Historical Views, Conventional Approaches, and Evolving Management Strategies for Myeloproliferative Neoplasms

Restricted access

The classical Philadelphia chromosome–negative myeloproliferative neoplasms (MPN), which include essential thrombocythemia, polycythemia vera, and myelofibrosis (MF), are in a new era of molecular diagnosis, ushered in by the identification of the JAK2V617F and cMPL mutations in 2005 and 2006, respectively, and the CALR mutations in 2013. Coupled with increased knowledge of disease pathogenesis and refined diagnostic criteria and prognostic scoring systems, a more nuanced appreciation has emerged of the burden of MPN in the United States, including the prevalence, symptom burden, and impact on quality of life. Biological advances in MPN have translated into the rapid development of novel therapeutics, culminating in the approval of the first treatment for MF, the JAK1/JAK2 inhibitor ruxolitinib. However, certain practical aspects of care, such as those regarding diagnosis, prevention of vascular events, choice of cytoreductive agent, and planning for therapies, present challenges for hematologists/oncologists, and are discussed in this article.

Correspondence: Ruben A. Mesa, MD, Mayo Clinic Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ 85259. E-mail: mesa.ruben@mayo.edu
  • 1.

    TefferiA. The history of myeloproliferative disorders: before and after Dameshek. Leukemia2008;22:313.

  • 2.

    DameshekW. Some speculations on the myeloproliferative syndromes. Blood1951;6:372375.

  • 3.

    JamesCUgoVLe CouedicJP. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature2005;434:11441148.

    • Search Google Scholar
    • Export Citation
  • 4.

    MehtaJWangHIqbalSUMesaR. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymph2014;55:595600.

  • 5.

    PriceGLDavisKLKarveS. Survival patterns in United States (US) medicare enrollees with non-CML myeloproliferative neoplasms (MPN). PLoS One2014;9:e90299.

    • Search Google Scholar
    • Export Citation
  • 6.

    GeyerHLEmanuelRMDueckAC. Distinct clustering of symptomatic burden amongst myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood2014;12;123:38033810.

    • Search Google Scholar
    • Export Citation
  • 7.

    MesaRANiblackJWadleighM. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer2007;109:6876.

    • Search Google Scholar
    • Export Citation
  • 8.

    ScherberRDueckACJohanssonP. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood2011;118:401408.

    • Search Google Scholar
    • Export Citation
  • 9.

    EmanuelRMDueckACGeyerHL. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol2012;30:40984103.

    • Search Google Scholar
    • Export Citation
  • 10.

    CervantesFDupriezBPereiraA. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood2009;113:28952901.

    • Search Google Scholar
    • Export Citation
  • 11.

    PassamontiFCervantesFVannucchiAM. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood2010;115:17031708.

    • Search Google Scholar
    • Export Citation
  • 12.

    GangatNCaramazzaDVaidyaR. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol2011;29:392397.

    • Search Google Scholar
    • Export Citation
  • 13.

    PikmanYLeeBHMercherT. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med2006;3:e270.

  • 14.

    PardananiADLevineRLLashoT. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood2006;108:34723476.

    • Search Google Scholar
    • Export Citation
  • 15.

    ScottLMTongWLevineRL. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med2007;356:459468.

  • 16.

    SpolveriniAPieriLGuglielmelliP. Infrequent occurrence of mutations in the PH domain of LNK in patients with JAK2 mutation-negative ‘idiopathic’ erythrocytosis. Haematologica2013;98:e101102.

    • Search Google Scholar
    • Export Citation
  • 17.

    VainchenkerWDelhommeauFConstantinescuSNBernardOA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood2011;118:17231735.

    • Search Google Scholar
    • Export Citation
  • 18.

    KlampflTGisslingerHHarutyunyanAS. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med2013;369:23792390.

  • 19.

    NangaliaJMassieCEBaxterEJ. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med2013;369:23912405.

    • Search Google Scholar
    • Export Citation
  • 20.

