Acute Lymphoblastic Leukemia, Version 2.2015

Restricted access

Treatment of acute lymphoblastic leukemia (ALL) continues to advance, as evidenced by the improved risk stratification of patients and development of newer treatment options. Identification of ALL subtypes based on immunophenotyping and cytogenetic and molecular markers has resulted in the inclusion of Philadelphia-like ALL and early T-cell precursor ALL as subtypes that affect prognosis. Identification of Ikaros mutations has also emerged as a prognostic factor. In addition to improved prognostication, treatment options for patients with ALL have expanded, particularly with regard to relapsed/refractory ALL. Continued development of second-generation tyrosine kinase inhibitors and the emergence of immunotherapy, including blinatumomab and chimeric antigen receptor T-cell therapy, have improved survival. Furthermore, incorporation of minimal residual disease (MRD) monitoring has shown insight into patient outcomes and may lead to treatment modification or alternative treatment strategies in select populations. This excerpt focuses on the sections of the ALL guidelines specific to clinical presentation and diagnosis, treatment of relapsed/refractory ALL, and incorporation of MRD monitoring. To view the most recent complete version of these guidelines, visit NCCN.org.

  • 1.

    Jabbour EJ, Faderl S, Kantarjian HM. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2005;80:15171527.

  • 2.

    National Cancer Institute. SEER Cancer Statistics Review, 1975-2011: Leukemis, Annual Incidence Rates (Acute Lymphocytic Leukemia). 2014. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 3.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:529.

  • 4.

    National Cancer Institute. SEER Cancer Statistics Review, 1975-2011: Overview, Median Age at Diagnosis. 2014. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 5.

    National Cancer Institute. SEER Cancer Statistics Review, 1975-2011: Overview, Age Distribution of Incidence Cases by Site. 2014. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 6.

    Esparza SD, Sakamoto KM. Topics in pediatric leukemia--acute lymphoblastic leukemia. MedGenMed 2005;7:23.

  • 7.

    Hasle H. Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol 2001;2:429436.

  • 8.

    Whitlock JA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol 2006;135:595602.

  • 9.

    Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer 1994;70:969972.

    • Search Google Scholar
    • Export Citation
  • 10.

    Shaw MP, Eden OB, Grace E, Ellis PM. Acute lymphoblastic leukemia and Klinefelter's syndrome. Pediatr Hematol Oncol 1992;9:8185.

  • 11.

    Gurgey A, Kara A, Tuncer M. Acute lymphoblastic leukemia associated with Klinefelter syndrome. Pediatr Hematol Oncol 1994;11:227229.

  • 12.

    Machatschek JN, Schrauder A, Helm F. Acute lymphoblastic leukemia and Klinefelter syndrome in children: two cases and review of the literature. Pediatr Hematol Oncol 2004;21:621626.

    • Search Google Scholar
    • Export Citation
  • 13.

    Flatt T, Neville K, Lewing K, Dalal J. Successful treatment of fanconi anemia and T-cell acute lymphoblastic leukemia. Case Rep Hematol 2012;2012:396395.

    • Search Google Scholar
    • Export Citation
  • 14.

    Yetgin S, Tuncer M, Guler E. Acute lymphoblastic leukemia in Fanconi's anemia. Am J Hematol 1994;45:94.

  • 15.

    Strevens MJ, Lilleyman JS, Williams RB. Shwachman's syndrome and acute lymphoblastic leukaemia. Br Med J 1978;2:18.

  • 16.

    Woods WG, Roloff JS, Lukens JN, Krivit W. The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr 1981;99:425428.

  • 17.

    Passarge E. Bloom's syndrome: the German experience. Ann Genet 1991;34:179197.

  • 18.

    Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87:423438.

  • 19.

    Ma H, Sun H, Sun X. Survival improvement by decade of patients aged 0-14 years with acute lymphoblastic leukemia: a SEER analysis. Sci Rep 2014;4:4227.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kenderian SS, Al-Kali A, Gangat N. Monosomal karyotype in Philadelphia chromosome-negative acute lymphoblastic leukemia. Blood Cancer J 2013;3:e122.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pulte D, Jansen L, Gondos A. Survival of Adults with Acute Lymphoblastic Leukemia in Germany and the United States. PLoS ONE 2014;9:e85554.

  • 22.

