Multigene Assays in Metastatic Colorectal Cancer

Restricted access

Specific genomic colorectal cancer alterations are increasingly linked to prognosis and/or response to specific anticancer agents. The identification of KRAS mutations as markers of resistance to epidermal growth factor receptor (EGFR) inhibitors has paved the way to the interrogation of numerous other markers of resistance to anti-EGFR therapy, such as NRAS, BRAF, and PI3KCA mutations. Other genomic and protein expression alterations have recently been identified as potential targets of treatment or as markers of chemotherapy or targeted-therapy resistance, including ERCC1 expression, c-Met expression, PTEN expression, HER2 amplification, HER3 expression, and rare KRAS mutations. As the number of distinct validated intratumor genomic assays increases, numerous molecular assays will need to be compiled into one multigene panel assay. Several companies and academic centers are now offering multigene assays to patients with metastatic colorectal cancer and other solid tumors. This article discusses the technology behind multigene assays, its limitations, its current advantages, and its potential in the clinical care of metastatic colorectal cancer.

Correspondence: Marwan G. Fakih, MD, Medical Oncology and Experimental Therapeutics, Gastrointestinal Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Street, Duarte, CA 91010. E-mail: mfakih@coh.org
  • 1.

    JemalABrayFCenterMM. Global cancer statistics. CA Cancer J Clin2011;61:6990.

  • 2.

    MaughanTSAdamsRASmithCG. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet2011;377:21032114.

    • Search Google Scholar
    • Export Citation
  • 3.

    Van CutsemEKohneCHLangI. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol2011;29:20112019.

    • Search Google Scholar
    • Export Citation
  • 4.

    HechtJRMitchellEChidiacT. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol2009;27:672680.

    • Search Google Scholar
    • Export Citation
  • 5.

    SaltzLBClarkeSDiaz-RubioE. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol2008;26:20132019.

    • Search Google Scholar
    • Export Citation
  • 6.

    KopetzSChangGJOvermanMJ. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol2009;27:36773683.

    • Search Google Scholar
    • Export Citation
  • 7.

    ShenLToyotaMKondoY. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A2007;104:1865418659.

    • Search Google Scholar
    • Export Citation
  • 8.

    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature2012;487:330337.

  • 9.

    BokemeyerCBondarenkoIMakhsonA. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol2009;27:663671.

    • Search Google Scholar
    • Export Citation
  • 10.

    Di FioreFBlanchardFCharbonnierF. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br J Cancer2007;96:11661169.

    • Search Google Scholar
    • Export Citation
  • 11.

    FakihM. The role of targeted therapy in the treatment of advanced colorectal cancer. Curr Treat Options Oncol2008;9:357374.

  • 12.

    FakihMM. KRAS mutation screening in colorectal cancer: from paper to practice. Clin Colorectal Cancer2010;9:2230.

  • 13.

    KarapetisCSKhambata-FordSJonkerDJ. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med2008;359:17571765.

    • Search Google Scholar
    • Export Citation
  • 14.

    TejparSCelikISchlichtingM. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol2012;30:35703577.

    • Search Google Scholar
    • Export Citation
  • 15.

    De RoockWJonkerDJDi NicolantonioF. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA2010;304:18121820.

    • Search Google Scholar
    • Export Citation
  • 16.

    PeetersMDouillardJYVan CutsemE. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol2013;31:759765.

    • Search Google Scholar
    • Export Citation
  • 17.

    De RoockWClaesBBernasconiD. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol2010;11:753762.

    • Search Google Scholar
    • Export Citation
  • 18.

    Di NicolantonioFMartiniMMolinariF. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol2008;26:57055712.

    • Search Google Scholar
    • Export Citation
  • 19.

    De RoockWDe VriendtVNormannoN. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol2011;12:594603.

    • Search Google Scholar
    • Export Citation
  • 20.

    LoupakisFPollinaLStasiI. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol2009;27:26222629.

    • Search Google Scholar
    • Export Citation
  • 21.

    PrenenHDe SchutterJJacobsB. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res2009;15:31843188.

    • Search Google Scholar
    • Export Citation
  • 22.

    KrumbachRSchulerJHofmannM. Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer2011;47:12311243.

    • Search Google Scholar
    • Export Citation
  • 23.

    WatkinsDAyersMCunninghamD. Molecular analysis of the randomized phase II/III study of the anti-IGF-1R antibody dalotuzumab (MK-0646) in combination with cetuximab (Cx) and irinotecan (Ir) in the treatment of chemorefractory KRAS wild-type metastatic colorectal cancer (mCRC) [abstract]. J Clin Oncol2012;30(Suppl):Abstract 3531.

    • Search Google Scholar
    • Export Citation
  • 24.

    Shacham-ShmueliEBenyAGevaR. Response to temozolomide in patients with metastatic colorectal cancer with loss of MGMT expression: a new approach in the era of personalized medicine? J Clin Oncol2011;29:e262265.

    • Search Google Scholar
    • Export Citation
  • 25.

    ShirotaYStoehlmacherJBrabenderJ. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol2001;19:42984304.

    • Search Google Scholar
    • Export Citation
  • 26.

    KelleyRKVan BebberSLPhillipsKAVenookAP. Personalized medicine and oncology practice guidelines: a case study of contemporary biomarkers in colorectal cancer. J Natl Compr Canc Netw2011;9:1325.

