Treatment of acute lymphoblastic leukemia (ALL) continues to advance, as evidenced by the improved risk stratification of patients and development of newer treatment options. Identification of ALL subtypes based on immunophenotyping and cytogenetic and molecular markers has resulted in the inclusion of Philadelphia-like ALL and early T-cell precursor ALL as subtypes that affect prognosis. Identification of Ikaros mutations has also emerged as a prognostic factor. In addition to improved prognostication, treatment options for patients with ALL have expanded, particularly with regard to relapsed/refractory ALL. Continued development of second-generation tyrosine kinase inhibitors and the emergence of immunotherapy, including blinatumomab and chimeric antigen receptor T-cell therapy, have improved survival. Furthermore, incorporation of minimal residual disease (MRD) monitoring has shown insight into patient outcomes and may lead to treatment modification or alternative treatment strategies in select populations. This excerpt focuses on the sections of the ALL guidelines specific to clinical presentation and diagnosis, treatment of relapsed/refractory ALL, and incorporation of MRD monitoring. To view the most recent complete version of these guidelines, visit NCCN.org.

  • 1.

    JabbourEJFaderlSKantarjianHM. Adult acute lymphoblastic leukemia. Mayo Clin Proc2005;80:15171527.

  • 2.

    National Cancer Institute. SEER Cancer Statistics Review 1975-2011: Leukemis Annual Incidence Rates (Acute Lymphocytic Leukemia). 2014. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 3.

    SiegelRLMillerKDJemalA. Cancer statistics, 2015. CA Cancer J Clin2015;65:529.

  • 4.

    National Cancer Institute. SEER Cancer Statistics Review 1975-2011: Overview Median Age at Diagnosis. 2014. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 5.

    National Cancer Institute. SEER Cancer Statistics Review 1975-2011: Overview Age Distribution of Incidence Cases by Site. 2014. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 6.

    EsparzaSDSakamotoKM. Topics in pediatric leukemia--acute lymphoblastic leukemia. MedGenMed2005;7:23.

  • 7.

    HasleH. Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol2001;2:429436.

  • 8.

    WhitlockJA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol2006;135:595602.

  • 9.

    StillerCAChessellsJMFitchettM. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer1994;70:969972.

    • Search Google Scholar
    • Export Citation
  • 10.

    ShawMPEdenOBGraceEEllisPM. Acute lymphoblastic leukemia and Klinefelter's syndrome. Pediatr Hematol Oncol1992;9:8185.

  • 11.

    GurgeyAKaraATuncerM. Acute lymphoblastic leukemia associated with Klinefelter syndrome. Pediatr Hematol Oncol1994;11:227229.

  • 12.

    MachatschekJNSchrauderAHelmF. Acute lymphoblastic leukemia and Klinefelter syndrome in children: two cases and review of the literature. Pediatr Hematol Oncol2004;21:621626.

    • Search Google Scholar
    • Export Citation
  • 13.

    FlattTNevilleKLewingKDalalJ. Successful treatment of fanconi anemia and T-cell acute lymphoblastic leukemia. Case Rep Hematol2012;2012:396395.

    • Search Google Scholar
    • Export Citation
  • 14.

    YetginSTuncerMGulerE. Acute lymphoblastic leukemia in Fanconi's anemia. Am J Hematol1994;45:94.

  • 15.

    StrevensMJLilleymanJSWilliamsRB. Shwachman's syndrome and acute lymphoblastic leukaemia. Br Med J1978;2:18.

  • 16.

    WoodsWGRoloffJSLukensJNKrivitW. The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr1981;99:425428.

  • 17.

    PassargeE. Bloom's syndrome: the German experience. Ann Genet1991;34:179197.

  • 18.

    TaylorAMMetcalfeJAThickJMakYF. Leukemia and lymphoma in ataxia telangiectasia. Blood1996;87:423438.

  • 19.

    MaHSunHSunX. Survival improvement by decade of patients aged 0-14 years with acute lymphoblastic leukemia: a SEER analysis. Sci Rep2014;4:4227.

    • Search Google Scholar
    • Export Citation
  • 20.

    KenderianSSAl-KaliAGangatN. Monosomal karyotype in Philadelphia chromosome-negative acute lymphoblastic leukemia. Blood Cancer J2013;3:e122.

    • Search Google Scholar
    • Export Citation
  • 21.

