NCCN Task Force Report: Bone Health in Cancer Care

Restricted access

Bone health and maintenance of bone integrity are important components of comprehensive cancer care. Many patients with cancer are at risk for therapy-induced bone loss, with resultant osteoporotic fractures, or skeletal metastases, which may result in pathologic fractures, hypercalcemia, bone pain, and decline in motility and performance status. Effective screening and timely interventions are essential for reducing bone-related morbidity. Management of long-term bone health requires a broad knowledge base. A multidisciplinary health care team may be needed for optimal assessment and treatment of bone-related issues in patients with cancer. Since publication of the previous NCCN Task Force Report: Bone Health in Cancer Care in 2009, new data have emerged on bone health and treatment, prompting NCCN to convene this multidisciplinary task force to discuss the progress made in optimizing bone health in patients with cancer. In December 2012, the panel members provided didactic presentations on various topics, integrating expert judgment with a review of the key literature. This report summarizes issues surrounding bone health in cancer care presented and discussed during this NCCN Bone Health in Cancer Care Task Force meeting.

  • 1

    NordinC. Screening for osteoporosis: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med2011;155:276; author reply 276-277.

    • Search Google Scholar
    • Export Citation
  • 2

    JohnellOKanisJAOdenA. Predictive value of BMD for hip and other fractures. J Bone Miner Res2005;20:11851194.

  • 3

    KanisJABorgstromFDe LaetC. Assessment of fracture risk. Osteoporos Int2005;16:581589.

  • 4

    KanisJAMcCloskeyEVPowlesT. A high incidence of vertebral fracture in women with breast cancer. Br J Cancer1999;79:11791181.

  • 5

    ChenZMaricicMBassfordTL. Fracture risk among breast cancer survivors: results from the Women's Health Initiative observational study. Arch Intern Med2005;165:552558.

    • Search Google Scholar
    • Export Citation
  • 6

    KanisJAMeltonLJChristiansenC. The diagnosis of osteoporosis. J Bone Miner Res1994;9:11371141.

  • 7

    CauleyJAHochbergMCLuiLY. Long-term risk of incident vertebral fractures. JAMA2007;298:27612767.

  • 8

    NjehCFFuerstTHansD. Radiation exposure in bone mineral density assessment. Appl Radiat Isot1999;50:215236.

  • 9

    Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann Intern Med2011;154:356364.

  • 10

    HillnerBEIngleJNChlebowskiRT. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol2003;21:40424057.

    • Search Google Scholar
    • Export Citation
  • 11

    MohlerJLArmstrongAJBahnsonRR. NCCN Clinical Practice Guidelines in Oncology for Prostate Cancer. Version 22013. Available at: NCCN.org. Accessed June 18 2013.

    • Search Google Scholar
    • Export Citation
  • 12

    TheriaultRLCarlsonRWAllredC. NCCN Clinical Practice Guidelines in Oncology for Breast Cancer. Version 32013. Available at: NCCN.org. Accessed June 18 2013.

    • Search Google Scholar
    • Export Citation
  • 13

    World Health Organization Collaborating Centre for Metabolic Bone Diseases University of Sheffield. FRAX WHO fracture risk assessment tool. Available at: http://www.shef.ac.uk/FRAX/tool.jsp. Accessed July 17 2013.

    • Search Google Scholar
    • Export Citation
  • 14

    Institute for Clinical Systems Improvement (ICSI). Diagnosis and treatment of osteoporosis. Bloomington (MN): Institute for Clinical Systems Improvement (ICSI); 2011. Available at: http://guideline.gov/content.aspx?id=34270. Accessed July 17 2013.

    • Search Google Scholar
    • Export Citation
  • 15

    GarneroPSornay-RenduEClaustratBDelmasPD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res2000;15:15261536.

    • Search Google Scholar
    • Export Citation
  • 16

    RossPDKressBCParsonRE. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int2000;11:7682.

    • Search Google Scholar
    • Export Citation
  • 17

    Sornay-RenduEMunozFGarneroP. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res2005;20:18131819.