    BroseusJParkJHCarilloS. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood2014:124:39643966.

  • 21.

    RumiEPietraDPascuttoC. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood2014;124:10621069.

  • 22.

    TefferiAGuglielmelliPLarsonDR. Long-term survival and blast transformation in molecularly-annotated essential thrombocythemia, polycythemia vera and myelofibrosis. Blood2014;124:25072513; quiz 2615.

    • Search Google Scholar
    • Export Citation
  • 23.

    TefferiALashoTLTischerA. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood2014;124:24652466.

    • Search Google Scholar
    • Export Citation
  • 24.

    VannucchiAMLashoTLGuglielmelliP. Mutations and prognosis in primary myelofibrosis. Leukemia2013;27:18611869.

  • 25.

    TefferiAThieleJOraziA. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood2007;110:10921097.

    • Search Google Scholar
    • Export Citation
  • 26.

    KiladjianJJCervantesFLeebeekFW. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood2008;111:49224929.

    • Search Google Scholar
    • Export Citation
  • 27.

    SpivakJLSilverRT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood2008;112:231239.

    • Search Google Scholar
    • Export Citation
  • 28.

    BarbuiTThieleJPassamontiF. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol2011;29:31793184.

    • Search Google Scholar
    • Export Citation
  • 29.

    KvasnickaHMThieleJ. Prodromal myeloproliferative neoplasms: the 2008 WHO classification. Am J Hematol2010;85:6269.

  • 30.

    WilkinsBSErberWNBarefordD. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood2008;111:6070.

    • Search Google Scholar
    • Export Citation
  • 31.

    BarbuiTThieleJGisslingerH. Masked polycythemia vera (mPV): results of an international study. Am J Hematol2014;89:5254.

  • 32.

    BarbuiTThieleJVannucchiAMTefferiA. Rethinking the diagnostic criteria of polycythemia vera. Leukemia2013;28:11911195.

  • 33.

    BarbuiTThieleJCarobbioA. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol2014;89:199202.

  • 34.

    SilverRTChowWOraziA. Evaluation of WHO criteria for diagnosis of polycythemia vera: a prospective analysis. Blood2013;122:18811886.

  • 35.

    CassinatBLaguillierCGardinC. Classification of myeloproliferative disorders in the JAK2 era: is there a role for red cell mass?Leukemia2008;22:452453.

    • Search Google Scholar
    • Export Citation
  • 36.

    Alvarez-LarranAAncocheaAAngonaA. Red cell mass measurement in patients with clinically suspected diagnosis of polycythemia vera or essential thrombocythemia. Haematologica2012;97:17041707.

    • Search Google Scholar
    • Export Citation
  • 37.

    TefferiAThieleJVannucchiAMBarbuiT. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia2014;28:14071413.

    • Search Google Scholar
    • Export Citation
  • 38.

    BarbuiTFinazziGCarobbioA. Development and validation of an International Prognostic Score of thrombosis in World Health Organization: essential thrombocythemia (IPSET-thrombosis). Blood2012;120:51285133; quiz 252.

    • Search Google Scholar
    • Export Citation
  • 39.

    LandolfiRMarchioliRKuttiJ. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med2004;350:114124.

  • 40.

    PassamontiFRumiEPungolinoE. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med2004;117:755761.

    • Search Google Scholar
    • Export Citation
  • 41.

    BarbuiTCarobbioARumiE. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood2014;124:30213023.

    • Search Google Scholar
    • Export Citation
  • 42.

    TefferiARumiEFinazziG. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia2013;27:18741881.

    • Search Google Scholar
    • Export Citation
  • 43.

    SteinBLSarafSSobolU. Age-related differences in disease characteristics and clinical outcomes in polycythemia vera. Leuk Lymph2013;54:19891995.

    • Search Google Scholar
    • Export Citation
  • 44.

    FalangaAMarchettiM. Thrombosis in myeloproliferative neoplasms. Semin Thrombosis Hemostasis2014;40:348358.

