Prostate cancer represents a spectrum of disease that ranges from nonaggressive, slow-growing disease that may not require treatment to aggressive, fast-growing disease that does. The NCCN Guidelines for Prostate Cancer Early Detection provide a set of sequential recommendations detailing a screening and evaluation strategy for maximizing the detection of prostate cancer that is potentially curable and that, if left undetected, represents a risk to the patient. The guidelines were developed for healthy men who have elected to participate in the early detection of prostate cancer, and they focus on minimizing unnecessary procedures and limiting the detection of indolent disease.

  • 1.

    SiegelRLMillerKDJemalA. Cancer statistics, 2015. CA Cancer J Clin2015;65:529.

  • 2.

    National Cancer Institute. Surveillance Epidemiology and End Results (SEER) Cancer Statistics Review 1975-2004. 2007. Available at: http://seer.cancer.gov/csr/1975_2004/. Accessed April 26 2012.

    • Search Google Scholar
    • Export Citation
  • 3.

    U.S. National Library of Medicine-Key MEDLINE® Indicators. Available at: http://www.nlm.nih.gov/bsd/bsd_key.html. Accessed July 24 2014.

  • 4.

    CatalonaWJPartinAWSlawinKM. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA1998;279:15421547.

    • Search Google Scholar
    • Export Citation
  • 5.

    ThompsonIMAnkerstDPChiC. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA2005;294:6670.

    • Search Google Scholar
    • Export Citation
  • 6.

    EggenerSELargeMCGerberGS. Empiric antibiotics for an elevated prostate-specific antigen (PSA) level: a randomised, prospective, controlled multi-institutional trial. BJU international2013;112:925929.

    • Search Google Scholar
    • Export Citation
  • 7.

    D'AmicoAVRoehrbornCG. Effect of 1 mg/day finasteride on concentrations of serum prostate-specific antigen in men with androgenic alopecia: a randomised controlled trial. Lancet Oncol2007;8:2125.

    • Search Google Scholar
    • Export Citation
  • 8.

    BrawerMKLinDWWillifordWO. Effect of finasteride and/or terazosin on serum PSA: results of VA Cooperative Study #359. Prostate1999;39:234239.

    • Search Google Scholar
    • Export Citation
  • 9.

    GomellaLGRoherbornCGAndrioleGL. Effect of dutasteride on the detection of prostate cancer in men with benign prostatic hyperplasia in the combination of dutasteride and tamsulosin (CombAT) trial [abstract]. Presented at the ASCO Genitourinary Cancers Symposium; May5-72010; San Francisco, CA. Abstract 28.

    • Search Google Scholar
    • Export Citation
  • 10.

    AndrioleGLBostwickDGBrawleyOW. Effect of dutasteride on the risk of prostate cancer. N Engl J Med2010;362:11921202.

  • 11.

    ThompsonIMGoodmanPJTangenCM. The influence of finasteride on the development of prostate cancer. N Engl J Med2003;349:215224.

  • 12.

    ThompsonIMJr.GoodmanPJTangenCM. Long-term survival of participants in the prostate cancer prevention trial. The New England journal of medicine2013;369:603610.

    • Search Google Scholar
    • Export Citation
  • 13.

    PinskyPFBlackAGrubbR. Projecting prostate cancer mortality in the PCPT and REDUCE chemoprevention trials. Cancer2013;119:593601.

  • 14.

    RoehrbornCGAndrioleGLWilsonTH. Effect of dutasteride on prostate biopsy rates and the diagnosis of prostate cancer in men with lower urinary tract symptoms and enlarged prostates in the Combination of Avodart and Tamsulosin trial. Eur Urol2011;59:244249.

    • Search Google Scholar
    • Export Citation
  • 15.

    SmallEJHalabiSDawsonNA. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol2004;22:10251033.

    • Search Google Scholar
    • Export Citation
  • 16.

    BarqawiAGamitoEO'DonnellCCrawfordED. Herbal and vitamin supplement use in a prostate cancer screening population. Urology2004;63:288292.

    • Search Google Scholar
    • Export Citation
  • 17.

    DraismaGEtzioniRTsodikovA. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst2009;101:374383.

    • Search Google Scholar
    • Export Citation
  • 18.

    AusGBergdahlSLoddingP. Prostate cancer screening decreases the absolute risk of being diagnosed with advanced prostate cancer--results from a prospective, population-based randomized controlled trial. Eur Urol2007;51:659664.

    • Search Google Scholar
    • Export Citation
  • 19.

    ThompsonIMPaulerDKGoodmanPJ. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med2004;350:22392246.

    • Search Google Scholar
    • Export Citation
  • 20.

    CatalonaWJSmithDSRatliffTL. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med1991;324:11561161.

    • Search Google Scholar
    • Export Citation
  • 21.

    CleggLXLiFPHankeyBF. Cancer survival among US whites and minorities: a SEER (Surveillance, Epidemiology, and End Results) Program population-based study. Arch Intern Med2002;162:19851993.

    • Search Google Scholar
    • Export Citation
  • 22.