    Stock W. Adolescents and young adults with acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2010;2010:2129.

  • 23.

    Faderl S, O'Brien S, Pui CH. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer 2010;116:11651176.

  • 24.

    Borowitz MJ, Chan JKC. B lymphoblastic leukaemia/lymphoma, not otherwise specified In: Swerdlow SH, Campo E, Harris NL., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4th). Lyon: IARC; 2008:168170.

    • Search Google Scholar
    • Export Citation
  • 25.

    Borowitz MJ, Chan JKC. T lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4th). Lyon: IARC; 2008 176178.

    • Search Google Scholar
    • Export Citation
  • 26.

    Bailey LC, Lange BJ, Rheingold SR, Bunin NJ. Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. The Lancet Oncology;9:873883.

  • 27.

    Thomas DA, O'Brien S, Cortes J. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood 2004;104:16241630.

  • 28.

    Borowitz MJ, Chan JKC. B lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4th). Lyon: IARC; 2008:171175.

    • Search Google Scholar
    • Export Citation
  • 29.

    Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 2011;29:532543.

  • 30.

    Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med 2004;350:15351548.

  • 31.

    Bassan R, Gatta G, Tondini C, Willemze R. Adult acute lymphoblastic leukaemia. Crit Rev Oncol Hematol 2004;50:223261.

  • 32.

    Gokbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2006:133141.

  • 33.

    Thomas DA, O'Brien S, Jorgensen JL. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood 2009;113:63306337.

    • Search Google Scholar
    • Export Citation
  • 34.

    Coustan-Smith E, Mullighan CG, Onciu M. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147156.

    • Search Google Scholar
    • Export Citation
  • 35.

    Zhang J, Ding L, Holmfeldt L. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012;481:157163.

  • 36.

    Schrauder A, Reiter A, Gadner H. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 2006;24:57425749.

    • Search Google Scholar
    • Export Citation
  • 37.

    Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005;23:63066315.

  • 38.

    Moorman AV, Chilton L, Wilkinson J. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood 2010;115:206214.

    • Search Google Scholar
    • Export Citation
  • 39.

    Seibel NL. Treatment of acute lymphoblastic leukemia in children and adolescents: peaks and pitfalls. Hematology Am Soc Hematol Educ Program 2008:374380.

    • Search Google Scholar
    • Export Citation
  • 40.

    Burmeister T, Schwartz S, Bartram CR. Patients' age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood 2008;112:918919.

    • Search Google Scholar
    • Export Citation
  • 41.

    Gleissner B, Gokbuget N, Bartram CR. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 2002;99:15361543.

    • Search Google Scholar
    • Export Citation
  • 42.

    Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006;354:166178.

  • 43.

    Arico M, Valsecchi MG, Camitta B. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000;342:9981006.

    • Search Google Scholar
    • Export Citation
  • 44.

    Den Boer ML, van Slegtenhorst M, De Menezes RX. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009;10:125134.

    • Search Google Scholar
    • Export Citation
  • 45.

    Mullighan CG, Su X, Zhang J. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360:470-480.

  • 46.

    Roberts KG, Morin RD, Zhang J. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012;22:153166.

    • Search Google Scholar
    • Export Citation
  • 47.

    Roberts KG, Li Y, Payne-Turner D. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014;371:10051015.

    • Search Google Scholar
    • Export Citation
  • 48.

    Schultz KR, Pullen DJ, Sather HN. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 2007;109:926935.

    • Search Google Scholar
    • Export Citation
  • 49.

    Mullighan CG, Miller CB, Radtke I. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008;453:110114.

  • 50.

    Caye A, Beldjord K, Mass-Malo K. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 2013;98:597601.

    • Search Google Scholar
    • Export Citation
  • 51.

    Dupuis A, Gaub MP, Legrain M. Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia 2013;27:503507.

  • 52.

    Mi JQ, Wang X, Yao Y. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia 2012;26:15071516.

    • Search Google Scholar
    • Export Citation
  • 53.

    Martinelli G, Iacobucci I, Storlazzi CT. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 2009;27:52025207.

    • Search Google Scholar
    • Export Citation
  • 54.

    Iacobucci I, Storlazzi CT, Cilloni D. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009;114:21592167.

    • Search Google Scholar
    • Export Citation
  • 55.

    van der Veer A, Waanders E, Pieters R. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013;122:26222629.