    PulteDJansenLGondosA. Survival of Adults with Acute Lymphoblastic Leukemia in Germany and the United States. PLoS ONE2014;9:e85554.

  • 22.

    StockW. Adolescents and young adults with acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program2010;2010:2129.

  • 23.

    FaderlSO'BrienSPuiCH. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer2010;116:11651176.

  • 24.

    BorowitzMJChanJKC. B lymphoblastic leukaemia/lymphoma, not otherwise specified In: SwerdlowSHCampoEHarrisNL. eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4th). Lyon: IARC; 2008:168170.

    • Search Google Scholar
    • Export Citation
  • 25.

    BorowitzMJChanJKC. T lymphoblastic leukaemia/lymphoma. In: SwerdlowSHCampoEHarrisNL. eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4th). Lyon: IARC; 2008176178.

    • Search Google Scholar
    • Export Citation
  • 26.

    BaileyLCLangeBJRheingoldSRBuninNJ. Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. The Lancet Oncology;9:873883.

  • 27.

    ThomasDAO'BrienSCortesJ. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood2004;104:16241630.

  • 28.

    BorowitzMJChanJKC. B lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In: SwerdlowSHCampoEHarrisNL. eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4th). Lyon: IARC; 2008:171175.

    • Search Google Scholar
    • Export Citation
  • 29.

    BassanRHoelzerD. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol2011;29:532543.

  • 30.

    PuiCHRellingMVDowningJR. Acute lymphoblastic leukemia. N Engl J Med2004;350:15351548.

  • 31.

    BassanRGattaGTondiniCWillemzeR. Adult acute lymphoblastic leukaemia. Crit Rev Oncol Hematol2004;50:223261.

  • 32.

    GokbugetNHoelzerD. Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program2006:133141.

  • 33.

    ThomasDAO'BrienSJorgensenJL. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood2009;113:63306337.

    • Search Google Scholar
    • Export Citation
  • 34.

    Coustan-SmithEMullighanCGOnciuM. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol2009;10:147156.

    • Search Google Scholar
    • Export Citation
  • 35.

    ZhangJDingLHolmfeldtL. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature2012;481:157163.

  • 36.

    SchrauderAReiterAGadnerH. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol2006;24:57425749.

    • Search Google Scholar
    • Export Citation
  • 37.

    ArmstrongSALookAT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol2005;23:63066315.

  • 38.

    MoormanAVChiltonLWilkinsonJ. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood2010;115:206214.

    • Search Google Scholar
    • Export Citation
  • 39.

    SeibelNL. Treatment of acute lymphoblastic leukemia in children and adolescents: peaks and pitfalls. Hematology Am Soc Hematol Educ Program2008:374380.

    • Search Google Scholar
    • Export Citation
  • 40.

    BurmeisterTSchwartzSBartramCR. Patients' age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood2008;112:918919.

    • Search Google Scholar
    • Export Citation
  • 41.

    GleissnerBGokbugetNBartramCR. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood2002;99:15361543.

    • Search Google Scholar
    • Export Citation
  • 42.

    PuiC-HEvansWE. Treatment of acute lymphoblastic leukemia. N Engl J Med2006;354:166178.

  • 43.

    AricoMValsecchiMGCamittaB. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med2000;342:9981006.

    • Search Google Scholar
    • Export Citation
  • 44.

    Den BoerMLvan SlegtenhorstMDe MenezesRX. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol2009;10:125134.

    • Search Google Scholar
    • Export Citation
  • 45.

    MullighanCGSuXZhangJ. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med2009;360:470-480.

  • 46.

    RobertsKGMorinRDZhangJ. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell2012;22:153166.

    • Search Google Scholar
    • Export Citation
  • 47.

    RobertsKGLiYPayne-TurnerD. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med2014;371:10051015.

    • Search Google Scholar
    • Export Citation
  • 48.

    SchultzKRPullenDJSatherHN. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood2007;109:926935.

    • Search Google Scholar
    • Export Citation
  • 49.

    MullighanCGMillerCBRadtkeI. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature2008;453:110114.

  • 50.

    CayeABeldjordKMass-MaloK. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica2013;98:597601.

    • Search Google Scholar
    • Export Citation
  • 51.

    DupuisAGaubMPLegrainM. Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia2013;27:503507.