    PaquetteELSunLPaquetteLR. Improved prostate cancer-specific survival and other disease parameters: impact of prostate-specific antigen testing. Urology2002;60:756759.

    • Search Google Scholar
    • Export Citation
  • 23.

    EtzioniRGulatiRTsodikovA. The prostate cancer conundrum revisited: treatment changes and prostate cancer mortality declines. Cancer2012;118:59555963.

    • Search Google Scholar
    • Export Citation
  • 24.

    ChouRLeFevreML. Prostate cancer screening—the evidence, the recommendations, and the clinical implications. JAMA2011;306:27212722.

    • Search Google Scholar
    • Export Citation
  • 25.

    MoyerVA. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Annals of internal medicine2012;157:120134.

    • Search Google Scholar
    • Export Citation
  • 26.

    CatalonaWJRichieJPAhmannFR. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol1994;151:12831290.

    • Search Google Scholar
    • Export Citation
  • 27.

    CatalonaWJSmithDSRatliffTLBaslerJW. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA1993;270:948954.

    • Search Google Scholar
    • Export Citation
  • 28.

    BrawleyOW. Trends in prostate cancer in the United States. J Natl Cancer Inst Monogr2012;2012:152156.

  • 29.

    AndrioleGLCrawfordEDGrubbRL3rd. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med2009;360:13101319.

  • 30.

    HugossonJCarlssonSAusG. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol2010;11:725732.

    • Search Google Scholar
    • Export Citation
  • 31.

    SchroderFHHugossonJRoobolMJ. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med2009;360:13201328.

  • 32.

    GosselaarCRoobolMJRoemelingSSchroderFH. The role of the digital rectal examination in subsequent screening visits in the European randomized study of screening for prostate cancer (ERSPC), Rotterdam. European urology2008;54:581588.

    • Search Google Scholar
    • Export Citation
  • 33.

    ThompsonIMAnkerstDPChiC. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst2006;98:529534.

    • Search Google Scholar
    • Export Citation
  • 34.

    FlaniganRCCatalonaWJRichieJP. Accuracy of digital rectal examination and transrectal ultrasonography in localizing prostate cancer. J Urol1994;152:15061509.

    • Search Google Scholar
    • Export Citation
  • 35.

    SchroderFHvan der MaasPBeemsterboerP. Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst1998;90:18171823.

    • Search Google Scholar
    • Export Citation
  • 36.

    HattangadiJAChenMHD'AmicoAV. Early detection of high-grade prostate cancer using digital rectal examination (DRE) in men with a prostate-specific antigen level of <2.5 ng/mL and the risk of death. BJU international2012;110:16361641.

    • Search Google Scholar
    • Export Citation
  • 37.

    SchroderFHHugossonJRoobolMJ. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med2012;366:981990.

  • 38.

    HeijnsdijkEAWeverEMAuvinenA. Quality-of-life effects of prostate-specific antigen screening. N Engl J Med2012;367:595605.

  • 39.

    SchroderFHHugossonJRoobolMJ. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet2014;384:20272035.

    • Search Google Scholar
    • Export Citation
  • 40.

    BuzzoniCAuvinenARoobolMJ. Metastatic prostate cancer incidence and prostate-specific antigen testing: new insights from the European Randomized Study of Screening for Prostate Cancer. Eur Urol2015:68:885890.

    • Search Google Scholar
    • Export Citation
  • 41.

    RoobolMJKranseRBangmaCH. Screening for prostate cancer: results of the rotterdam section of the European randomized study of screening for prostate cancer. Eur Urol2013;64:530539.

    • Search Google Scholar
    • Export Citation
  • 42.

    BokhorstLPBangmaCHvan LeendersGJ. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. Eur Urol2014;65:329336.

    • Search Google Scholar
    • Export Citation
  • 43.

    Arnsrud GodtmanRHolmbergELiljaH. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg Randomized Population-based Prostate Cancer Screening Trial. Eur Urol2015;68:354360.

    • Search Google Scholar
    • Export Citation
  • 44.

    Grenabo BergdahlAHolmbergEMossSHugossonJ. Incidence of prostate cancer after termination of screening in a population-based randomised screening trial. Eur Urol2013;64:703709.

    • Search Google Scholar
    • Export Citation
  • 45.

    KilpelainenTPTammelaTLMalilaN. Prostate cancer mortality in the Finnish randomized screening trial. J Natl Cancer Inst2013;105:719725.

    • Search Google Scholar
    • Export Citation
  • 46.

    AndrioleGLCrawfordEDGrubbRL3rd. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J Natl Cancer Inst2012;104:125132.

    • Search Google Scholar
    • Export Citation
  • 47.

    AndrioleGL. Update of the prostate, lung, colorectal, and ovarian cancer screening trial. Recent Results Cancer Res2014;202:5357.

  • 48.

    CrawfordEDGrubbR3rdBlackA. Comorbidity and mortality results from a randomized prostate cancer screening trial. J Clin Oncol2011;29:355361.

    • Search Google Scholar
    • Export Citation
  • 49.

    BachPBVickersAJ. Do the data support the comorbidity hypothesis for the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Results?J Clin Oncol2011;29:e387.