  • 45.

    RumiEPietraDFerrettiV. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood2014;123:15441551.

    • Search Google Scholar
    • Export Citation
  • 46.

    RotunnoGMannarelliCGuglielmelliP. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood2014;123:15521555.

    • Search Google Scholar
    • Export Citation
  • 47.

    BarbuiTBarosiGBirgegardG. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol2011;29:761770.

    • Search Google Scholar
    • Export Citation
  • 48.

    FruchtmanSMMackKKaplanME. From efficacy to safety: a polycythemia vera study group report on hydroxyurea in patients with polycythemia vera. Semin Hematol1997;34:1723.

    • Search Google Scholar
    • Export Citation
  • 49.

    CortelazzoSFinazziGRuggeriM. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med1995;332:11321136.

    • Search Google Scholar
    • Export Citation
  • 50.

    HarrisonCNCampbellPJBuckG. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med2005;353:3345.

  • 51.

    CampbellPJScottLMBuckG. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet2005;366:19451953.

    • Search Google Scholar
    • Export Citation
  • 52.

    GisslingerHGoticMHolowieckiJ. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood2013;121:17201728.

    • Search Google Scholar
    • Export Citation
  • 53.

    SterkersYPreudhommeCLaiJL. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood1998;91:616622.

    • Search Google Scholar
    • Export Citation
  • 54.

    SpivakJL. An inconvenient truth. Blood2010;115:27272728.

  • 55.

    KiladjianJJChevretSDosquetC. Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol2011;29:39073913.

    • Search Google Scholar
    • Export Citation
  • 56.

    PassamontiFThieleJGirodonF. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood2012;120:11971201.

    • Search Google Scholar
    • Export Citation
  • 57.

    FinazziGRuggeriMRodeghieroFBarbuiT. Second malignancies in patients with essential thrombocythaemia treated with busulphan and hydroxyurea: long-term follow-up of a randomized clinical trial. Br J Haematol2000;110:577583.

    • Search Google Scholar
    • Export Citation
  • 58.

    KiladjianJJCassinatBChevretS. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood2008;112:30653072.

    • Search Google Scholar
    • Export Citation
  • 59.

    Quintas-CardamaAAbdel-WahabOManshouriT. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood2013;122:893901.

    • Search Google Scholar
    • Export Citation
  • 60.

    SquizzatoARomualdiEPassamontiFMiddeldorpS. Antiplatelet drugs for polycythaemia vera and essential thrombocythaemia. Cochrane Database Syst Rev2013;4:CD006503.

    • Search Google Scholar
    • Export Citation
  • 61.

    PascaleSPetrucciGDraganiA. Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target. Blood2012;119:35953603.

    • Search Google Scholar
    • Export Citation
  • 62.

    MarchioliRFinazziGSpecchiaG. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med2013;368:2233.

  • 63.

    CarobbioAThieleJPassamontiF. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood2011;117:58575859.

    • Search Google Scholar
    • Export Citation
  • 64.

    RuggeriMRodeghieroFTosettoA. Postsurgery outcomes in patients with polycythemia vera and essential thrombocythemia: a retrospective survey. Blood2008;111:666671.

    • Search Google Scholar
    • Export Citation
  • 65.

    TeofiliLGionaFMartiniM. Markers of myeloproliferative diseases in childhood polycythemia vera and essential thrombocythemia. J Clin Oncol2007;25:10481053.

    • Search Google Scholar
    • Export Citation
  • 66.

    GionaFTeofiliLMoletiML. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood2012;119:22192227.

    • Search Google Scholar
    • Export Citation
  • 67.

    RampalRAl-ShahrourFAbdel-WahabO. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood2014;123:e123133.

    • Search Google Scholar
    • Export Citation
  • 68.

    VerstovsekSMesaRAGotlibJ. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med2012;366:799807.

  • 69.

    HarrisonCKiladjianJJAl-AliHK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med2012;366:787798.