    • Search Google Scholar
    • Export Citation
  • 56.

    Fielding AK, Richards SM, Chopra R. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood 2007;109:944950.

    • Search Google Scholar
    • Export Citation
  • 57.

    Oriol A, Vives S, Hernandez-Rivas JM. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica 2010;95:589596.

    • Search Google Scholar
    • Export Citation
  • 58.

    Tavernier E, Boiron JM, Huguet F. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia 2007;21:19071914.

    • Search Google Scholar
    • Export Citation
  • 59.

    Thomas DA, Kantarjian H, Smith TL. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer 1999;86:12161230.

    • Search Google Scholar
    • Export Citation
  • 60.

    Branford S, Rudzki Z, Walsh S. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002;99:34723475.

    • Search Google Scholar
    • Export Citation
  • 61.

    Hofmann WK, Jones LC, Lemp NA. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood 2002;99:18601862.

    • Search Google Scholar
    • Export Citation
  • 62.

    Hu Y, Liu Y, Pelletier S. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004;36:453461.

    • Search Google Scholar
    • Export Citation
  • 63.

    Jones D, Thomas D, Yin CC. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer 2008;113:985994.

    • Search Google Scholar
    • Export Citation
  • 64.

    Shah NP, Tran C, Lee FY. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004;305:399401.

  • 65.

    Soverini S, Colarossi S, Gnani A. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 2006;12:73747379.

    • Search Google Scholar
    • Export Citation
  • 66.

    Hofmann WK, Komor M, Wassmann B. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood 2003;102:659661.

    • Search Google Scholar
    • Export Citation
  • 67.

    Pfeifer H, Wassmann B, Pavlova A. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2007;110:727734.

    • Search Google Scholar
    • Export Citation
  • 68.

    O'Hare T, Walters DK, Stoffregen EP. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005;65:45004505.

    • Search Google Scholar
    • Export Citation
  • 69.

    Redaelli S, Piazza R, Rostagno R. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol 2009;27:469471.

    • Search Google Scholar
    • Export Citation
  • 70.

    Talpaz M, Shah NP, Kantarjian H. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006;354:25312541.

    • Search Google Scholar
    • Export Citation
  • 71.

    Verstovsek S, Golemovic M, Kantarjian H. AMN107, a novel aminopyrimidine inhibitor of p190 Bcr-Abl activation and of in vitro proliferation of Philadelphia-positive acute lymphoblastic leukemia cells. Cancer 2005;104:12301236.

    • Search Google Scholar
    • Export Citation
  • 72.

    Kantarjian H, Giles F, Wunderle L. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006;354:25422551.

    • Search Google Scholar
    • Export Citation
  • 73.

    Lilly MB, Ottmann OG, Shah NP. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: Results from a phase 3 study. Am J Hematol 2010;85:164170.

    • Search Google Scholar
    • Export Citation
  • 74.

    Ottmann O, Dombret H, Martinelli G. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood 2007;110:23092315.

    • Search Google Scholar
    • Export Citation
  • 75.

    Ottmann OG, Larson RA, Kantarjian HM. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome--positive acute lymphoblastic leukemia. Leukemia 2013;27:14111413.

    • Search Google Scholar
    • Export Citation
  • 76.

    Benjamini O, Dumlao TL, Kantarjian H. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol 2014;89:282287.

    • Search Google Scholar
    • Export Citation
  • 77.

    Muller MC, Cortes JE, Kim DW. Dasatinib treatment of chronic-phase chronic myeloid leukemia: analysis of responses according to preexisting BCR-ABL mutations. Blood 2009;114:49444953.

    • Search Google Scholar
    • Export Citation
  • 78.

    Soverini S, Colarossi S, Gnani A. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 2007;92:401404.

    • Search Google Scholar
    • Export Citation
  • 79.

    Soverini S, Martinelli G, Colarossi S. Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to dasatinib in Philadelphia chromosome-positive leukemia. J Clin Oncol 2006;24:e5152.

    • Search Google Scholar
    • Export Citation
  • 80.

    Soverini S, Hochhaus A, Nicolini FE. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011;118:12081215.

    • Search Google Scholar
    • Export Citation
  • 81.

    U.S. Food and Drug Administration. Prescribing Information: ICLUSIG® (ponatinib) tablets for oral use. 2012. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203469lbl.pdf. Accessed August 6, 2015

    • Search Google Scholar
    • Export Citation
  • 82.