    • Search Google Scholar
    • Export Citation
  • 50.

    HowardKBarrattAMannGJPatelMI. A model of prostate-specific antigen screening outcomes for low- to high-risk men: information to support informed choices. Arch Int Med2009;169:16031610.

    • Search Google Scholar
    • Export Citation
  • 51.

    LiljaHCroninAMDahlinA. Prediction of significant prostate cancer diagnosed 20 to 30 years later with a single measure of prostate-specific antigen at or before age 50. Cancer2011;117:12101219.

    • Search Google Scholar
    • Export Citation
  • 52.

    VickersAJUlmertDSjobergDD. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study. BMJ2013;346:f2023.

    • Search Google Scholar
    • Export Citation
  • 53.

    CapitanioUPerrottePZiniL. Population-based analysis of normal total PSA and percentage of free/total PSA values: results from screening cohort. Urology2009;73:13231327.

    • Search Google Scholar
    • Export Citation
  • 54.

    ChunFKHuttererGCPerrotteP. Distribution of prostate specific antigen (PSA) and percentage free PSA in a contemporary screening cohort with no evidence of prostate cancer. BJU Int2007;100:3741.

    • Search Google Scholar
    • Export Citation
  • 55.

    UlmertDCroninAMBjorkT. Prostate-specific antigen at or before age 50 as a predictor of advanced prostate cancer diagnosed up to 25 years later: a case-control study. BMC Med2008;6:6.

    • Search Google Scholar
    • Export Citation
  • 56.

    van LeeuwenPJRoobolMJKranseR. Towards an optimal interval for prostate cancer screening. European urology2012;61:171176.

  • 57.

    GulatiRGoreJLEtzioniR. Comparative effectiveness of alternative prostate-specific antigen--based prostate cancer screening strategies: model estimates of potential benefits and harms. Ann Intern Med2013;158:145153.

    • Search Google Scholar
    • Export Citation
  • 58.

    RoobolMJRoobolDWSchroderFH. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology2005;65:343346.

    • Search Google Scholar
    • Export Citation
  • 59.

    VickersAJCroninAMBjorkT. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: case-control study. BMJ2010;341:c4521.

    • Search Google Scholar
    • Export Citation
  • 60.

    Social Security Administration. Period Life Table. 2009. Available at: http://www.ssa.gov/OACT/STATS/table4c6.html. Accessed March 10 2014.

    • Search Google Scholar
    • Export Citation
  • 61.

    HowardDH. Life expectancy and the value of early detection. J Health Econ2005;24:891906.

  • 62.

    LeeSJLindquistKSegalMRCovinskyKE. Development and validation of a prognostic index for 4-year mortality in older adults. JAMA2006;295:801808.

    • Search Google Scholar
    • Export Citation
  • 63.

    DaskivichTJChamieKKwanL. Overtreatment of men with low-risk prostate cancer and significant comorbidity. Cancer2011;117:20582066.

  • 64.

    DaskivichTJChamieKKwanL. Comorbidity and competing risks for mortality in men with prostate cancer. Cancer2011;117:46424650.

  • 65.

    SunLCaireAARobertsonCN. Men older than 70 years have higher risk prostate cancer and poorer survival in the early and late prostate specific antigen eras. J Urol2009;182:22422248.

    • Search Google Scholar
    • Export Citation
  • 66.

    BechisSKCarrollPRCooperbergMR. Impact of age at diagnosis on prostate cancer treatment and survival. J Clin Oncol2011;29:235241.

  • 67.

    SchaefferEMCarterHBKettermannA. Prostate specific antigen testing among the elderly—when to stop?J Urol2009;181:16061614; discussion 1613–1604.

    • Search Google Scholar
    • Export Citation
  • 68.

    SEER Stat Fact Sheets: Prostate Cancer. 2015. Available at: http://seer.cancer.gov/statfacts/html/prost.html. Accessed April 28 2015.

  • 69.

    BrattO. Hereditary prostate cancer: clinical aspects. J Urol2002;168:906913.

  • 70.

    CarterBSBeatyTHSteinbergGD. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A1992;89:33673371.

  • 71.

    ChenYCPageJHChenRGiovannucciE. Family history of prostate and breast cancer and the risk of prostate cancer in the PSA era. Prostate2008;68:15821591.

    • Search Google Scholar
    • Export Citation
  • 72.

    GrillSFallahMLeachRJ. Incorporation of detailed family history from the Swedish Family Cancer Database into the PCPT risk calculator. J Urol2015;193:460465.

    • Search Google Scholar
    • Export Citation
  • 73.

    BarocasDAGrubbR3rdBlackA. Association between race and follow-up diagnostic care after a positive prostate cancer screening test in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer2013;119:22232229.

    • Search Google Scholar
    • Export Citation
  • 74.

    MahalBAAizerAAZiehrDR. Trends in disparate treatment of African American men with localized prostate cancer across National Comprehensive Cancer Network risk groups. Urology2014;84:386392.

    • Search Google Scholar
    • Export Citation
  • 75.