    • Search Google Scholar
    • Export Citation
  • 18

    RiggsBLMelton LJIII. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone1995;17:505S511S.

  • 19

    CauleyJAPalermoLVogtM. Prevalent vertebral fractures in black women and white women. J Bone Miner Res2008;23:14581467.

  • 20

    SilvermanSL. The clinical consequences of vertebral compression fracture. Bone1992;13(Suppl 2):S2731.

  • 21

    KuetKPCharlesworthDPeelNF. Vertebral fracture assessment scans enhance targeting of investigations and treatment within a fracture risk assessment pathway. Osteoporos Int2013;24:10071014.

    • Search Google Scholar
    • Export Citation
  • 22

    BlackDMArdenNKPalermoL. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res1999;14:821828.

    • Search Google Scholar
    • Export Citation
  • 23

    MeltonLJAtkinsonEJCooperC. Vertebral fractures predict subsequent fractures. Osteoporos Int1999;10:214221.

  • 24

    LindsayRSilvermanSLCooperC. Risk of new vertebral fracture in the year following a fracture. JAMA2001;285:320323.

  • 25

    GenantHKLiJWuCYShepherdJA. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom2000;3:281290.

  • 26

    LentleBCBrownJPKhanA. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J2007;58:2736.

    • Search Google Scholar
    • Export Citation
  • 27

    VokesTBachmanDBaimS. Vertebral fracture assessment: the 2005 ISCD Official Positions. J Clin Densitom2006;9:3746.

  • 28

    Robb-NicholsonC. Radiation risk from medical imaging. Harvard Health Publication. Available at: http://www.health.harvard. edu/newsletters/Harvard_Womens_Health_Watch/2010/October/radiation-risk-from-medical-imaging. Accessed July 17 2013.

    • Search Google Scholar
    • Export Citation
  • 29

    4th ISCD Position Development Conference (Adult). The Inernational Society for Clinical DensitometryWeb site. Available at: http://www.iscd.org/official-positions/4th-iscd-position-development-conference-adult/. Accessed July 17 2013

    • Search Google Scholar
    • Export Citation
  • 30

    PartridgeAHRuddyKJ. Fertility and adjuvant treatment in young women with breast cancer. Breast2007;16(Suppl 2):S175181.

  • 31

    FornierMNModiSPanageasKS. Incidence of chemotherapy-induced, long-term amenorrhea in patients with breast carcinoma age 40 years and younger after adjuvant anthracycline and taxane. Cancer2005;104:15751579.

    • Search Google Scholar
    • Export Citation
  • 32

    PetrekJANaughtonMJCaseLD. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. J Clin Oncol2006;24:10451051.

    • Search Google Scholar
    • Export Citation
  • 33

    GoodwinPJEnnisMPritchardKI. Risk of menopause during the first year after breast cancer diagnosis. J Clin Oncol1999;17:23652370.

  • 34

    BursteinHJWinerEP. Primary care for survivors of breast cancer. N Engl J Med2000;343:10861094.

  • 35

    ShapiroCLManolaJLeboffM. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol2001;19:33063311.

    • Search Google Scholar
    • Export Citation
  • 36

    BruningPFPitMJde Jong-BakkerM. Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer1990;61:308310.

    • Search Google Scholar
    • Export Citation
  • 37

    DelmasPDBalenaRConfravreuxE. Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebo-controlled study. J Clin Oncol1997;15:955962.

    • Search Google Scholar
    • Export Citation
  • 38

    HeadleyJATheriaultRLLeBlancAD. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy. Cancer Invest1998;16:611.

    • Search Google Scholar
    • Export Citation
  • 39

    HershmanDLMcMahonDJCrewKD. Zoledronic acid prevents bone loss in premenopausal women undergoing adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol2008;26:47394745.

    • Search Google Scholar
    • Export Citation
  • 40

    PowlesTJMcCloskeyEPatersonAH. Oral clodronate and reduction in loss of bone mineral density in women with operable primary breast cancer. J Natl Cancer Inst1998;90:704708.