  • 52.

    MiJQWangXYaoY. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia2012;26:15071516.

    • Search Google Scholar
    • Export Citation
  • 53.

    MartinelliGIacobucciIStorlazziCT. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol2009;27:52025207.

    • Search Google Scholar
    • Export Citation
  • 54.

    IacobucciIStorlazziCTCilloniD. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood2009;114:21592167.

    • Search Google Scholar
    • Export Citation
  • 55.

    van der VeerAWaandersEPietersR. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood2013;122:26222629.

    • Search Google Scholar
    • Export Citation
  • 56.

    FieldingAKRichardsSMChopraR. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood2007;109:944950.

    • Search Google Scholar
    • Export Citation
  • 57.

    OriolAVivesSHernandez-RivasJM. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica2010;95:589596.

    • Search Google Scholar
    • Export Citation
  • 58.

    TavernierEBoironJMHuguetF. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia2007;21:19071914.

    • Search Google Scholar
    • Export Citation
  • 59.

    ThomasDAKantarjianHSmithTL. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer1999;86:12161230.

    • Search Google Scholar
    • Export Citation
  • 60.

    BranfordSRudzkiZWalshS. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood2002;99:34723475.

    • Search Google Scholar
    • Export Citation
  • 61.

    HofmannWKJonesLCLempNA. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood2002;99:18601862.

    • Search Google Scholar
    • Export Citation
  • 62.

    HuYLiuYPelletierS. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet2004;36:453461.

    • Search Google Scholar
    • Export Citation
  • 63.

    JonesDThomasDYinCC. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer2008;113:985994.

    • Search Google Scholar
    • Export Citation
  • 64.

    ShahNPTranCLeeFY. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science2004;305:399401.

  • 65.

    SoveriniSColarossiSGnaniA. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res2006;12:73747379.

    • Search Google Scholar
    • Export Citation
  • 66.

    HofmannWKKomorMWassmannB. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood2003;102:659661.

    • Search Google Scholar
    • Export Citation
  • 67.

    PfeiferHWassmannBPavlovaA. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood2007;110:727734.

    • Search Google Scholar
    • Export Citation
  • 68.

    O'HareTWaltersDKStoffregenEP. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res2005;65:45004505.

    • Search Google Scholar
    • Export Citation
  • 69.

    RedaelliSPiazzaRRostagnoR. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol2009;27:469471.

    • Search Google Scholar
    • Export Citation
  • 70.

    TalpazMShahNPKantarjianH. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med2006;354:25312541.

    • Search Google Scholar
    • Export Citation
  • 71.

    VerstovsekSGolemovicMKantarjianH. AMN107, a novel aminopyrimidine inhibitor of p190 Bcr-Abl activation and of in vitro proliferation of Philadelphia-positive acute lymphoblastic leukemia cells. Cancer2005;104:12301236.

    • Search Google Scholar
    • Export Citation
  • 72.

    KantarjianHGilesFWunderleL. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med2006;354:25422551.

    • Search Google Scholar
    • Export Citation
  • 73.

    LillyMBOttmannOGShahNP. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: Results from a phase 3 study. Am J Hematol2010;85:164170.

    • Search Google Scholar
    • Export Citation
  • 74.

    OttmannODombretHMartinelliG. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood2007;110:23092315.

    • Search Google Scholar
    • Export Citation
  • 75.

    OttmannOGLarsonRAKantarjianHM. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome--positive acute lymphoblastic leukemia. Leukemia2013;27:14111413.

    • Search Google Scholar
    • Export Citation
  • 76.

    BenjaminiODumlaoTLKantarjianH. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol2014;89:282287.

    • Search Google Scholar
    • Export Citation
  • 77.

    MullerMCCortesJEKimDW. Dasatinib treatment of chronic-phase chronic myeloid leukemia: analysis of responses according to preexisting BCR-ABL mutations. Blood2009;114:49444953.

    • Search Google Scholar
    • Export Citation
  • 78.

    SoveriniSColarossiSGnaniA. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica2007;92:401404.

    • Search Google Scholar
    • Export Citation
  • 79.

    SoveriniSMartinelliGColarossiS. Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to dasatinib in Philadelphia chromosome-positive leukemia. J Clin Oncol2006;24:e5152.