    ZhangHMessingEMTravisLB. Age and racial differences among PSA-detected (AJCC Stage T1cN0M0) prostate cancer in the U.S.: a population-based study of 70,345 men. Front Oncol2013;3:312.

    • Search Google Scholar
    • Export Citation
  • 76.

    MondoDMRoehlKALoebS. Which is the most important risk factor for prostate cancer: race, family history, or baseline PSA level? [abstract]. J Urol2008;179:Abstract 417.

    • Search Google Scholar
    • Export Citation
  • 77.

    VertosickEAPoonBYVickersAJ. Relative value of race, family history and prostate specific antigen as indications for early initiation of prostate cancer screening. J Urol2014;192:724728.

    • Search Google Scholar
    • Export Citation
  • 78.

    Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst1999;91:13101316.

  • 79.

    AgalliuIGernRLeanzaSBurkRD. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res2009;15:11121120.

    • Search Google Scholar
    • Export Citation
  • 80.

    FordDEastonDFBishopDT. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet1994;343:692695.

  • 81.

    GallagherDJGaudetMMPalP. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res2010;16:21152121.

    • Search Google Scholar
    • Export Citation
  • 82.

    KirchhoffTKauffNDMitraN. BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res2004;10:29182921.

  • 83.

    LeongamornlertDMahmudNTymrakiewiczM. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer2012;106:16971701.

  • 84.

    LiedeAKarlanBYNarodSA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol2004;22:735742.

    • Search Google Scholar
    • Export Citation
  • 85.

    TuliniusHOlafsdottirGHSigvaldasonH. The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet2002;39:457462.

  • 86.

    van AsperenCJBrohetRMMeijers-HeijboerEJ. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet2005;42:711719.

    • Search Google Scholar
    • Export Citation
  • 87.

    MerschJJacksonMAParkM. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer2015;121:269275.

  • 88.

    MoranAO'HaraCKhanS. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer2012;11:235242.

    • Search Google Scholar
    • Export Citation
  • 89.

    CastroEGohCOlmosD. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol2013;31:17481757.

    • Search Google Scholar
    • Export Citation
  • 90.

    MitraAFisherCFosterCS. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer2008;98:502507.

    • Search Google Scholar
    • Export Citation
  • 91.

    NarodSANeuhausenSVichodezG. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer2008;99:371374.

  • 92.

    ThorneHWillemsAJNiedermayrE. Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila)2011;4:10021010.

    • Search Google Scholar
    • Export Citation
  • 93.

    TryggvadottirLVidarsdottirLThorgeirssonT. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst2007;99:929935.

    • Search Google Scholar
    • Export Citation
  • 94.

    EngelCLoefflerMSteinkeV. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol2012;30:44094415.

    • Search Google Scholar
    • Export Citation
  • 95.

    HaraldsdottirSHampelHWeiL. Prostate cancer incidence in males with Lynch syndrome. Genet Med2014;16:553557.

  • 96.

    RaymondVMMukherjeeBWangF. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol2013;31:17131718.

  • 97.

    RyanSJenkinsMAWinAK. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev2014;23:437449.

    • Search Google Scholar
    • Export Citation
  • 98.

    WinAKLindorNMYoungJP. Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst2012;104:13631372.

    • Search Google Scholar
    • Export Citation
  • 99.

    BancroftEKPageECCastroE. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol2014;66:489499.

    • Search Google Scholar
    • Export Citation
  • 100.

    SchroderFHRoobol-BoutsMVisAN. Prostate-specific antigen-based early detection of prostate cancer--validation of screening without rectal examination. Urology2001;57:8390.

    • Search Google Scholar
    • Export Citation
  • 101.

    AnkerstDPHoeflerJBockS. Prostate Cancer Prevention Trial risk calculator 2.0 for the prediction of low- vs high-grade prostate cancer. Urology2014;83:13621367.

    • Search Google Scholar
    • Export Citation
  • 102.

    NamRKKattanMWChinJL. Prospective multi-institutional study evaluating the performance of prostate cancer risk calculators. J Clin Oncol2011;29:29592964.

    • Search Google Scholar
    • Export Citation
  • 103.

    NamRKToiAKlotzLH. Assessing individual risk for prostate cancer. J Clin Oncol2007;25:35823588.

  • 104.

    RoobolMJSteyerbergEWKranseR. A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur Urol2010;57:7985.

    • Search Google Scholar
    • Export Citation
  • 105.

    GlassASCaryKCCooperbergMR. Risk-based prostate cancer screening: who and how?Curr Urol Rep2013;14:192198.

  • 106.

    Prostate Imaging Reporting and Data System (PI-RADS) Version 2. Available at: http://www.acr.org/Quality-Safety/Resources/PIRADS. Accessed April 29 2015.

    • Search Google Scholar
    • Export Citation
  • 107.

    BarentszJORichenbergJClementsR. ESUR prostate MR guidelines 2012. Eur Radiol2012;22:746757.

  • 108.

    KuruTHRoethkeMCSeidenaderJ. Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer. J Urol2013;190:13801386.

    • Search Google Scholar
    • Export Citation
  • 109.