    • Search Google Scholar
    • Export Citation
  • 27.

    MetzkerML. Sequencing technologies - the next generation. Nat Rev Genet2010;11:3146.

  • 28.

    RehmHLBaleSJBayrak-ToydemirP. ACMG clinical laboratory standards for next-generation sequencing. Genet Med2013;15:733747.

  • 29.

    MajewskiJSchwartzentruberJLalondeE. What can exome sequencing do for you? J Med Genet2011;48:580589.

  • 30.

    KerickMIsauMTimmermannB. Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics2011;4:68.

    • Search Google Scholar
    • Export Citation
  • 31.

    SchweigerMRKerickMTimmermannB. Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One2009;4:e5548.

    • Search Google Scholar
    • Export Citation
  • 32.

    WagleNBergerMFDavisMJ. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov2012;2:8293.

    • Search Google Scholar
    • Export Citation
  • 33.

    GlennTC. Field guide to next-generation DNA sequencers. Mol Ecol Resour2011;11:759769.

  • 34.

    MeldrumCDoyleMATothillRW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev2011;32:177195.

    • Search Google Scholar
    • Export Citation
  • 35.

    MamanovaLCoffeyAJScottCE. Target-enrichment strategies for next-generation sequencing. Nat Methods2010;7:111118.

  • 36.

    GnirkeAMelnikovAMaguireJ. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol2009;27:182189.

    • Search Google Scholar
    • Export Citation
  • 37.

    HodgesERooksMXuanZ. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nat Protoc2009;4:960974.

    • Search Google Scholar
    • Export Citation
  • 38.

    FisherSBarryAAbreuJ. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol2011;12:R1.

    • Search Google Scholar
    • Export Citation
  • 39.

    GrossmannVSchnittgerSSchindelaS. Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deep-sequencing technology. J Mol Diagn2011;13:129136.

    • Search Google Scholar
    • Export Citation
  • 40.

    OyolaSOOttoTDGuY. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics2012;13:1.

    • Search Google Scholar
    • Export Citation
  • 41.

    QuailMASmithMCouplandP. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics2012;13:341.

    • Search Google Scholar
    • Export Citation
  • 42.

    QueringsSAltmullerJAnsenS. Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One2011;6:e19601.

  • 43.

    TonerB. At AACR early providers of NGS-based cancer panel debate ‘actionable’ mutations regulatory issues. Available at: www.genomeweb.com. Acccessed September 6 2013.

    • Search Google Scholar
    • Export Citation
  • 44.

    RehmHLBaleSJBayrak-ToydemirP. ACMG clinical laboratory standards for next-generation sequencing. Genet Med2013;15:733747.

  • 45.

    GargisASKalmanLBerryMW. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol201230:10331036.

    • Search Google Scholar
    • Export Citation
  • 46.

    FakihM. Targeting mechanisms of resistance to anti-EGF receptor therapy in KRAS wild-type colorectal cancer: the path to more personalized medicine. Future Oncol2013;9:551560.

    • Search Google Scholar
    • Export Citation
  • 47.

    OlinerKDouillardJSienaS. Analysis of KRAS/NRAS and BRAF mutations in the phase III PRIME study of panitumumab (pmab) plus FOLFOX versus FOLFOX as first-line treatment (tx) for metastatic colorectal cancer (mCRC) [abstract]. J Clin Oncol2013;31(Suppl):Abstract 3511.

    • Search Google Scholar
    • Export Citation
  • 48.

    KohlmannAGrossmannVHarbichS. Next-generation deep-sequencing enables a quantitative monitoring of RUNX1 mutations in 534 patients with myelodysplastic/myeloproliferative neoplasms and myelodysplastic syndromes Blood2011;118:2792.

    • Search Google Scholar
    • Export Citation
  • 49.

    KohlmannAGrossmannVFasanA. Sensitive monitoring of mnimal residual disease status in CEBPA-mutated acute myeloid leukemia using amplicon deep-sequencing Blood2011;118:2517.

    • Search Google Scholar
    • Export Citation
  • 50.

    BentleyDRBalasubramanianSSwerdlowHP. Accurate whole human genome sequencing using reversible terminator chemistry. Nature2008;456:5359.

    • Search Google Scholar
    • Export Citation
  • 51.

    RonaghiMUhlenMNyrenP. A sequencing method based on real-time pyrophosphate. Science1998;281:363.

  • 52.

    DressmanDYanHTraversoG. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A2003;100:88178822.

    • Search Google Scholar
    • Export Citation
  • 53.

    MarguliesMEgholmMAltmanWE. Genome sequencing in microfabricated high-density picolitre reactors. Nature2005;437:376380.

  • 54.

    McKernanKJPeckhamHECostaGL. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res2009;19:15271541.

    • Search Google Scholar
    • Export Citation
  • 55.

    LomanNJMisraRVDallmanTJ. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol2012;30:434439.

  • 56.

    JunemannSSedlazeckFJPriorK. Updating benchtop sequencing performance comparison. Nat Biotechnol2013;31:294296.

  • 57.

    RothbergJMHinzWRearickTM. An integrated semiconductor device enabling non-optical genome sequencing. Nature2011;475: 348352.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 76 12
PDF Downloads 11 11 0
EPUB Downloads 0 0 0