    • Search Google Scholar
    • Export Citation
  • 80.

    SoveriniSHochhausANicoliniFE. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood2011;118:12081215.

    • Search Google Scholar
    • Export Citation
  • 81.

    U.S. Food and Drug Administration. Prescribing Information: ICLUSIG® (ponatinib) tablets for oral use. 2012. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203469lbl.pdf. Accessed August 6 2015

    • Search Google Scholar
    • Export Citation
  • 82.

    CortesJEKantarjianHShahNP. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med2012;367:2075-2088.

  • 83.

    CortesJEKimDWPinilla-IbarzJ. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med2013;369:17831796.

    • Search Google Scholar
    • Export Citation
  • 84.

    CortesJEKantarjianHMBrummendorfTH. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood2011;118:45674576.

    • Search Google Scholar
    • Export Citation
  • 85.

    KhouryHJCortesJEKantarjianHM. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood2012;119:34033412.

    • Search Google Scholar
    • Export Citation
  • 86.

    IshidaYTerasakoKOshimaK. Dasatinib followed by second allogeneic hematopoietic stem cell transplantation for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia after the first transplantation. Int J Hematol2010;92:542546.

    • Search Google Scholar
    • Export Citation
  • 87.

    MillotFCividinMBrizardF. Successful second allogeneic stem cell transplantation in second remission induced by dasatinib in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer2009;52:891892.

    • Search Google Scholar
    • Export Citation
  • 88.

    CollinsRHJr.GoldsteinSGiraltS. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant2000;26:511516.

  • 89.

    KolbHJSchattenbergAGoldmanJM. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood1995;86:20412050.

    • Search Google Scholar
    • Export Citation
  • 90.

    KeilFKalhsPHaasOA. Relapse of Philadelphia chromosome positive acute lymphoblastic leukaemia after marrow transplantation: sustained molecular remission after early and dose-escalating infusion of donor leucocytes. Br J Haematol1997;97:161164.

    • Search Google Scholar
    • Export Citation
  • 91.

    MatsueKTabayashiTYamadaKTakeuchiM. Eradication of residual bcr-abl-positive clones by inducing graft-versus-host disease after allogeneic stem cell transplantation in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant2002;29:6366.

    • Search Google Scholar
    • Export Citation
  • 92.

    YazakiMAndohMItoT. Successful prevention of hematological relapse for a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic bone marrow transplantation by donor leukocyte infusion. Bone Marrow Transplant1997;19:393394.

    • Search Google Scholar
    • Export Citation
  • 93.

    TiribelliMSperottoACandoniA. Nilotinib and donor lymphocyte infusion in the treatment of Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) relapsing after allogeneic stem cell transplantation and resistant to imatinib. Leuk Res2009;33:174177.

    • Search Google Scholar
    • Export Citation
  • 94.

    YoshimitsuMFujiwaraHOzakiA. Case of a patient with Philadelphia-chromosome-positive acute lymphoblastic leukemia relapsed after myeloablative allogeneic hematopoietic stem cell transplantation treated successfully with imatinib and sequential donor lymphocyte infusions. Int J Hematol2008;88:331335.

    • Search Google Scholar
    • Export Citation
  • 95.

    TachibanaTNumataATanakaM. Successful treatment with dasatinib and allogeneic peripheral blood stem cell transplant for imatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia relapsing after bone marrow transplant and donor lymphocyte infusion. Leuk Lymphoma2011;52:13761379.

    • Search Google Scholar
    • Export Citation
  • 96.

    DavilaMLRiviereIWangX. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med2014;6:224ra225.

    • Search Google Scholar
    • Export Citation
  • 97.

    NguyenKDevidasMChengSC. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia2008;22:21422150.

    • Search Google Scholar
    • Export Citation
  • 98.

    PuiCHEvansWE. Acute lymphoblastic leukemia. N Engl J Med1998;339:605615.

  • 99.

    PuiCHPeiDSandlundJT. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia2010;24:371382.

    • Search Google Scholar
    • Export Citation
  • 100.

    BergSLBlaneySMDevidasM. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children's Oncology Group. J Clin Oncol2005;23:33763382.

    • Search Google Scholar
    • Export Citation
  • 101.

    EinsiedelHGvon StackelbergAHartmannR. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol2005;23:79427950.