    PokornyMRde RooijMDuncanE. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol2014;66:2229.

    • Search Google Scholar
    • Export Citation
  • 110.

    TonttilaPPLanttoJPaakkoE. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol2015; pii: S0302-2838(15)00426-1.

    • Search Google Scholar
    • Export Citation
  • 111.

    SiddiquiMMRais-BahramiSTurkbeyB. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA2015;313:390397.

    • Search Google Scholar
    • Export Citation
  • 112.

    OesterlingJEJacobsenSJChuteCG. Serum prostate-specific antigen in a community-based population of healthy men: establishment of age-specific reference ranges. JAMA1993;270:860864.

    • Search Google Scholar
    • Export Citation
  • 113.

    MorganTOJacobsenSJMcCarthyWF. Age-specific reference ranges for prostate-specific antigen in black men. N Engl J Med1996;335:304310.

    • Search Google Scholar
    • Export Citation
  • 114.

    OesterlingJEJacobsenSJKleeGG. Free, complexed and total serum prostate specific antigen: the establishment of appropriate reference ranges for their concentrations and ratios. J Urol1995;154:10901095.

    • Search Google Scholar
    • Export Citation
  • 115.

    MoulJW. Targeted screening for prostate cancer in African-American men. Prostate Cancer Prostatic Dis2000;3:248255.

  • 116.

    CarterHBPearsonJDMetterEJ. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA1992;267:22152220.

    • Search Google Scholar
    • Export Citation
  • 117.

    CarterHBFerrucciLKettermannA. Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst2006;98:15211527.

    • Search Google Scholar
    • Export Citation
  • 118.

    D'AmicoAVChenMHRoehlKACatalonaWJ. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med2004;351:125135.

    • Search Google Scholar
    • Export Citation
  • 119.

    D'AmicoAVRenshawAASussmanBChenMH. Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA2005;294:440447.

    • Search Google Scholar
    • Export Citation
  • 120.

    VickersAJTillCTangenCM. An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer detection. J Natl Cancer Inst2011;103:462469.

    • Search Google Scholar
    • Export Citation
  • 121.

    ElshafeiALiYHHatemA. The utility of PSA velocity in prediction of prostate cancer and high grade cancer after an initially negative prostate biopsy. Prostate2013;73:17961802.

    • Search Google Scholar
    • Export Citation
  • 122.

    WoltersTRoobolMJBangmaCHSchroderFH. Is prostate-specific antigen velocity selective for clinically significant prostate cancer in screening? European Randomized Study of Screening for Prostate Cancer (Rotterdam). Eur Urol2009;55:385392..

    • Search Google Scholar
    • Export Citation
  • 123.

    LoebSRoehlKAHelfandBT. Can prostate specific antigen velocity thresholds decrease insignificant prostate cancer detection?J Urol2010;183:112116.

    • Search Google Scholar
    • Export Citation
  • 124.

    EggenerSERoehlKACatalonaWJ. Prostatitis confounds the use of PSA velocity for prostate cancer detection [abstract]. Presented at the ASCO Prostate Cancer Symposium; 2006. Abstract 4.

    • Search Google Scholar
    • Export Citation
  • 125.

    PartinAWBrawerMKSubongEN. Prospective evaluation of percent free-PSA and complexed-PSA for early detection of prostate cancer. Prostate Cancer Prostatic Dis1998;1:197203.

    • Search Google Scholar
    • Export Citation
  • 126.

    PartinAWBrawerMKBartschG. Complexed prostate specific antigen improves specificity for prostate cancer detection: results of a prospective multicenter clinical trial. J Urol2003;170:17871791.

    • Search Google Scholar
    • Export Citation
  • 127.

    OkiharaKCheliCDPartinAW. Comparative analysis of complexed prostate specific antigen, free prostate specific antigen and their ratio in detecting prostate cancer. J Urol2002;167:20172023; discussion 2023–2024.

    • Search Google Scholar
    • Export Citation
  • 128.

    HorningerWCheliCDBabaianRJ. Complexed prostate-specific antigen for early detection of prostate cancer in men with serum prostate-specific antigen levels of 2 to 4 nanograms per milliliter. Urology2002;60:3135.

    • Search Google Scholar
    • Export Citation
  • 129.

    OkiharaKFritscheHAAyalaA. Can complexed prostate specific antigen and prostatic volume enhance prostate cancer detection in men with total prostate specific antigen between 2.5 and 4.0 ng./ml. J Urol2001;165:19301936.

    • Search Google Scholar
    • Export Citation
  • 130.

    BabaianRJNayaYCheliCFritscheHA. The detection and potential economic value of complexed prostate specific antigen as a first line test. J Urol2006;175:897901; discussion 901.

    • Search Google Scholar
    • Export Citation
  • 131.

    VenezianoSPavlicaPQuerzeR. Correlation between prostate-specific antigen and prostate volume, evaluated by transrectal ultrasonography: usefulness in diagnosis of prostate cancer. Eur Urol1990;18:112116.

    • Search Google Scholar
    • Export Citation
  • 132.

    BensonMCWhangISPantuckA. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. J Urol1992;147:815816.