    Cortes JE, Kantarjian H, Shah NP. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 2012;367:2075-2088.

  • 83.

    Cortes JE, Kim DW, Pinilla-Ibarz J. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013;369:17831796.

    • Search Google Scholar
    • Export Citation
  • 84.

    Cortes JE, Kantarjian HM, Brummendorf TH. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 2011;118:45674576.

    • Search Google Scholar
    • Export Citation
  • 85.

    Khoury HJ, Cortes JE, Kantarjian HM. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood 2012;119:34033412.

    • Search Google Scholar
    • Export Citation
  • 86.

    Ishida Y, Terasako K, Oshima K. Dasatinib followed by second allogeneic hematopoietic stem cell transplantation for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia after the first transplantation. Int J Hematol 2010;92:542546.

    • Search Google Scholar
    • Export Citation
  • 87.

    Millot F, Cividin M, Brizard F. Successful second allogeneic stem cell transplantation in second remission induced by dasatinib in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer 2009;52:891892.

    • Search Google Scholar
    • Export Citation
  • 88.

    Collins RH Jr., Goldstein S, Giralt S. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000;26:511516.

  • 89.

    Kolb HJ, Schattenberg A, Goldman JM. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995;86:20412050.

    • Search Google Scholar
    • Export Citation
  • 90.

    Keil F, Kalhs P, Haas OA. Relapse of Philadelphia chromosome positive acute lymphoblastic leukaemia after marrow transplantation: sustained molecular remission after early and dose-escalating infusion of donor leucocytes. Br J Haematol 1997;97:161164.

    • Search Google Scholar
    • Export Citation
  • 91.

    Matsue K, Tabayashi T, Yamada K, Takeuchi M. Eradication of residual bcr-abl-positive clones by inducing graft-versus-host disease after allogeneic stem cell transplantation in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant 2002;29:6366.

    • Search Google Scholar
    • Export Citation
  • 92.

    Yazaki M, Andoh M, Ito T. Successful prevention of hematological relapse for a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic bone marrow transplantation by donor leukocyte infusion. Bone Marrow Transplant 1997;19:393394.

    • Search Google Scholar
    • Export Citation
  • 93.

    Tiribelli M, Sperotto A, Candoni A. Nilotinib and donor lymphocyte infusion in the treatment of Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) relapsing after allogeneic stem cell transplantation and resistant to imatinib. Leuk Res 2009;33:174177.

    • Search Google Scholar
    • Export Citation
  • 94.

    Yoshimitsu M, Fujiwara H, Ozaki A. Case of a patient with Philadelphia-chromosome-positive acute lymphoblastic leukemia relapsed after myeloablative allogeneic hematopoietic stem cell transplantation treated successfully with imatinib and sequential donor lymphocyte infusions. Int J Hematol 2008;88:331335.

    • Search Google Scholar
    • Export Citation
  • 95.

    Tachibana T, Numata A, Tanaka M. Successful treatment with dasatinib and allogeneic peripheral blood stem cell transplant for imatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia relapsing after bone marrow transplant and donor lymphocyte infusion. Leuk Lymphoma 2011;52:13761379.

    • Search Google Scholar
    • Export Citation
  • 96.

    Davila ML, Riviere I, Wang X. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra225.

    • Search Google Scholar
    • Export Citation
  • 97.

    Nguyen K, Devidas M, Cheng SC. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia 2008;22:21422150.

    • Search Google Scholar
    • Export Citation
  • 98.

    Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med 1998;339:605615.

  • 99.

    Pui CH, Pei D, Sandlund JT. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371382.

    • Search Google Scholar
    • Export Citation
  • 100.

    Berg SL, Blaney SM, Devidas M. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children's Oncology Group. J Clin Oncol 2005;23:33763382.

    • Search Google Scholar
    • Export Citation
  • 101.

    Einsiedel HG, von Stackelberg A, Hartmann R. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 2005;23:79427950.

    • Search Google Scholar
    • Export Citation
  • 102.

    Tallen G, Ratei R, Mann G. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010;28:23392347.

    • Search Google Scholar
    • Export Citation
  • 103.

    Malempati S, Gaynon PS, Sather H. Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children's Oncology Group study CCG-1952. J Clin Oncol 2007;25:58005807.