    • Search Google Scholar
    • Export Citation
  • 102.

    TallenGRateiRMannG. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol2010;28:23392347.

    • Search Google Scholar
    • Export Citation
  • 103.

    MalempatiSGaynonPSSatherH. Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children's Oncology Group study CCG-1952. J Clin Oncol2007;25:58005807.

    • Search Google Scholar
    • Export Citation
  • 104.

    FieldingAKRoweJMRichardsSM. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood2009;113:44894496.

    • Search Google Scholar
    • Export Citation
  • 105.

    Genzyme Corporation Prescribing Information. Clolar® (clofarabine) Injection for Intravenous Use. 2013. Available at: http://products.sanofi.us/clolar/clolar.html. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 106.

    JehaSGaynonPSRazzoukBI. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol2006;24:19171923.

    • Search Google Scholar
    • Export Citation
  • 107.

    KantarjianHGandhiVCortesJ. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood2003;102:23792386.

    • Search Google Scholar
    • Export Citation
  • 108.

    LocatelliFTestiAMBernardoME. Clofarabine, cyclophosphamide and etoposide as single-course re-induction therapy for children with refractory/multiple relapsed acute lymphoblastic leukaemia. Br J Haematol2009;147:371378.

    • Search Google Scholar
    • Export Citation
  • 109.

    HijiyaNThomsonBIsakoffMS. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood2011;118:60436049.

    • Search Google Scholar
    • Export Citation
  • 110.

    MianoMPistorioAPuttiMC. Clofarabine, cyclophosphamide and etoposide for the treatment of relapsed or resistant acute leukemia in pediatric patients. Leuk Lymphoma2012;53:16931698.

    • Search Google Scholar
    • Export Citation
  • 111.

    O'ConnorDSibsonKCaswellM. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia. Br J Haematol2011;154:482485.

    • Search Google Scholar
    • Export Citation
  • 112.

    PigneuxASauvezieMVeyN. Clofarabine Combinations in Adults with Refractory/Relapsed Acute Lymphoblastic Leukemia (ALL): A GRAALL Report [abstract]. Blood2011;118:Abstract 2586.

    • Search Google Scholar
    • Export Citation
  • 113.

    SchillerGLeeMTerritoM. Phase II study of etoposide, ifosfamide, and mitoxantrone for the treatment of resistant adult acute lymphoblastic leukemia. Am J Hematol1993;43:195199.

    • Search Google Scholar
    • Export Citation
  • 114.

    WeissMAAliffTBTallmanMS. A single, high dose of idarubicin combined with cytarabine as induction therapy for adult patients with recurrent or refractory acute lymphoblastic leukemia. Cancer2002;95:581587.

    • Search Google Scholar
    • Export Citation
  • 115.

    FaderlSThomasDAO'BrienS. Augmented hyper-CVAD based on dose-intensified vincristine, dexamethasone, and asparaginase in adult acute lymphoblastic leukemia salvage therapy. Clin Lymphoma Myeloma Leuk2011;11:5459.

    • Search Google Scholar
    • Export Citation
  • 116.

    GlaxoSmithKline. Prescribing Information. ARRANON (nelarabine) Injection. 2011. Available at: http://us.gsk.com/products/assets/us_arranon.pdf. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 117.

    DeAngeloDJYuDJohnsonJL. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood2007;109:51365142.

    • Search Google Scholar
    • Export Citation
  • 118.

    ThomasDAKantarjianHMStockW. Phase 1 multicenter study of vincristine sulfate liposomes injection and dexamethasone in adults with relapsed or refractory acute lymphoblastic leukemia. Cancer2009;115:54905498.

    • Search Google Scholar
    • Export Citation
  • 119.

    SilvermanJAReynoldsLDeitcherSR. Pharmacokinetics and pharmacodynamics of vincristine sulfate liposome injection (VSLI) in adults with acute lymphoblastic leukemia. J Clin Pharmacol2013;53:11391145.

    • Search Google Scholar
    • Export Citation
  • 120.

    O'BrienSSchillerGListerJ. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol2013;31:676683.

    • Search Google Scholar
    • Export Citation
  • 121.

    O'BrienSThomasDRavandiF. Outcome of adults with acute lymphocytic leukemia after second salvage therapy. Cancer2008;113:31863191.

  • 122.