    • Search Google Scholar
    • Export Citation
  • 133.

    LujanMPaezALlanesL. Prostate specific antigen density. Is there a role for this parameter when screening for prostate cancer?Prostate Cancer Prostatic Dis2001;4:146149.

    • Search Google Scholar
    • Export Citation
  • 134.

    SozenSEskicorapciSKupeliB. Complexed prostate specific antigen density is better than the other PSA derivatives for detection of prostate cancer in men with total PSA between 2.5 and 20 ng/ml: results of a prospective multicenter study. Eur Urol2005;47:302307.

    • Search Google Scholar
    • Export Citation
  • 135.

    VenezianoSPavlicaPCompagnoneGMartoranaG. Usefulness of the (F/T)/PSA density ratio to detect prostate cancer. Urol Int2005;74:1318.

  • 136.

    AksoyYOralAAksoyH. PSA density and PSA transition zone density in the diagnosis of prostate cancer in PSA gray zone cases. Ann Clin Lab Sci2003;33:320323.

    • Search Google Scholar
    • Export Citation
  • 137.

    AllanRWSandersonHEpsteinJI. Correlation of minute (0.5 MM or less) focus of prostate adenocarcinoma on needle biopsy with radical prostatectomy specimen: role of prostate specific antigen density. J Urol2003;170:370372.

    • Search Google Scholar
    • Export Citation
  • 138.

    RadwanMHYanYLulyJR. Prostate-specific antigen density predicts adverse pathology and increased risk of biochemical failure. Urology2007;69:11211127.

    • Search Google Scholar
    • Export Citation
  • 139.

    CatalonaWJSouthwickPCSlawinKM. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology2000;56:255260.

    • Search Google Scholar
    • Export Citation
  • 140.

    GittelmanMCHertzmanBBailenJ. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. The Journal of urology2013;190:6469.

    • Search Google Scholar
    • Export Citation
  • 141.

    BradleyLAPalomakiGEGutmanS. Comparative effectiveness review: prostate cancer antigen 3 testing for the diagnosis and management of prostate cancer. J Urol2013;190:389398.

    • Search Google Scholar
    • Export Citation
  • 142.

    AuprichMBjartellAChunFK. Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. European urology2011;60:1045-1054.

    • Search Google Scholar
    • Export Citation
  • 143.

    AubinSMReidJSarnoMJ. PCA3 molecular urine test for predicting repeat prostate biopsy outcome in populations at risk: validation in the placebo arm of the dutasteride REDUCE trial. J Urol2010;184:19471952.

    • Search Google Scholar
    • Export Citation
  • 144.

    WeiJTFengZPartinAW. Can urinary PCA3 supplement PSA in the early detection of prostate cancer?J Clin Oncol2014;32:40664072.

  • 145.

    VickersAJ. Markers for the early detection of prostate cancer: some principles for statistical reporting and interpretation. J Clin Oncol2014;32:40334034.

    • Search Google Scholar
    • Export Citation
  • 146.

    FilellaXGimenezN. Evaluation of [-2] proPSA and Prostate Health Index (phi) for the detection of prostate cancer: a systematic review and meta-analysis. Clin Chem Lab Med2013;51:729739.

    • Search Google Scholar
    • Export Citation
  • 147.

    LazzeriMHaeseAAbrateA. Clinical performance of serum prostate-specific antigen isoform [-2]proPSA (p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU Int2013;112:313321.

    • Search Google Scholar
    • Export Citation
  • 148.

    LoebS. Prostate cancer: Prostate Health Index—improving screening in men with family history. Nat Rev Urol2013;10:497498.

  • 149.

    CatalonaWJPartinAWSandaMG. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol2011;185:16501655.

    • Search Google Scholar
    • Export Citation
  • 150.

    VickersACroninARoobolM. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol2010;28:24932498.

    • Search Google Scholar
    • Export Citation
  • 151.

    VickersAJGuptaASavageCJ. A panel of kallikrein marker predicts prostate cancer in a large, population-based cohort followed for 15 years without screening. Cancer Epidemiol Biomarkers Prev2011;20:255261.

    • Search Google Scholar
    • Export Citation
  • 152.

    ParekhDJPunnenSSjobergDD. A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur Urol2014;68:464470..

    • Search Google Scholar
    • Export Citation
  • 153.

    BryantRJSjobergDDVickersAJ. Predicting high-grade cancer at ten-core prostate biopsy using four Kallikrein markers measured in blood in the ProtecT Study. J Natl Cancer Inst2015;107.

    • Search Google Scholar
    • Export Citation
  • 154.

    StewartGDVan NesteLDelvenneP. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol2013;189:11101116.

    • Search Google Scholar
    • Export Citation
  • 155.

    PartinAWVan NesteLKleinEA. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol2014;192:10811087.

    • Search Google Scholar
    • Export Citation
  • 156.

    PrestiJCJr.O'DowdGJMillerMC. Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J Urol2003;169:125129.

    • Search Google Scholar
    • Export Citation
  • 157.

    UkimuraOColemanJAde la TailleA. Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care. Eur Urol2013;63:214230.

