Historical Views, Conventional Approaches, and Evolving Management Strategies for Myeloproliferative Neoplasms

View More View Less
  • a From Northwestern University Feinberg School of Medicine, Chicago, Illinois; Stanford Cancer Institute, Stanford University, Stanford, California; Duke Cancer Institute, Duke University, Durham, North Carolina; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan; University of California, San Francisco, San Francisco, California; Johns Hopkins University School of Medicine, Baltimore, Maryland; Moores Cancer Center, UC San Diego, San Diego, California; University of Colorado Cancer Center, Aurora, Colorado; Fred Hutchinson Cancer Research Center, Seattle, Washington; Dana Farber Cancer Institute, Boston, Massachusetts; Memorial Sloan Kettering Cancer Center, New York; New York; Moffitt Cancer Center and Research Institute, Tampa, Florida; The Ohio State University, Columbus, Ohio; Fred & Pamela Buffett Cancer Center, Omaha, Nebraska; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Roswell Park Cancer Institute, Buffalo, New York; Washington University-Siteman Cancer Center, St Louis, Missouri; St. Jude Children’s Research Hospital, Memphis, Tennessee; University of Alabama at Birmingham, Birmingham, Alabama; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Yale University School of Medicine; New Haven, Connecticut; University of Utah, Salt Lake City, Utah; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan; City of Hope Cancer Center, Los Angeles, California; The University of Texas MD Anderson Cancer Center, Houston, Texas; and Mayo Clinic Cancer Center, Scottsdale, Arizona.
Restricted access

The classical Philadelphia chromosome–negative myeloproliferative neoplasms (MPN), which include essential thrombocythemia, polycythemia vera, and myelofibrosis (MF), are in a new era of molecular diagnosis, ushered in by the identification of the JAK2 V617F and cMPL mutations in 2005 and 2006, respectively, and the CALR mutations in 2013. Coupled with increased knowledge of disease pathogenesis and refined diagnostic criteria and prognostic scoring systems, a more nuanced appreciation has emerged of the burden of MPN in the United States, including the prevalence, symptom burden, and impact on quality of life. Biological advances in MPN have translated into the rapid development of novel therapeutics, culminating in the approval of the first treatment for MF, the JAK1/JAK2 inhibitor ruxolitinib. However, certain practical aspects of care, such as those regarding diagnosis, prevention of vascular events, choice of cytoreductive agent, and planning for therapies, present challenges for hematologists/oncologists, and are discussed in this article.

Correspondence: Ruben A. Mesa, MD, Mayo Clinic Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ 85259. E-mail: mesa.ruben@mayo.edu
  • 1.

    Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia 2008;22:313.

  • 2.

    Dameshek W. Some speculations on the myeloproliferative syndromes. Blood 1951;6:372375.

  • 3.

    James C, Ugo V, Le Couedic JP. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:11441148.

    • Search Google Scholar
    • Export Citation
  • 4.

    Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymph 2014;55:595600.

  • 5.

    Price GL, Davis KL, Karve S. Survival patterns in United States (US) medicare enrollees with non-CML myeloproliferative neoplasms (MPN). PLoS One 2014;9:e90299.

    • Search Google Scholar
    • Export Citation
  • 6.

    Geyer HL, Emanuel RM, Dueck AC. Distinct clustering of symptomatic burden amongst myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014;12;123:38033810.

    • Search Google Scholar
    • Export Citation
  • 7.

    Mesa RA, Niblack J, Wadleigh M. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 2007;109:6876.

    • Search Google Scholar
    • Export Citation
  • 8.

    Scherber R, Dueck AC, Johansson P. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 2011;118:401408.

    • Search Google Scholar
    • Export Citation
  • 9.

    Emanuel RM, Dueck AC, Geyer HL. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012;30:40984103.

    • Search Google Scholar
    • Export Citation
  • 10.

    Cervantes F, Dupriez B, Pereira A. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113:28952901.

    • Search Google Scholar
    • Export Citation
  • 11.

    Passamonti F, Cervantes F, Vannucchi AM. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010;115:17031708.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gangat N, Caramazza D, Vaidya R. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011;29:392397.

    • Search Google Scholar
    • Export Citation
  • 13.

    Pikman Y, Lee BH, Mercher T. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270.