    • Search Google Scholar
    • Export Citation
  • 70.

    CervantesFVannucchiAMKiladjianJJ. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood2013;122:40474053.

    • Search Google Scholar
    • Export Citation
  • 71.

    VerstovsekSMesaRAGotlibJ. Efficacy, safety and survival with ruxolitinib in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Haematologica2013;98:18651871.

    • Search Google Scholar
    • Export Citation
  • 72.

    PassamontiFCaramazzaDMaffioliM. JAK inhibitor in CALR-mutant myelofibrosis. N Engl J Med2014;370:11681169.

  • 73.

    VerstovsekSKantarjianHMEstrovZ. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood2012;120:12021209.

    • Search Google Scholar
    • Export Citation
  • 74.

    PassamontiFMaffioliMCervantesF. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood2014;123:18331835.

    • Search Google Scholar
    • Export Citation
  • 75.

    DeanJPCernohousPKomrokjiRS. Pacritinib, a dual JAK2/FLT3 inhibitor: an integrated efficacy and safety analysis of phase II trial data in patients with primary and secondary myelofibrosis (MF) and platelet counts ≤100,000/μl. Presented at the 55th ASH Annual Meeting and Exposition; December 7–20, 2013; New Orleans, Louisiana. Abstract 395.

    • Search Google Scholar
    • Export Citation
  • 76.

    PardananiALabordeRRLashoTL. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia2013;27:13221327.

  • 77.

    Alvarez-LarranAPereiraACervantesF. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood2012;119:13631369.

    • Search Google Scholar
    • Export Citation
  • 78.

    VerstovsekSPassamontiFRambaldiA. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer2014;120:513520.

    • Search Google Scholar
    • Export Citation
  • 79.

    VannucchiAMKiladjianJJGriesshammerM. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med2015;372:426435.

    • Search Google Scholar
    • Export Citation
  • 80.

    HeineAHeldSADaeckeSN. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood2013;122:11921202.

  • 81.

    WathesRMouleSMilojkovicD. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med2013;369:197198.

  • 82.

    GoldbergRAReichelEOshryLJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med2013;369:681683.

  • 83.

    HopmanRKLawrenceSJOhST. Disseminated tuberculosis associated with ruxolitinib. Leukemia2014;28:17501751.

  • 84.

    ColombaCRubinoRSiracusaL. Disseminated tuberculosis in a patient treated with a JAK2 selective inhibitor: a case report. BMC Res Notes2012;5:552.

    • Search Google Scholar
    • Export Citation
  • 85.

    WyshamNGSullivanDRAlladaG. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest2013;143:14781479.

    • Search Google Scholar
    • Export Citation
  • 86.

    MesaRAVerstovsekSCervantesF. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res2007;31:737740.

    • Search Google Scholar
    • Export Citation
  • 87.

    MichielsJJBernemanZSchroyensW. Platelet-mediated erythromelalgic, cerebral, ocular and coronary microvascular ischemic and thrombotic manifestations in patients with essential thrombocythemia and polycythemia vera: a distinct aspirin-responsive and coumadin-resistant arterial thrombophilia. Platelets2006;17:528544.

    • Search Google Scholar
    • Export Citation
  • 88.

    GuglielmelliPVannucchiAM. Struggling with myelofibrosis-associated anemia. Leuk Res2013;37:14291431.

  • 89.

    ElliEMBelottiAAroldiA. Iron chelation therapy with deferasirox in the management of iron overload in primary myelofibrosis. Mediterr J Hematol Infect Dis2014;6:e2014042.

    • Search Google Scholar
    • Export Citation
  • 90.

    GhanimaWJunkerPHasselbalchHC. Fibroproliferative activity in patients with immune thrombocytopenia (ITP) treated with thrombopoietic agents. Br J Haematol2011;155:248255.

    • Search Google Scholar
    • Export Citation
  • 91.

    MesaRANagorneyDSSchwagerS. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer2006;107:361370.