    • Search Google Scholar
    • Export Citation
  • 41

    SaartoTBlomqvistCValimakiM. Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol1997;15:13411347.

    • Search Google Scholar
    • Export Citation
  • 42

    EastellRHannonRACuzickJ. Effect of an aromatase inhibitor on bmd and bone turnover markers: 2-year results of the Anastrozole, Tamoxifen, Alone or in Combination (ATAC) trial (18233230). J Bone Miner Res2006;21:12151223.

    • Search Google Scholar
    • Export Citation
  • 43

    FogelmanIBlakeGMBlameyR. Bone mineral density in premenopausal women treated for node-positive early breast cancer with 2 years of goserelin or 6 months of cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Osteoporos Int2003;14:10011006.

    • Search Google Scholar
    • Export Citation
  • 44

    WarmingLHassagerCChristiansenC. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int2002;13:105112.

    • Search Google Scholar
    • Export Citation
  • 45

    GeislerJKingNAnkerG. In vivo inhibition of aromatization by exemestane, a novel irreversible aromatase inhibitor, in postmenopausal breast cancer patients. Clin Cancer Res1998;4:20892093.

    • Search Google Scholar
    • Export Citation
  • 46

    GeislerJHaynesBAnkerG. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J Clin Oncol2002;20:751757.

    • Search Google Scholar
    • Export Citation
  • 47

    CummingsSRBrownerWSBauerD. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med1998;339:733738.

    • Search Google Scholar
    • Export Citation
  • 48

    GeislerJLonningPE. Impact of aromatase inhibitors on bone health in breast cancer patients. J Steroid Biochem Mol Biol2010;118:294299.

    • Search Google Scholar
    • Export Citation
  • 49

    SimpsonERDowsettM. Aromatase and its inhibitors: significance for breast cancer therapy. Recent Prog Horm Res2002;57:317338.

  • 50

    CoatesASKeshaviahAThurlimannB. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol2007;25:486492.

    • Search Google Scholar
    • Export Citation
  • 51

    CoombesRCHallEGibsonLJ. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med2004;350:10811092.

    • Search Google Scholar
    • Export Citation
  • 52

    ForbesJFCuzickJBuzdarA. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol2008;9:4553.

    • Search Google Scholar
    • Export Citation
  • 53

    JakeszRJonatWGnantM. Switching of postmenopausal women with endocrine-responsive early breast cancer to anastrozole after 2 years' adjuvant tamoxifen: combined results of ABCSG trial 8 and ARNO 95 trial. Lancet2005;366:455462.

    • Search Google Scholar
    • Export Citation
  • 54

    EastellRAdamsJClackG. Long-term effects of anastrozole on bone mineral density: 7-year results from the ATAC trial. Ann Oncol2011;22:857862.

    • Search Google Scholar
    • Export Citation
  • 55

    ThurlimannBKeshaviahACoatesAS. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med2005;353:27472757.

    • Search Google Scholar
    • Export Citation
  • 56

    ColemanREBanksLMGirgisSI. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol2007;8:119127.

    • Search Google Scholar
    • Export Citation
  • 57

    GossPEIngleJNMartinoS. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med2003;349:17931802.

    • Search Google Scholar
    • Export Citation
  • 58

    GossPEIngleJNPritchardKI. Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27—a randomized controlled phase III trial. J Clin Oncol2013;31:13981404.

    • Search Google Scholar
    • Export Citation
  • 59

    HershmanDLCheungAMChapmanJW. Effects of adjuvant exemestane versus anastrozole on bone mineral density: two-year results of the NCIC CTG MA.27 bone companion study [abstract]. J Clin Oncol2011;29:Abstract 518.

    • Search Google Scholar
    • Export Citation
  • 60

    MengMVGrossfeldGDSadetskyN. Contemporary patterns of androgen deprivation therapy use for newly diagnosed prostate cancer. Urology2002;60:711; discussion 11-12.