  • 14.

    Pardanani AD, Levine RL, Lasho T. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:34723476.

    • Search Google Scholar
    • Export Citation
  • 15.

    Scott LM, Tong W, Levine RL. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459468.

  • 16.

    Spolverini A, Pieri L, Guglielmelli P. Infrequent occurrence of mutations in the PH domain of LNK in patients with JAK2 mutation-negative ‘idiopathic’ erythrocytosis. Haematologica 2013;98:e101102.

    • Search Google Scholar
    • Export Citation
  • 17.

    Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011;118:17231735.

    • Search Google Scholar
    • Export Citation
  • 18.

    Klampfl T, Gisslinger H, Harutyunyan AS. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369:23792390.

  • 19.

    Nangalia J, Massie CE, Baxter EJ. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369:23912405.

    • Search Google Scholar
    • Export Citation
  • 20.

    Broseus J, Park JH, Carillo S. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood 2014:124:39643966.

  • 21.

    Rumi E, Pietra D, Pascutto C. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014;124:10621069.

  • 22.

    Tefferi A, Guglielmelli P, Larson DR. Long-term survival and blast transformation in molecularly-annotated essential thrombocythemia, polycythemia vera and myelofibrosis. Blood 2014;124:25072513; quiz 2615.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tefferi A, Lasho TL, Tischer A. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood 2014;124:24652466.

    • Search Google Scholar
    • Export Citation
  • 24.

    Vannucchi AM, Lasho TL, Guglielmelli P. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27:18611869.

  • 25.

    Tefferi A, Thiele J, Orazi A. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007;110:10921097.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kiladjian JJ, Cervantes F, Leebeek FW. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood 2008;111:49224929.

    • Search Google Scholar
    • Export Citation
  • 27.

    Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood 2008;112:231239.

    • Search Google Scholar
    • Export Citation
  • 28.

    Barbui T, Thiele J, Passamonti F. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 2011;29:31793184.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kvasnicka HM, Thiele J. Prodromal myeloproliferative neoplasms: the 2008 WHO classification. Am J Hematol 2010;85:6269.

  • 30.

    Wilkins BS, Erber WN, Bareford D. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood 2008;111:6070.

    • Search Google Scholar
    • Export Citation
  • 31.

    Barbui T, Thiele J, Gisslinger H. Masked polycythemia vera (mPV): results of an international study. Am J Hematol 2014;89:5254.

  • 32.

    Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rethinking the diagnostic criteria of polycythemia vera. Leukemia 2013;28:11911195.

  • 33.

    Barbui T, Thiele J, Carobbio A. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol 2014;89:199202.

  • 34.

    Silver RT, Chow W, Orazi A. Evaluation of WHO criteria for diagnosis of polycythemia vera: a prospective analysis. Blood 2013;122:18811886.

  • 35.

    Cassinat B, Laguillier C, Gardin C. Classification of myeloproliferative disorders in the JAK2 era: is there a role for red cell mass? Leukemia 2008;22:452453.

    • Search Google Scholar
    • Export Citation
  • 36.

    Alvarez-Larran A, Ancochea A, Angona A. Red cell mass measurement in patients with clinically suspected diagnosis of polycythemia vera or essential thrombocythemia. Haematologica 2012;97:17041707.

    • Search Google Scholar
    • Export Citation
  • 37.

    Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia 2014;28:14071413.

    • Search Google Scholar
    • Export Citation
  • 38.

    Barbui T, Finazzi G, Carobbio A. Development and validation of an International Prognostic Score of thrombosis in World Health Organization: essential thrombocythemia (IPSET-thrombosis). Blood 2012;120:51285133; quiz 252.

    • Search Google Scholar
    • Export Citation
  • 39.

    Landolfi R, Marchioli R, Kutti J. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004;350:114124.

  • 40.

    Passamonti F, Rumi E, Pungolino E. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med 2004;117:755761.

    • Search Google Scholar
    • Export Citation
  • 41.

    Barbui T, Carobbio A, Rumi E. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood 2014;124:30213023.

    • Search Google Scholar
    • Export Citation
  • 42.

    Tefferi A, Rumi E, Finazzi G. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 2013;27:18741881.

    • Search Google Scholar
    • Export Citation
  • 43.

