
  • 77.

    Cervantes F, Vannucchi AM, Kiladjian JJ. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013;122:40474053.

    • Search Google Scholar
    • Export Citation
  • 78.

    Harrison CN, Vannucchi AM, Kiladjian JJ. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia 2016;30:17011707.

    • Search Google Scholar
    • Export Citation
  • 79.

    Verstovsek S, Mesa RA, Gotlib J. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol 2013;161:508516.

    • Search Google Scholar
    • Export Citation
  • 80.

    Vannucchi AM, Kantarjian HM, Kiladjian JJ. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 2015;100:11391145.

    • Search Google Scholar
    • Export Citation
  • 81.

    Heine A, Brossart P, Wolf D. Ruxolitinib is a potent immunosuppressive compound: is it time for anti-infective prophylaxis? Blood 2013;122:38433844.

    • Search Google Scholar
    • Export Citation
  • 82.

    Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest 2013;143:14781479.

    • Search Google Scholar
    • Export Citation
  • 83.

    Shamil E, Cunningham D, Wong BL, Jani P. Ruxolitinib associated tuberculosis presenting as a neck lump. Case Rep Infect Dis 2015;2015:284168.

  • 84.

    Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med 2013;369:197198.

  • 85.

    Caocci G, Murgia F, Podda L. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia 2014;28:225227.

    • Search Google Scholar
    • Export Citation
  • 86.

    Shen CH, Hwang CE, Chen YY, Chen CC. Hepatitis B virus reactivation associated with ruxolitinib. Ann Hematol 2014;93:10751076.

  • 87.

    Tong LX, Jackson J, Kerstetter J, Worswick SD. Reactivation of herpes simplex virus infection in a patient undergoing ruxolitinib treatment. J Am Acad Dermatol 2014;70:e5960.

    • Search Google Scholar
    • Export Citation
  • 88.

    Guglielmelli P, Biamonte F, Rotunno G. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood 2014;123:21572160.

    • Search Google Scholar
    • Export Citation
  • 89.

    Patel KP, Newberry KJ, Luthra R. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood 2015;126:790797.

    • Search Google Scholar
    • Export Citation
  • 90.

    Deeg HJ, Bredeson C, Farnia S. Hematopoietic cell transplantation as curative therapy for patients with myelofibrosis: long-term success in all age groups. Biol Blood Marrow Transplant 2015;21:18831887.

    • Search Google Scholar
    • Export Citation
  • 91.

    Ballen KK, Shrestha S, Sobocinski KA. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010;16:358367.

  • 92.

    Snyder DS, Palmer J, Stein AS. Allogeneic hematopoietic cell transplantation following reduced intensity conditioning for treatment of myelofibrosis. Biol Blood Marrow Transplant 2006;12:11611168.

    • Search Google Scholar
    • Export Citation
  • 93.

    Kroger N, Holler E, Kobbe G. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2009;114:52645270.

    • Search Google Scholar
    • Export Citation
  • 94.

    Patriarca F, Bacigalupo A, Sperotto A. Outcome of allogeneic stem cell transplantation following reduced-intensity conditioninig regimen in patients with idiopathic myelofibrosis: the g.I.T.m.o. experience. Mediterr J Hematol Infect Dis 2010;2:e2010010.

    • Search Google Scholar
    • Export Citation
  • 95.

    Snyder DS, Palmer J, Gaal K. Improved outcomes using tacrolimus/sirolimus for graft-versus-host disease prophylaxis with a reduced-intensity conditioning regimen for allogeneic hematopoietic cell transplant as treatment of myelofibrosis. Biol Blood Marrow Transplant 2010;16:281286.

    • Search Google Scholar
    • Export Citation
  • 96.

    Gupta V, Malone AK, Hari PN. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2014;20:8997.

    • Search Google Scholar
    • Export Citation
  • 97.

    Lussana F, Rambaldi A, Finazzi MC. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica 2014;99:916921.

    • Search Google Scholar
    • Export Citation
  • 98.

    Rondelli D, Goldberg JD, Isola L. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood 2014;124:11831191.

    • Search Google Scholar
    • Export Citation
  • 99.

    Robin M, Porcher R, Wolschke C. Outcome after transplantation according to reduced-intensity conditioning regimen in patients undergoing transplantation for myelofibrosis. Biol Blood Marrow Transplant 2016;22:12061211.

    • Search Google Scholar
    • Export Citation
  • 100.

    Scott BL, Gooley TA, Sorror ML. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood 2012;119:26572664.

    • Search Google Scholar
    • Export Citation
  • 101.

    Alchalby H, Yunus DR, Zabelina T. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol 2012;157:7585.

    • Search Google Scholar
    • Export Citation
  • 102.

    Kroger N, Giorgino T, Scott BL. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood 2015;125:33473350;quiz 3364.