    • Search Google Scholar
    • Export Citation
  • 158.

    RobertsonNLEmbertonMMooreCM. MRI-targeted prostate biopsy: a review of technique and results. Nat Rev Urol2013;10:589597.

  • 159.

    MaccagnanoCGallinaARoscignoM. Prostate saturation biopsy following a first negative biopsy: state of the art. Urol Int2012;89:126135.

    • Search Google Scholar
    • Export Citation
  • 160.

    RastinehadARTurkbeyBSalamiSS. Improving detection of clinically significant prostate cancer: MRI/TRUS fusion-guided prostate biopsy. J Urol2014;191:17491754.

    • Search Google Scholar
    • Export Citation
  • 161.

    PuechPRouviereORenard-PennaR. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy--prospective multicenter study. Radiology2013;268:461469.

    • Search Google Scholar
    • Export Citation
  • 162.

    HoeksCMSchoutenMGBomersJG. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol2012;62:902909.

    • Search Google Scholar
    • Export Citation
  • 163.

    PortalezDMozerPCornudF. Validation of the European Society of Urogenital Radiology scoring system for prostate cancer diagnosis on multiparametric magnetic resonance imaging in a cohort of repeat biopsy patients. Eur Urol2012;62:986996.

    • Search Google Scholar
    • Export Citation
  • 164.

    SonnGAChangENatarajanS. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol2014;65:809815.

    • Search Google Scholar
    • Export Citation
  • 165.

    VourgantiSRastinehadAYerramNK. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol2012;188:21522157.

    • Search Google Scholar
    • Export Citation
  • 166.

    RoethkeMAnastasiadisAGLichyM. MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol2012;30:213218.

    • Search Google Scholar
    • Export Citation
  • 167.

    SciarraAPanebiancoVCiccarielloM. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res2010;16:18751883.

    • Search Google Scholar
    • Export Citation
  • 168.

    AnastasiadisAGLichyMPNageleU. MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur Urol2006;50:738748; discussion 748–739.

    • Search Google Scholar
    • Export Citation
  • 169.

    Rais-BahramiSSiddiquiMMTurkbeyB. Utility of multiparametric magnetic resonance imaging suspicion levels for detecting prostate cancer. J Urol2013;190:17211727.

    • Search Google Scholar
    • Export Citation
  • 170.

    NelsonAWHarveyRCParkerRA. Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PLoS One2013;8:e57480.

    • Search Google Scholar
    • Export Citation
  • 171.

    AbdollahFNovaraGBrigantiA. Trans-rectal versus trans-perineal saturation rebiopsy of the prostate: is there a difference in cancer detection rate?Urology2011;77:921925.

    • Search Google Scholar
    • Export Citation
  • 172.

    AcherPDooldeniyaM. Prostate biopsy: will transperineal replace transrectal?BJU Int2013;112:533534.

  • 173.

    GrummetJPWeerakoonMHuangS. Sepsis and ‘superbugs’: should we favour the transperineal over the transrectal approach for prostate biopsy?BJU Int2014;114:384388.

    • Search Google Scholar
    • Export Citation
  • 174.

    PepePAragonaF. Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology2013;81:11421146.

    • Search Google Scholar
    • Export Citation
  • 175.

    VyasLAcherPChallacombeB. Indications, results and safety profile of transperineal sector biopsies of the prostate: a single centre experience of 634 cases. BJU Int2014;114:3237.

    • Search Google Scholar
    • Export Citation
  • 176.

    MurphyDGWeerakoonMGrummetJ. Is zero sepsis alone enough to justify transperineal prostate biopsy?BJU Int2014;114:34.

  • 177.

    TairaAVMerrickGSGalbreathRW. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis2010;13:7177.

    • Search Google Scholar
    • Export Citation
  • 178.

    MerrickGSGutmanSAndreiniH. Prostate cancer distribution in patients diagnosed by transperineal template-guided saturation biopsy. Eur Urol2007;52:715723.

    • Search Google Scholar
    • Export Citation
  • 179.

    WalzJGraefenMChunFK. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol2006;50:498505.

    • Search Google Scholar
    • Export Citation
  • 180.

    ZaytounOMMoussaASGaoT. Office based transrectal saturation biopsy improves prostate cancer detection compared to extended biopsy in the repeat biopsy population. J Urol2011;186:850854.

    • Search Google Scholar
    • Export Citation
  • 181.

    LissMA. Infection: prostate biopsy-infection and prior fluoroquinolone exposure. Nat Rev Urol2011;8:592594.

  • 182.

    DjavanBWaldertMZlottaA. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: results of a prospective European prostate cancer detection study. J Urol2001;166:856860.

    • Search Google Scholar
    • Export Citation
  • 183.

    LoebSVellekoopAAhmedHU. Systematic review of complications of prostate biopsy. Eur Urol2013;64:876892.

  • 184.

    LoebSCarterHBBerndtSI. Complications after prostate biopsy: data from SEER-Medicare. J Urol2011;186:18301834.

  • 185.

    NamRKSaskinRLeeY. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol2010;183:963968.