    • Search Google Scholar
    • Export Citation
  • 104.

    Fielding AK, Rowe JM, Richards SM. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood 2009;113:44894496.

    • Search Google Scholar
    • Export Citation
  • 105.

    Genzyme Corporation Prescribing Information. Clolar® (clofarabine) Injection for Intravenous Use. 2013. Available at: http://products.sanofi.us/clolar/clolar.html. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 106.

    Jeha S, Gaynon PS, Razzouk BI. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol 2006;24:19171923.

    • Search Google Scholar
    • Export Citation
  • 107.

    Kantarjian H, Gandhi V, Cortes J. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood 2003;102:23792386.

    • Search Google Scholar
    • Export Citation
  • 108.

    Locatelli F, Testi AM, Bernardo ME. Clofarabine, cyclophosphamide and etoposide as single-course re-induction therapy for children with refractory/multiple relapsed acute lymphoblastic leukaemia. Br J Haematol 2009;147:371378.

    • Search Google Scholar
    • Export Citation
  • 109.

    Hijiya N, Thomson B, Isakoff MS. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood 2011;118:60436049.

    • Search Google Scholar
    • Export Citation
  • 110.

    Miano M, Pistorio A, Putti MC. Clofarabine, cyclophosphamide and etoposide for the treatment of relapsed or resistant acute leukemia in pediatric patients. Leuk Lymphoma 2012;53:16931698.

    • Search Google Scholar
    • Export Citation
  • 111.

    O'Connor D, Sibson K, Caswell M. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia. Br J Haematol 2011;154:482485.

    • Search Google Scholar
    • Export Citation
  • 112.

    Pigneux A, Sauvezie M, Vey N. Clofarabine Combinations in Adults with Refractory/Relapsed Acute Lymphoblastic Leukemia (ALL): A GRAALL Report [abstract]. Blood 2011;118:Abstract 2586.

    • Search Google Scholar
    • Export Citation
  • 113.

    Schiller G, Lee M, Territo M. Phase II study of etoposide, ifosfamide, and mitoxantrone for the treatment of resistant adult acute lymphoblastic leukemia. Am J Hematol 1993;43:195199.

    • Search Google Scholar
    • Export Citation
  • 114.

    Weiss MA, Aliff TB, Tallman MS. A single, high dose of idarubicin combined with cytarabine as induction therapy for adult patients with recurrent or refractory acute lymphoblastic leukemia. Cancer 2002;95:581587.

    • Search Google Scholar
    • Export Citation
  • 115.

    Faderl S, Thomas DA, O'Brien S. Augmented hyper-CVAD based on dose-intensified vincristine, dexamethasone, and asparaginase in adult acute lymphoblastic leukemia salvage therapy. Clin Lymphoma Myeloma Leuk 2011;11:5459.

    • Search Google Scholar
    • Export Citation
  • 116.

    GlaxoSmithKline. Prescribing Information. ARRANON (nelarabine) Injection. 2011. Available at: http://us.gsk.com/products/assets/us_arranon.pdf. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 117.

    DeAngelo DJ, Yu D, Johnson JL. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 2007;109:51365142.

    • Search Google Scholar
    • Export Citation
  • 118.

    Thomas DA, Kantarjian HM, Stock W. Phase 1 multicenter study of vincristine sulfate liposomes injection and dexamethasone in adults with relapsed or refractory acute lymphoblastic leukemia. Cancer 2009;115:54905498.

    • Search Google Scholar
    • Export Citation
  • 119.

    Silverman JA, Reynolds L, Deitcher SR. Pharmacokinetics and pharmacodynamics of vincristine sulfate liposome injection (VSLI) in adults with acute lymphoblastic leukemia. J Clin Pharmacol 2013;53:11391145.

    • Search Google Scholar
    • Export Citation
  • 120.

    O'Brien S, Schiller G, Lister J. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol 2013;31:676683.

    • Search Google Scholar
    • Export Citation
  • 121.

    O'Brien S, Thomas D, Ravandi F. Outcome of adults with acute lymphocytic leukemia after second salvage therapy. Cancer 2008;113:31863191.

  • 122.

    Talon Therapeutics, Inc. Prescribing Information: Marqibo® (vinCRIStine sulfate LIPOSOME injection) for intravenous infusion 2012. Available at: http://www.marqibo.com/. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 123.