    Talon Therapeutics Inc.Prescribing Information: Marqibo® (vinCRIStine sulfate LIPOSOME injection) for intravenous infusion 2012. Available at: http://www.marqibo.com/. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 123.

    ToppMSGoekbugetNZugmaierG. Anti-CD19 BiTE blinatumomab induces high complete remission rate in adult patients with relapsed B-precursor ALL: updated results of an ongoing phase II trial [abstract]. Blood2011;118:Abstract 252.

    • Search Google Scholar
    • Export Citation
  • 124.

    ToppMSKuferPGokbugetN. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol2011;29:24932498.

    • Search Google Scholar
    • Export Citation
  • 125.

    ToppMSGoekbugetNSteinAS. Confirmatory open-label, single-arm, multicenter phase 2 study of the BiTE antibody blinatumomab in patients (pts) with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL) [abstract]. J Clin Oncol2014;32:Abstract 7005.

    • Search Google Scholar
    • Export Citation
  • 126.

    U.S. Food and Drug Administration. Prescribing Information. Blincyto® (blinatumomab) injection. 2014. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125557lbl.pdf. Accessed August 6 2015.

    • Search Google Scholar
    • Export Citation
  • 127.

    BrentjensRJDavilaMLRiviereI. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med2013;5:177ra138.

    • Search Google Scholar
    • Export Citation
  • 128.

    KochenderferJNDudleyMEFeldmanSA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood2012;119:27092720.

    • Search Google Scholar
    • Export Citation
  • 129.

    GruppSAKalosMBarrettD. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med2013;368:15091518.

  • 130.

    SadelainMRiviereIBrentjensR. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer2003;3:3545.

  • 131.

    HollymanDStefanskiJPrzybylowskiM. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother2009;32:169180.

    • Search Google Scholar
    • Export Citation
  • 132.

    GokbugetNStanzeDBeckJ. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood2012;120:20322041.

    • Search Google Scholar
    • Export Citation
  • 133.

    ParkJHRiviereIWangX. CD19-Targeted 19-28z CAR modified autologous T cells induce high rates of complete remission and durable responses in adult patients with relapsed refractory B-cell ALL [abstract]. Presented at the 56th Annual Meeting of the American-Society-of-Hematology; December06–092014; San Francisco, CA. Abstract: 382.

    • Search Google Scholar
    • Export Citation
  • 134.

    GruppSAFreyNVAplencR. T cells engineered with a chimeric antigen receptor (CAR) targeting CD19 (CTL019) produce significant in vivo proliferation, complete responses and long-term persistence without GVHD in children and adults with relapsed, refractory ALL [abstract]. Blood2013;122:Abstract 67.

    • Search Google Scholar
    • Export Citation
  • 135.

    MaudeSLFreyNShawPA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med2014;371:15071517.

  • 136.

    KantarjianHThomasDJorgensenJ. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol2012;13:403411.

    • Search Google Scholar
    • Export Citation
  • 137.

    DeAngeloDJStelljesMMartinelliG. Efficacy and safety of inotuzumab ozogamicin (INO) vs standard of care (SOC) in salvage 1 or 2 patients with acute lymphoblastic leukemia (ALL): An ongoing global phase 3 study [abstract]. Presented at: 20th Congress of the European Hematology Association (EHA)2015;Vienna, Austria:Abstract LB2073.

    • Search Google Scholar
    • Export Citation
  • 138.

    HahnTWallDCamittaB. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in adults: an evidence-based review. Biol Blood Marrow Transplant2006;12:130.

    • Search Google Scholar
    • Export Citation
  • 139.

    EapenMRaetzEZhangMJ. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children's Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood2006;107:49614967.

    • Search Google Scholar
    • Export Citation
  • 140.

    GuptaVRichardsSRoweJAcute Leukemia Stem Cell Transplantation Trialists' Collaborative G. Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood2013;121:339350.

    • Search Google Scholar
    • Export Citation
  • 141.

    MessoriAFaddaVMarateaDTrippoliS. Acute lymphoblastic leukemia in first complete remission: temporal trend of outcomes in studies comparing allogeneic transplant with autologous transplant or chemotherapy. Ann Hematol2013;92:12211228.

    • Search Google Scholar
    • Export Citation
  • 142.

    MortuzaFYPapaioannouMMoreiraIM. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol2002;20:10941104.