    • Search Google Scholar
    • Export Citation
  • 61

    NadlerMAlibhaiSCattonP. Osteoporosis knowledge, health beliefs, and healthy bone behaviours in patients on androgen-deprivation therapy (ADT) for prostate cancer. BJU Int2013;111:13011309.

    • Search Google Scholar
    • Export Citation
  • 62

    GuiseTAOefeleinMGEasthamJA. Estrogenic side effects of androgen deprivation therapy. Rev Urol2007;9:163180.

  • 63

    BasariaSLieb JIITangAM. Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol2002;56:779786.

    • Search Google Scholar
    • Export Citation
  • 64

    KhoslaSOurslerMJMonroeDG. Estrogen and the skeleton. Trends Endocrinol Metab2012;23:576581.

  • 65

    MellstromDVandenputLMallminH. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res2008;23:15521560.

    • Search Google Scholar
    • Export Citation
  • 66

    MaillefertJFSibiliaJMichelF. Bone mineral density in men treated with synthetic gonadotropin-releasing hormone agonists for prostatic carcinoma. J Urol1999;161:12191222.

    • Search Google Scholar
    • Export Citation
  • 67

    MittanDLeeSMillerE. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab2002;87:36563661.

    • Search Google Scholar
    • Export Citation
  • 68

    BerrutiADogliottiLTerroneC. Changes in bone mineral density, lean body mass and fat content as measured by dual energy x-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J Urol2002;167:23612367.

    • Search Google Scholar
    • Export Citation
  • 69

    DaniellHWDunnSRFergusonDW. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol2000;163:181186.

  • 70

    HiganoCS. Androgen-deprivation-therapy-induced fractures in men with nonmetastatic prostate cancer: what do we really know?Nat Clin Pract Urol2008;5:2434.

    • Search Google Scholar
    • Export Citation
  • 71

    LeeHMcGovernKFinkelsteinJSSmithMR. Changes in bone mineral density and body composition during initial and long-term gonadotropin-releasing hormone agonist treatment for prostate carcinoma. Cancer2005;104:16331637.

    • Search Google Scholar
    • Export Citation
  • 72

    DaniellHWDunnSRFergusonDW. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol2000;163:181186.

  • 73

    DiamondTCampbellJBryantCLynchW. The effect of combined androgen blockade on bone turnover and bone mineral densities in men treated for prostate carcinoma: longitudinal evaluation and response to intermittent cyclic etidronate therapy. Cancer1998;83:15611566.

    • Search Google Scholar
    • Export Citation
  • 74

    SmithMRLeeWCBrandmanJ. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol2005;23:78977903.

    • Search Google Scholar
    • Export Citation
  • 75

    GreenspanSLCoatesPSereikaSM. Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. J Clin Endocrinol Metab2005;90:64106417.

    • Search Google Scholar
    • Export Citation
  • 76

    KiratliBJSrinivasSPerkashITerrisMK. Progressive decrease in bone density over 10 years of androgen deprivation therapy in patients with prostate cancer. Urology2001;57:127132.

    • Search Google Scholar
    • Export Citation
  • 77

    ShahinianVBKuoYFFreemanJLGoodwinJS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med2005;352:154164.

  • 78

    SmithMRBoyceSPMoyneurE. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol2006;175:136139; discussion 139.

    • Search Google Scholar
    • Export Citation
  • 79

    Clinician's guide to the prevention and treatment of osteoporosis. National Osteoporosis FoundationWeb site. Available at: http://nof.org/files/nof/public/content/resource/913/files/580.pdf. Accessed July 17 2013.

    • Search Google Scholar
    • Export Citation
  • 80

    Fatalities and injuries from falls among older adults—United States, 1993-2003 and 2001-2005. MMWR Morb Mortal Wkly Rep2006;55:12211224.

    • Search Google Scholar
    • Export Citation
  • 81

    FeskanichDWillettWColditzG. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA2002;288:23002306.