    Stein BL, Saraf S, Sobol U. Age-related differences in disease characteristics and clinical outcomes in polycythemia vera. Leuk Lymph 2013;54:19891995.

    • Search Google Scholar
    • Export Citation
  • 44.

    Falanga A, Marchetti M. Thrombosis in myeloproliferative neoplasms. Semin Thrombosis Hemostasis 2014;40:348358.

  • 45.

    Rumi E, Pietra D, Ferretti V. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014;123:15441551.

    • Search Google Scholar
    • Export Citation
  • 46.

    Rotunno G, Mannarelli C, Guglielmelli P. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014;123:15521555.

    • Search Google Scholar
    • Export Citation
  • 47.

    Barbui T, Barosi G, Birgegard G. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011;29:761770.

    • Search Google Scholar
    • Export Citation
  • 48.

    Fruchtman SM, Mack K, Kaplan ME. From efficacy to safety: a polycythemia vera study group report on hydroxyurea in patients with polycythemia vera. Semin Hematol 1997;34:1723.

    • Search Google Scholar
    • Export Citation
  • 49.

    Cortelazzo S, Finazzi G, Ruggeri M. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995;332:11321136.

    • Search Google Scholar
    • Export Citation
  • 50.

    Harrison CN, Campbell PJ, Buck G. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005;353:3345.

  • 51.

    Campbell PJ, Scott LM, Buck G. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005;366:19451953.

    • Search Google Scholar
    • Export Citation
  • 52.

    Gisslinger H, Gotic M, Holowiecki J. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood 2013;121:17201728.

    • Search Google Scholar
    • Export Citation
  • 53.

    Sterkers Y, Preudhomme C, Lai JL. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood 1998;91:616622.

    • Search Google Scholar
    • Export Citation
  • 54.

    Spivak JL. An inconvenient truth. Blood 2010;115:27272728.

  • 55.

    Kiladjian JJ, Chevret S, Dosquet C. Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol 2011;29:39073913.

    • Search Google Scholar
    • Export Citation
  • 56.

    Passamonti F, Thiele J, Girodon F. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood 2012;120:11971201.

    • Search Google Scholar
    • Export Citation
  • 57.

    Finazzi G, Ruggeri M, Rodeghiero F, Barbui T. Second malignancies in patients with essential thrombocythaemia treated with busulphan and hydroxyurea: long-term follow-up of a randomized clinical trial. Br J Haematol 2000;110:577583.

    • Search Google Scholar
    • Export Citation
  • 58.

    Kiladjian JJ, Cassinat B, Chevret S. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008;112:30653072.

    • Search Google Scholar
    • Export Citation
  • 59.

    Quintas-Cardama A, Abdel-Wahab O, Manshouri T. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood 2013;122:893901.

    • Search Google Scholar
    • Export Citation
  • 60.

    Squizzato A, Romualdi E, Passamonti F, Middeldorp S. Antiplatelet drugs for polycythaemia vera and essential thrombocythaemia. Cochrane Database Syst Rev 2013;4:CD006503.

    • Search Google Scholar
    • Export Citation
  • 61.

    Pascale S, Petrucci G, Dragani A. Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target. Blood 2012;119:35953603.

    • Search Google Scholar
    • Export Citation
  • 62.

    Marchioli R, Finazzi G, Specchia G. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013;368:2233.

  • 63.

    Carobbio A, Thiele J, Passamonti F. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood 2011;117:58575859.

    • Search Google Scholar
    • Export Citation
  • 64.

    Ruggeri M, Rodeghiero F, Tosetto A. Postsurgery outcomes in patients with polycythemia vera and essential thrombocythemia: a retrospective survey. Blood 2008;111:666671.

    • Search Google Scholar
    • Export Citation
  • 65.

    Teofili L, Giona F, Martini M. Markers of myeloproliferative diseases in childhood polycythemia vera and essential thrombocythemia. J Clin Oncol 2007;25:10481053.

    • Search Google Scholar
    • Export Citation
  • 66.

    Giona F, Teofili L, Moleti ML. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood 2012;119:22192227.

    • Search Google Scholar
    • Export Citation
  • 67.

    Rampal R, Al-Shahrour F, Abdel-Wahab O. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 2014;123:e123133.