    • Search Google Scholar
    • Export Citation
  • 143.

    NealeGACoustan-SmithEStowP. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia2004;18:934938.

    • Search Google Scholar
    • Export Citation
  • 144.

    KerstGKreyenbergHRothC. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol2005;128:774782.

    • Search Google Scholar
    • Export Citation
  • 145.

    Coustan-SmithESanchoJBehmFG. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood2002;100:5258.

    • Search Google Scholar
    • Export Citation
  • 146.

    Coustan-SmithESanchoJHancockML. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood2000;96:26912696.

    • Search Google Scholar
    • Export Citation
  • 147.

    CaveHvan der Werff ten BoschJSuciuS. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer--Childhood Leukemia Cooperative Group. N Engl J Med1998;339:591598.

    • Search Google Scholar
    • Export Citation
  • 148.

    Coustan-SmithEBehmFGSanchezJ. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet1998;351:550554.

    • Search Google Scholar
    • Export Citation
  • 149.

    StowPKeyLChenX. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood2010;115:46574663.

    • Search Google Scholar
    • Export Citation
  • 150.

    ConterVBartramCRValsecchiMG. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood2010;115:32063214.

    • Search Google Scholar
    • Export Citation
  • 151.

    VoraAGouldenNWadeR. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol2013;14:199209.

    • Search Google Scholar
    • Export Citation
  • 152.

    VoraAGouldenNMitchellC. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol2014;15:809818.

    • Search Google Scholar
    • Export Citation
  • 153.

    EckertCHenzeGSeegerK. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol2013;31:27362742.

    • Search Google Scholar
    • Export Citation
  • 154.

    ParkerCWatersRLeightonC. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet2010;376:20092017.

    • Search Google Scholar
    • Export Citation
  • 155.

    KoRHJiLBarnetteP. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol2010;28:648654.

    • Search Google Scholar
    • Export Citation
  • 156.

    Coustan-SmithEGajjarAHijiyaN. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia2004;18:499504.

    • Search Google Scholar
    • Export Citation
  • 157.

    PaganinMZeccaMFabbriG. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia2008;22:21932200.

    • Search Google Scholar
    • Export Citation
  • 158.

    BassoGVeltroniMValsecchiMG. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol2009;27:51685174.

    • Search Google Scholar
    • Export Citation
  • 159.

    Panzer-GrumayerERSchneiderMPanzerS. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood2000;95:790794.

    • Search Google Scholar
    • Export Citation
  • 160.

    BruggemannMRaffTFlohrT. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood2006;107:11161123.

    • Search Google Scholar
    • Export Citation
  • 161.

    HolowieckiJKrawczyk-KulisMGiebelS. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br J Haematol2008;142:227237.

    • Search Google Scholar
    • Export Citation
  • 162.

    PatelBRaiLBuckG. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol2010;148:8089.

    • Search Google Scholar
    • Export Citation
  • 163.

    VidrialesMBPerezJJLopez-BergesMC. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood2003;101:46954700.

    • Search Google Scholar
    • Export Citation
  • 164.

    NagafujiKMiyamotoTEtoT. Monitoring of minimal residual disease (MRD) is useful to predict prognosis of adult patients with Ph-negative ALL: results of a prospective study (ALL MRD2002 Study). J Hematol Oncol2013;6:14.

    • Search Google Scholar
    • Export Citation
  • 165.

    BassanRSpinelliOOldaniE. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood2009;113:41534162.

    • Search Google Scholar
    • Export Citation
  • 166.

    RaffTGokbugetNLuschenS. M olecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: data from the GMALL 06/99 and 07/03 trials. Blood2007;109:910915.

    • Search Google Scholar
    • Export Citation
  • 167.

    GokbugetNKnebaMRaffT. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood2012;120:18681876.

    • Search Google Scholar
    • Export Citation
  • 168.

    DworzakMNFroschlGPrintzD. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood2002;99:19521958.

    • Search Google Scholar
    • Export Citation
  • 169.

    BruggemannMSchrauderARaffT. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia2010;24:521535.

    • Search Google Scholar
    • Export Citation
  • 170.

    CampanaD. Minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program2010;2010:712.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 530 530 71
PDF Downloads 259 259 17
EPUB Downloads 0 0 0