    • Search Google Scholar
    • Export Citation
  • 186.

    PinskyPFParnesHLAndrioleG. Mortality and complications after prostate biopsy in the Prostate, Lung, Colorectal and Ovarian Cancer Screening (PLCO) trial. BJU Int2014;113:254259.

    • Search Google Scholar
    • Export Citation
  • 187.

    FelicianoJTeperEFerrandinoM. The incidence of fluoroquinolone resistant infections after prostate biopsy--are fluoroquinolones still effective prophylaxis?J Urol2008;179:952955; discussion 955.

    • Search Google Scholar
    • Export Citation
  • 188.

    ZaytounOMVargoEHRajanR. Emergence of fluoroquinolone-resistant Escherichia coli as cause of postprostate biopsy infection: implications for prophylaxis and treatment. Urology2011;77:10351041.

    • Search Google Scholar
    • Export Citation
  • 189.

    AkdumanBAkdumanDTokgozH. Long-term fluoroquinolone use before the prostate biopsy may increase the risk of sepsis caused by resistant microorganisms. Urology2011;78:250255.

    • Search Google Scholar
    • Export Citation
  • 190.

    MosharafaAATorkyMHEl SaidWMMeshrefA. Rising incidence of acute prostatitis following prostate biopsy: fluoroquinolone resistance and exposure is a significant risk factor. Urology2011;78:511514.

    • Search Google Scholar
    • Export Citation
  • 191.

    LissMAChangASantosR. Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. J Urol2011;185:12831288.

    • Search Google Scholar
    • Export Citation
  • 192.

    CollinsGNLloydSNHehirMMcKelvieGB. Multiple transrectal ultrasound-guided prostatic biopsies--true morbidity and patient acceptance. Br J Urol1993;71:460-463.

    • Search Google Scholar
    • Export Citation
  • 193.

    StirlingBNShockleyKFCarothersGGMaatmanTJ. Comparison of local anesthesia techniques during transrectal ultrasound-guided biopsies. Urology2002;60:8992.

    • Search Google Scholar
    • Export Citation
  • 194.

    HerganLKashefiCParsonsJK. Local anesthetic reduces pain associated with transrectal ultrasound-guided prostate biopsy: a meta-analysis. Urology2007;69:520525.

    • Search Google Scholar
    • Export Citation
  • 195.

    LeiboviciDZismanASiegelYI. Local anesthesia for prostate biopsy by periprostatic lidocaine injection: a double-blind placebo controlled study. J Urol2002;167:563565.

    • Search Google Scholar
    • Export Citation
  • 196.

    SchröderFHRoobolMJ. PSA Screening Decision-Making Aid For Patients General Practitioners and Urologists: Societe Internationale D'Urologie; 2014. Available at: http://www.siu-urology.org/themes/web/assets/files/society/psa_testing_brochure.pdf. Accessed November 17 2015.

    • Search Google Scholar
    • Export Citation
  • 197.

    BostwickDGChengL. Precursors of prostate cancer. Histopathology2012;60:427.

  • 198.

    HerawiMKahaneHCavalloCEpsteinJI. Risk of prostate cancer on first re-biopsy within 1 year following a diagnosis of high grade prostatic intraepithelial neoplasia is related to the number of cores sampled. J Urol2006;175:121124.

    • Search Google Scholar
    • Export Citation
  • 199.

    O'DowdG JMillerMCOrozcoRVeltriRW. Analysis of repeated biopsy results within 1 year after a noncancer diagnosis. Urology2000;55:553559.

    • Search Google Scholar
    • Export Citation
  • 200.

    TanejaSSMortonRBarnetteG. Prostate cancer diagnosis among men with isolated high-grade intraepithelial neoplasia enrolled onto a 3-year prospective phase III clinical trial of oral toremifene. J Clin Oncol2013;31:523529.

    • Search Google Scholar
    • Export Citation
  • 201.

    ThompsonIMJr.LeachR. Prostate cancer and prostatic intraepithelial neoplasia: true, true, and unrelated?J Clin Oncol2013;31:515516.

  • 202.

    LefkowitzGKTanejaSSBrownJ. Followup interval prostate biopsy 3 years after diagnosis of high grade prostatic intraepithelial neoplasia is associated with high likelihood of prostate cancer, independent of change in prostate specific antigen levels. J Urol2002;168:14151418.

    • Search Google Scholar
    • Export Citation
  • 203.

    MerrimenJLJonesGSrigleyJR. Is high grade prostatic intraepithelial neoplasia still a risk factor for adenocarcinoma in the era of extended biopsy sampling?Pathology2010;42:325329.

    • Search Google Scholar
    • Export Citation
  • 204.

    ChanTYEpsteinJI. Follow-up of atypical prostate needle biopsies suspicious for cancer. Urology1999;53:351355.

  • 205.

    MianBMNayaYOkiharaK. Predictors of cancer in repeat extended multisite prostate biopsy in men with previous negative extended multisite biopsy. Urology2002;60:836840.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 248 47
PDF Downloads 70 70 6
EPUB Downloads 0 0 0