    • Search Google Scholar
    • Export Citation
  • 92.

    KochCALiCYMesaRATefferiA. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin Proc2003;78:12231233.

    • Search Google Scholar
    • Export Citation
  • 93.

    BallenKKShresthaSSobocinskiKA. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant2010;16:358367.

  • 94.

    AlchalbyHBadbaranAZabelinaT. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood2010;116:35723581.

    • Search Google Scholar
    • Export Citation
  • 95.

    GuptaVMaloneAKHariPN. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant2014;20:8997.

    • Search Google Scholar
    • Export Citation
  • 96.

    RondelliDGoldbergJDIsolaL. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood2014;124:11831191.

    • Search Google Scholar
    • Export Citation
  • 97.

    GuptaVHariPHoffmanR. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood2012;120:13671379.

    • Search Google Scholar
    • Export Citation
  • 98.

    SpoerlSMathewNRBscheiderM. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood2014;123:38323842.

  • 99.

    KoppikarPBhagwatNKilpivaaraO. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature2012;489:155159.

    • Search Google Scholar
    • Export Citation
  • 100.

    SilverRTVandrisKGoldmanJJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood2011;117:66696672.

    • Search Google Scholar
    • Export Citation
  • 101.

    GowinKLDueckACMascarenhasJO. Interim analysis of a phase II pilot trial of ruxolitinib combined with danazol for patients with primary myelofibrosis (MF), post essential thrombocythemia-myelofibrosis (post ET), and post polycythemia vera myelofibrosis (PV MF) suffering from anemia. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 3206.

    • Search Google Scholar
    • Export Citation
  • 102.

    StegelmannFGriesshammerMReiterA. A multicenter phase-Ib/II study of ruxolitinib/pomalidomide combination therapy in patients with primary and secondary myelofibrosis: safety data from the Mpnsg-0212 trial (NCT01644110). Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 3161.

    • Search Google Scholar
    • Export Citation
  • 103.

    NavalDCortesJEJabbourE. Ruxolitinib and lenalidomide as a combination therapy for patients with myelofibrosis. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 1831.

    • Search Google Scholar
    • Export Citation
  • 104.

    KiladjianJJHeidelFHVannucchiAM. Efficacy, safety, and confirmation of the recommended phase 2 dose of ruxolitinib plus panobinostat in patients with intermediate or high-risk myelofibrosis. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 711.

    • Search Google Scholar
    • Export Citation
  • 105.

    DurrantSKoren-MichowitzMLavieD. HARMONY: an open-label, multicenter, 2-arm, dose-finding, phase 1b study of the combination of ruxolitinib and buparlisib (BKM120) in patients with myelofibrosis (MF). Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 710.

    • Search Google Scholar
    • Export Citation
  • 106.

    GuptaVKoschmiederSHarrisonCN. Phase 1b dose-escalation study of sonidegib (LDE225) in combination with ruxolitinib (INC424) in patients with myelofibrosis. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 712.

    • Search Google Scholar
    • Export Citation
  • 107.

    SteinBLSwordsRHochhausAGilesF. Novel myelofibrosis treatment strategies: potential partners for combination therapies. Leukemia2014;28:21392147.

    • Search Google Scholar
    • Export Citation
  • 108.

    VerstovsekSMesaRAFoltzLM. Phase 2 trial of PRM-151, an antifibrotic agent, in patients with myelofibrosis: stage 1 results [abstract]. J Clin Oncol2014;32(Suppl):Abstract 7114.

    • Search Google Scholar
    • Export Citation
  • 109.

    TefferiALaPlantBRBegnaK. Imetelstat, a telomerase inhibitor, therapy for myelofibrosis: a pilot study. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 634.

    • Search Google Scholar
    • Export Citation
  • 110.

    DupriezBMorelPDemoryJL. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood1996;88:10131018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 12
PDF Downloads 22 22 3
EPUB Downloads 0 0 0