    Topp MS, Goekbuget N, Zugmaier G. Anti-CD19 BiTE blinatumomab induces high complete remission rate in adult patients with relapsed B-precursor ALL: updated results of an ongoing phase II trial [abstract]. Blood 2011;118:Abstract 252.

    • Search Google Scholar
    • Export Citation
  • 124.

    Topp MS, Kufer P, Gokbuget N. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:24932498.

    • Search Google Scholar
    • Export Citation
  • 125.

    Topp MS, Goekbuget N, Stein AS. Confirmatory open-label, single-arm, multicenter phase 2 study of the BiTE antibody blinatumomab in patients (pts) with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL) [abstract]. J Clin Oncol 2014;32:Abstract 7005.

    • Search Google Scholar
    • Export Citation
  • 126.

    U.S. Food and Drug Administration. Prescribing Information. Blincyto® (blinatumomab) injection. 2014. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125557lbl.pdf. Accessed August 6, 2015.

    • Search Google Scholar
    • Export Citation
  • 127.

    Brentjens RJ, Davila ML, Riviere I. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177ra138.

    • Search Google Scholar
    • Export Citation
  • 128.

    Kochenderfer JN, Dudley ME, Feldman SA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012;119:27092720.

    • Search Google Scholar
    • Export Citation
  • 129.

    Grupp SA, Kalos M, Barrett D. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:15091518.

  • 130.

    Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003;3:3545.

  • 131.

    Hollyman D, Stefanski J, Przybylowski M. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32:169180.

    • Search Google Scholar
    • Export Citation
  • 132.

    Gokbuget N, Stanze D, Beck J. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood 2012;120:20322041.

    • Search Google Scholar
    • Export Citation
  • 133.

    Park JH, Riviere I, Wang X. CD19-Targeted 19-28z CAR modified autologous T cells induce high rates of complete remission and durable responses in adult patients with relapsed, refractory B-cell ALL [abstract]. Presented at the 56th Annual Meeting of the American-Society-of-Hematology; December 06–09, 2014; San Francisco, CA. Abstract: 382.

    • Search Google Scholar
    • Export Citation
  • 134.

    Grupp SA, Frey NV, Aplenc R. T cells engineered with a chimeric antigen receptor (CAR) targeting CD19 (CTL019) produce significant in vivo proliferation, complete responses and long-term persistence without GVHD in children and adults with relapsed, refractory ALL [abstract]. Blood 2013;122:Abstract 67.

    • Search Google Scholar
    • Export Citation
  • 135.

    Maude SL, Frey N, Shaw PA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371:15071517.

  • 136.

    Kantarjian H, Thomas D, Jorgensen J. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012;13:403411.

    • Search Google Scholar
    • Export Citation
  • 137.

    DeAngelo DJ, Stelljes M, Martinelli G. Efficacy and safety of inotuzumab ozogamicin (INO) vs standard of care (SOC) in salvage 1 or 2 patients with acute lymphoblastic leukemia (ALL): An ongoing global phase 3 study [abstract]. Presented at: 20th Congress of the European Hematology Association (EHA) 2015;Vienna, Austria:Abstract LB2073.

    • Search Google Scholar
    • Export Citation
  • 138.

    Hahn T, Wall D, Camitta B. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in adults: an evidence-based review. Biol Blood Marrow Transplant 2006;12:130.

    • Search Google Scholar
    • Export Citation
  • 139.

    Eapen M, Raetz E, Zhang MJ. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children's Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 2006;107:49614967.

    • Search Google Scholar
    • Export Citation
  • 140.

    Gupta V, Richards S, Rowe JAcute Leukemia Stem Cell Transplantation Trialists' Collaborative G. Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood 2013;121:339350.

    • Search Google Scholar
    • Export Citation
  • 141.

    Messori A, Fadda V, Maratea D, Trippoli S. Acute lymphoblastic leukemia in first complete remission: temporal trend of outcomes in studies comparing allogeneic transplant with autologous transplant or chemotherapy. Ann Hematol 2013;92:12211228.

    • Search Google Scholar
    • Export Citation
  • 142.

    Mortuza FY, Papaioannou M, Moreira IM. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol 2002;20:10941104.

    • Search Google Scholar
    • Export Citation
  • 143.