    • Search Google Scholar
    • Export Citation
  • 103.

    Talpaz M, Paquette R, Afrin L. Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol 2013;6:81.

    • Search Google Scholar
    • Export Citation
  • 104.

    Mesa RA, Cortes J. Optimizing management of ruxolitinib in patients with myelofibrosis: the need for individualized dosing. J Hematol Oncol 2013;6:79.

    • Search Google Scholar
    • Export Citation
  • 105.

    Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 2011;86:11881191.

    • Search Google Scholar
    • Export Citation
  • 106.

    Deininger M, Radich J, Burn TC. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood 2015;126:15511554.

    • Search Google Scholar
    • Export Citation
  • 107.

    Alchalby H, Badbaran A, Zabelina T. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood 2010;116:35723581.

    • Search Google Scholar
    • Export Citation
  • 108.

    Lange T, Edelmann A, Siebolts U. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica 2013;98:722728.

    • Search Google Scholar
    • Export Citation
  • 109.

    Tefferi A, Lasho TL, Jimma T. One thousand patients with primary myelofibrosis: the mayo clinic experience. Mayo Clin Proc 2012;87:2533.

  • 110.

    Cervantes F, Alvarez-Larran A, Hernandez-Boluda JC. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol 2004;127:399403.

    • Search Google Scholar
    • Export Citation
  • 111.

    Cervantes F, Alvarez-Larran A, Hernandez-Boluda JC. Darbepoetin-alpha for the anaemia of myelofibrosis with myeloid metaplasia. Br J Haematol 2006;134:184186.

    • Search Google Scholar
    • Export Citation
  • 112.

    Tsiara SN, Chaidos A, Bourantas LK. Recombinant human erythropoietin for the treatment of anaemia in patients with chronic idiopathic myelofibrosis. Acta Haematol 2007;117:156161.

    • Search Google Scholar
    • Export Citation
  • 113.

    McMullin MF, Harrison CN, Niederwieser D. The use of erythropoiesis-stimulating agents with ruxolitinib in patients with myelofibrosis in COMFORT-II: an open-label, phase 3 study assessing efficacy and safety of ruxolitinib versus best available therapy in the treatment of myelofibrosis. Exp Hematol Oncol 2015;4:26.

    • Search Google Scholar
    • Export Citation
  • 114.

    Huang J, Tefferi A. Erythropoiesis stimulating agents have limited therapeutic activity in transfusion-dependent patients with primary myelofibrosis regardless of serum erythropoietin level. Eur J Haematol 2009;83:154155.

    • Search Google Scholar
    • Export Citation
  • 115.

    Cervantes F, Isola IM, Alvarez-Larran A. Danazol therapy for the anemia of myelofibrosis: assessment of efficacy with current criteria of response and long-term results. Ann Hematol 2015;94:17911796.

    • Search Google Scholar
    • Export Citation
  • 116.

    Barosi G, Elliott M, Canepa L. Thalidomide in myelofibrosis with myeloid metaplasia: a pooled-analysis of individual patient data from five studies. Leuk Lymphoma 2002;43:23012307.

    • Search Google Scholar
    • Export Citation
  • 117.

    Elliott MA, Mesa RA, Li CY. Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol 2002;117:288296.

  • 118.

    Merup M, Kutti J, Birgergard G. Negligible clinical effects of thalidomide in patients with myelofibrosis with myeloid metaplasia. Med Oncol 2002;19:7986.

    • Search Google Scholar
    • Export Citation
  • 119.

    Marchetti M, Barosi G, Balestri F. Low-dose thalidomide ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a phase II trial. J Clin Oncol 2004;22:424431.

    • Search Google Scholar
    • Export Citation
  • 120.

    Strupp C, Germing U, Scherer A. Thalidomide for the treatment of idiopathic myelofibrosis. Eur J Haematol 2004;72:5257.

  • 121.

    Thomas DA, Giles FJ, Albitar M. Thalidomide therapy for myelofibrosis with myeloid metaplasia. Cancer 2006;106:19741984.

  • 122.

    Abgrall JF, Guibaud I, Bastie JN. Thalidomide versus placebo in myeloid metaplasia with myelofibrosis: a prospective, randomized, double-blind, multicenter study. Haematologica 2006;91:10271032.

    • Search Google Scholar
    • Export Citation
  • 123.

    Mesa RA, Steensma DP, Pardanani A. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 2003;101:25342541.

    • Search Google Scholar
    • Export Citation
  • 124.

    Tefferi A, Cortes J, Verstovsek S. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 2006;108:11581164.

  • 125.

    Quintas-Cardama A, Kantarjian HM, Manshouri T. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol 2009;27:47604766.

    • Search Google Scholar
    • Export Citation
  • 126.