    • Search Google Scholar
    • Export Citation
  • 68.

    Verstovsek S, Mesa RA, Gotlib J. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012;366:799807.

  • 69.

    Harrison C, Kiladjian JJ, Al-Ali HK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012;366:787798.

    • Search Google Scholar
    • Export Citation
  • 70.

    Cervantes F, Vannucchi AM, Kiladjian JJ. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013;122:40474053.

    • Search Google Scholar
    • Export Citation
  • 71.

    Verstovsek S, Mesa RA, Gotlib J. Efficacy, safety and survival with ruxolitinib in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Haematologica 2013;98:18651871.

    • Search Google Scholar
    • Export Citation
  • 72.

    Passamonti F, Caramazza D, Maffioli M. JAK inhibitor in CALR-mutant myelofibrosis. N Engl J Med 2014;370:11681169.

  • 73.

    Verstovsek S, Kantarjian HM, Estrov Z. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood 2012;120:12021209.

    • Search Google Scholar
    • Export Citation
  • 74.

    Passamonti F, Maffioli M, Cervantes F. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood 2014;123:18331835.

    • Search Google Scholar
    • Export Citation
  • 75.

    Dean JP, Cernohous P, Komrokji RS. Pacritinib, a dual JAK2/FLT3 inhibitor: an integrated efficacy and safety analysis of phase II trial data in patients with primary and secondary myelofibrosis (MF) and platelet counts ≤100,000/μl. Presented at the 55th ASH Annual Meeting and Exposition; December 7–20, 2013; New Orleans, Louisiana. Abstract 395.

    • Search Google Scholar
    • Export Citation
  • 76.

    Pardanani A, Laborde RR, Lasho TL. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 2013;27:13221327.

  • 77.

    Alvarez-Larran A, Pereira A, Cervantes F. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood 2012;119:13631369.

    • Search Google Scholar
    • Export Citation
  • 78.

    Verstovsek S, Passamonti F, Rambaldi A. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 2014;120:513520.

    • Search Google Scholar
    • Export Citation
  • 79.

    Vannucchi AM, Kiladjian JJ, Griesshammer M. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015;372:426435.

    • Search Google Scholar
    • Export Citation
  • 80.

    Heine A, Held SA, Daecke SN. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood 2013;122:11921202.

  • 81.

    Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med 2013;369:197198.

  • 82.

    Goldberg RA, Reichel E, Oshry LJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med 2013;369:681683.

  • 83.

    Hopman RK, Lawrence SJ, Oh ST. Disseminated tuberculosis associated with ruxolitinib. Leukemia 2014;28:17501751.

  • 84.

    Colomba C, Rubino R, Siracusa L. Disseminated tuberculosis in a patient treated with a JAK2 selective inhibitor: a case report. BMC Res Notes 2012;5:552.

    • Search Google Scholar
    • Export Citation
  • 85.

    Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest 2013;143:14781479.

    • Search Google Scholar
    • Export Citation
  • 86.

    Mesa RA, Verstovsek S, Cervantes F. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res 2007;31:737740.

    • Search Google Scholar
    • Export Citation
  • 87.

    Michiels JJ, Berneman Z, Schroyens W. Platelet-mediated erythromelalgic, cerebral, ocular and coronary microvascular ischemic and thrombotic manifestations in patients with essential thrombocythemia and polycythemia vera: a distinct aspirin-responsive and coumadin-resistant arterial thrombophilia. Platelets 2006;17:528544.

    • Search Google Scholar
    • Export Citation
  • 88.

    Guglielmelli P, Vannucchi AM. Struggling with myelofibrosis-associated anemia. Leuk Res 2013;37:14291431.

  • 89.

    Elli EM, Belotti A, Aroldi A. Iron chelation therapy with deferasirox in the management of iron overload in primary myelofibrosis. Mediterr J Hematol Infect Dis 2014;6:e2014042.

    • Search Google Scholar
    • Export Citation
  • 90.

    Ghanima W, Junker P, Hasselbalch HC. Fibroproliferative activity in patients with immune thrombocytopenia (ITP) treated with thrombopoietic agents. Br J Haematol 2011;155:248255.

    • Search Google Scholar
    • Export Citation
  • 91.