    Neale GA, Coustan-Smith E, Stow P. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004;18:934938.

    • Search Google Scholar
    • Export Citation
  • 144.

    Kerst G, Kreyenberg H, Roth C. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005;128:774782.

    • Search Google Scholar
    • Export Citation
  • 145.

    Coustan-Smith E, Sancho J, Behm FG. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100:5258.

    • Search Google Scholar
    • Export Citation
  • 146.

    Coustan-Smith E, Sancho J, Hancock ML. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96:26912696.

    • Search Google Scholar
    • Export Citation
  • 147.

    Cave H, van der Werff ten Bosch J, Suciu S. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer--Childhood Leukemia Cooperative Group. N Engl J Med 1998;339:591598.

    • Search Google Scholar
    • Export Citation
  • 148.

    Coustan-Smith E, Behm FG, Sanchez J. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998;351:550554.

    • Search Google Scholar
    • Export Citation
  • 149.

    Stow P, Key L, Chen X. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010;115:46574663.

    • Search Google Scholar
    • Export Citation
  • 150.

    Conter V, Bartram CR, Valsecchi MG. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115:32063214.

    • Search Google Scholar
    • Export Citation
  • 151.

    Vora A, Goulden N, Wade R. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol 2013;14:199209.

    • Search Google Scholar
    • Export Citation
  • 152.

    Vora A, Goulden N, Mitchell C. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol 2014;15:809818.

    • Search Google Scholar
    • Export Citation
  • 153.

    Eckert C, Henze G, Seeger K. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol 2013;31:27362742.

    • Search Google Scholar
    • Export Citation
  • 154.

    Parker C, Waters R, Leighton C. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010;376:20092017.

    • Search Google Scholar
    • Export Citation
  • 155.

    Ko RH, Ji L, Barnette P. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010;28:648654.

    • Search Google Scholar
    • Export Citation
  • 156.

    Coustan-Smith E, Gajjar A, Hijiya N. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004;18:499504.

    • Search Google Scholar
    • Export Citation
  • 157.

    Paganin M, Zecca M, Fabbri G. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia 2008;22:21932200.

    • Search Google Scholar
    • Export Citation
  • 158.

    Basso G, Veltroni M, Valsecchi MG. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009;27:51685174.

    • Search Google Scholar
    • Export Citation
  • 159.

    Panzer-Grumayer ER, Schneider M, Panzer S. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95:790794.

    • Search Google Scholar
    • Export Citation
  • 160.

    Bruggemann M, Raff T, Flohr T. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 2006;107:11161123.

    • Search Google Scholar
    • Export Citation
  • 161.

    Holowiecki J, Krawczyk-Kulis M, Giebel S. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br J Haematol 2008;142:227237.

    • Search Google Scholar
    • Export Citation
  • 162.

    Patel B, Rai L, Buck G. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol 2010;148:8089.

    • Search Google Scholar
    • Export Citation
  • 163.

    Vidriales MB, Perez JJ, Lopez-Berges MC. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood 2003;101:46954700.

    • Search Google Scholar
    • Export Citation
  • 164.

    Nagafuji K, Miyamoto T, Eto T. Monitoring of minimal residual disease (MRD) is useful to predict prognosis of adult patients with Ph-negative ALL: results of a prospective study (ALL MRD2002 Study). J Hematol Oncol 2013;6:14.

    • Search Google Scholar
    • Export Citation
  • 165.

    Bassan R, Spinelli O, Oldani E. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 2009;113:41534162.

    • Search Google Scholar
    • Export Citation
  • 166.

    Raff T, Gokbuget N, Luschen S. M olecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: data from the GMALL 06/99 and 07/03 trials. Blood 2007;109:910915.

    • Search Google Scholar
    • Export Citation
  • 167.

    Gokbuget N, Kneba M, Raff T. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 2012;120:18681876.

    • Search Google Scholar
    • Export Citation
  • 168.

    Dworzak MN, Froschl G, Printz D. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002;99:19521958.

    • Search Google Scholar
    • Export Citation
  • 169.

    Bruggemann M, Schrauder A, Raff T. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia 2010;24:521535.

    • Search Google Scholar
    • Export Citation
  • 170.

    Campana D. Minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2010;2010:712.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 871 697 75
PDF Downloads 373 236 33
EPUB Downloads 0 0 0