    Mesa RA, Yao X, Cripe LD. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood 2010;116:44364438.

    • Search Google Scholar
    • Export Citation
  • 127.

    Chihara D, Masarova L, Newberry KJ. Long-term results of a phase II trial of lenalidomide plus prednisone therapy for patients with myelofibrosis. Leuk Res 2016;48:15.

    • Search Google Scholar
    • Export Citation
  • 128.

    Jabbour E, Thomas D, Kantarjian H. Comparison of thalidomide and lenalidomide as therapy for myelofibrosis. Blood 2011;118:899902.

  • 129.

    Tefferi A, Lasho TL, Mesa RA. Lenalidomide therapy in del(5) (q31)-associated myelofibrosis: cytogenetic and JAK2V617F molecular remissions. Leukemia 2007;21:18271828.

    • Search Google Scholar
    • Export Citation
  • 130.

    Tam CS, Kantarjian H, Cortes J. Dynamic model for predicting death within 12 months in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. J Clin Oncol 2009;27:55875593.

    • Search Google Scholar
    • Export Citation
  • 131.

    Abdulkarim K, Girodon F, Johansson P. AML transformation in 56 patients with Ph- MPD in two well defined populations. Eur J Haematol 2009;82:106111.

    • Search Google Scholar
    • Export Citation
  • 132.

    Nielsen I, Hasselbalch HC. Acute leukemia and myelodysplasia in patients with a Philadelphia chromosome negative chronic myeloproliferative disorder treated with hydroxyurea alone or with hydroxyurea after busulphan. Am J Hematol 2003;74:2631.

    • Search Google Scholar
    • Export Citation
  • 133.

    Kiladjian JJ, Chevret S, Dosquet C. Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol 2011;29:39073913.

    • Search Google Scholar
    • Export Citation
  • 134.

    Bjorkholm M, Derolf AR, Hultcrantz M. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol 2011;29:24102415.

    • Search Google Scholar
    • Export Citation
  • 135.

    Noor SJ, Tan W, Wilding GE. Myeloid blastic transformation of myeloproliferative neoplasms—a review of 112 cases. Leuk Res 2011;35:608613.

    • Search Google Scholar
    • Export Citation
  • 136.

    Quintas-Cardama A, Kantarjian H, Pierce S. Prognostic model to identify patients with myelofibrosis at the highest risk of transformation to acute myeloid leukemia. Clin Lymphoma Myeloma Leuk 2013;13:315318.

    • Search Google Scholar
    • Export Citation
  • 137.

    Klampfl T, Harutyunyan A, Berg T. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 2011;118:167176.

    • Search Google Scholar
    • Export Citation
  • 138.

    Mesa RA, Li CY, Ketterling RP. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 2005;105:973977.

    • Search Google Scholar
    • Export Citation
  • 139.

    Tam CS, Nussenzveig RM, Popat U. The natural history and treatment outcome of blast phase BCR-ABL-myeloproliferative neoplasms. Blood 2008;112:16281637.

    • Search Google Scholar
    • Export Citation
  • 140.

    Kennedy JA, Atenafu EG, Messner HA. Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms. Blood 2013;121:27252733.

    • Search Google Scholar
    • Export Citation
  • 141.

    Mascarenhas J, Navada S, Malone A. Therapeutic options for patients with myelofibrosis in blast phase. Leuk Res 2010;34:12461249.

  • 142.

    Thepot S, Itzykson R, Seegers V. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood 2010;116:37353742.

    • Search Google Scholar
    • Export Citation
  • 143.

    Badar T, Kantarjian HM, Ravandi F. Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase. Leuk Res 2015;39:950956.

    • Search Google Scholar
    • Export Citation
  • 144.

    Ciurea SO, de Lima M, Giralt S. Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation. Biol Blood Marrow Transplant 2010;16:555559.

    • Search Google Scholar
    • Export Citation
  • 145.

    Cherington C, Slack JL, Leis J. Allogeneic stem cell transplantation for myeloproliferative neoplasm in blast phase. Leuk Res 2012;36:11471151.

    • Search Google Scholar
    • Export Citation
  • 146.

    Alchalby H, Zabelina T, Stubig T. Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation: a study from the Myeloproliferative Neoplasm Subcommittee of the CMWP of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2014;20:279281.

    • Search Google Scholar
    • Export Citation
  • 147.

    Shanavas M, Popat U, Michaelis LC. Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis with prior exposure to Janus Kinase 1/2 inhibitors. Biol Blood Marrow Transplant 2016;22:432440.

    • Search Google Scholar
    • Export Citation
  • 148.

    Cervantes F. How I treat myelofibrosis. Blood 2014;124:26352642.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1114 782 40
PDF Downloads 482 361 26
EPUB Downloads 0 0 0