    Mesa RA, Nagorney DS, Schwager S. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer 2006;107:361370.

    • Search Google Scholar
    • Export Citation
  • 92.

    Koch CA, Li CY, Mesa RA, Tefferi A. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin Proc 2003;78:12231233.

    • Search Google Scholar
    • Export Citation
  • 93.

    Ballen KK, Shrestha S, Sobocinski KA. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010;16:358367.

  • 94.

    Alchalby H, Badbaran A, Zabelina T. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood 2010;116:35723581.

    • Search Google Scholar
    • Export Citation
  • 95.

    Gupta V, Malone AK, Hari PN. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2014;20:8997.

    • Search Google Scholar
    • Export Citation
  • 96.

    Rondelli D, Goldberg JD, Isola L. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood 2014;124:11831191.

    • Search Google Scholar
    • Export Citation
  • 97.

    Gupta V, Hari P, Hoffman R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood 2012;120:13671379.

    • Search Google Scholar
    • Export Citation
  • 98.

    Spoerl S, Mathew NR, Bscheider M. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood 2014;123:38323842.

  • 99.

    Koppikar P, Bhagwat N, Kilpivaara O. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 2012;489:155159.

    • Search Google Scholar
    • Export Citation
  • 100.

    Silver RT, Vandris K, Goldman JJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood 2011;117:66696672.

    • Search Google Scholar
    • Export Citation
  • 101.

    Gowin KL, Dueck AC, Mascarenhas JO. Interim analysis of a phase II pilot trial of ruxolitinib combined with danazol for patients with primary myelofibrosis (MF), post essential thrombocythemia-myelofibrosis (post ET), and post polycythemia vera myelofibrosis (PV MF) suffering from anemia. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 3206.

    • Search Google Scholar
    • Export Citation
  • 102.

    Stegelmann F, Griesshammer M, Reiter A. A multicenter phase-Ib/II study of ruxolitinib/pomalidomide combination therapy in patients with primary and secondary myelofibrosis: safety data from the Mpnsg-0212 trial (NCT01644110). Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 3161.

    • Search Google Scholar
    • Export Citation
  • 103.

    Naval D, Cortes JE, Jabbour E. Ruxolitinib and lenalidomide as a combination therapy for patients with myelofibrosis. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 1831.

    • Search Google Scholar
    • Export Citation
  • 104.

    Kiladjian JJ, Heidel FH, Vannucchi AM. Efficacy, safety, and confirmation of the recommended phase 2 dose of ruxolitinib plus panobinostat in patients with intermediate or high-risk myelofibrosis. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 711.

    • Search Google Scholar
    • Export Citation
  • 105.

    Durrant S, Koren-Michowitz M, Lavie D. HARMONY: an open-label, multicenter, 2-arm, dose-finding, phase 1b study of the combination of ruxolitinib and buparlisib (BKM120) in patients with myelofibrosis (MF). Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 710.

    • Search Google Scholar
    • Export Citation
  • 106.

    Gupta V, Koschmieder S, Harrison CN. Phase 1b dose-escalation study of sonidegib (LDE225) in combination with ruxolitinib (INC424) in patients with myelofibrosis. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 712.

    • Search Google Scholar
    • Export Citation
  • 107.

    Stein BL, Swords R, Hochhaus A, Giles F. Novel myelofibrosis treatment strategies: potential partners for combination therapies. Leukemia 2014;28:21392147.

    • Search Google Scholar
    • Export Citation
  • 108.

    Verstovsek S, Mesa RA, Foltz LM. Phase 2 trial of PRM-151, an antifibrotic agent, in patients with myelofibrosis: stage 1 results [abstract]. J Clin Oncol 2014;32(Suppl):Abstract 7114.

    • Search Google Scholar
    • Export Citation
  • 109.

    Tefferi A, LaPlant BR, Begna K. Imetelstat, a telomerase inhibitor, therapy for myelofibrosis: a pilot study. Presented at the 56th ASH Annual Meeting and Exposition; December 6–9, 2014; San Francisco, California. Abstract 634.

    • Search Google Scholar
    • Export Citation
  • 110.

    Dupriez B, Morel P, Demory JL. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 1996;88:10131018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 178 59
PDF Downloads 101 82 16
EPUB Downloads 0 0 0