    • Search Google Scholar
    • Export Citation
  • 82

    MoyerVA. Prevention of falls in community-dwelling older adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med2012;157:197204.

    • Search Google Scholar
    • Export Citation
  • 83

    ParkerMJGillespieWJGillespieLD. Effectiveness of hip protectors for preventing hip fractures in elderly people: systematic review. BMJ2006;332:571574.

    • Search Google Scholar
    • Export Citation
  • 84

    SawkaAMBoulosPBeattieK. Hip protectors decrease hip fracture risk in elderly nursing home residents: a Bayesian meta-analysis. J Clin Epidemiol2007;60:336344.

    • Search Google Scholar
    • Export Citation
  • 85

    CameronIDKurrleSEQuineS. Improving adherence with the use of hip protectors among older people living in nursing care facilities: a cluster randomized trial. J Am Med Dir Assoc2011;12:5057.

    • Search Google Scholar
    • Export Citation
  • 86

    CameronIDKurrleSQuineS. Increasing adherence with the use of hip protectors for older people living in the community. Osteoporos Int2011;22:617626.

    • Search Google Scholar
    • Export Citation
  • 87

    SchaafsmaFGKurrleSEQuineS. Wearing hip protectors does not reduce health-related quality of life in older people. Age Ageing2012;41:121125.

    • Search Google Scholar
    • Export Citation
  • 88

    ChapuyMCArlotMEDuboeufF. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med1992;327:16371642.

  • 89

    Dawson-HughesBHarrisSSKrallEADallalGE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med1997;337:670676.

    • Search Google Scholar
    • Export Citation
  • 90

    MuradMHElaminKBAbu ElnourNO. Clinical review: the effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab2011;96:29973006.

    • Search Google Scholar
    • Export Citation
  • 91

    Dietary reference intakes for calcium and vitamin D. Institute of MedicineWeb site. Available at: http://www.iom.edu/Reports/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D.aspx. Accessed July 17 2013.

    • Search Google Scholar
    • Export Citation
  • 92

    CurhanGCWillettWCSpeizerFE. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med1997;126:497504.

    • Search Google Scholar
    • Export Citation
  • 93

    BollandMJAvenellABaronJA. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ2010;341:c3691.

    • Search Google Scholar
    • Export Citation
  • 94

    HennekensCHBariceEJ. Calcium supplements and risk of myocardial infarction: a hypothesis formulated but not yet adequately tested. Am J Med2011;124:10971098.

    • Search Google Scholar
    • Export Citation
  • 95

    AdamsJSKantorovichVWuC. Resolution of vitamin D insufficiency in osteopenic patients results in rapid recovery of bone mineral density. J Clin Endocrinol Metab1999;84:27292730.

    • Search Google Scholar
    • Export Citation
  • 96

    Bischoff-FerrariHADawson-HughesBWillettWC. Effect of Vitamin D on falls: a meta-analysis. JAMA2004;291:19992006.

  • 97

    RosenCJGallagherJC. The 2011 IOM report on vitamin D and calcium requirements for north america: clinical implications for providers treating patients with low bone mineral density. J Clin Densitom2011;14:7984.

    • Search Google Scholar
    • Export Citation
  • 98

    CamachoPMDayalASDiazJL. Prevalence of secondary causes of bone loss among breast cancer patients with osteopenia and osteoporosis. J Clin Oncol2008;26:53805385.

    • Search Google Scholar
    • Export Citation
  • 99

    CrewKDShaneECremersS. High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy. J Clin Oncol2009;27:21512156.

    • Search Google Scholar
    • Export Citation
  • 100

    VarsavskyMReyes-GarciaRCortes-BerdoncesM. Serum 25 OH vitamin D concentrations and calcium intake are low in patients with prostate cancer. Endocrinol Nutr2011;58:487491.

    • Search Google Scholar
    • Export Citation
  • 101

    HolickMFBinkleyNCBischoff-FerrariHA. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab2011;96:19111930.

    • Search Google Scholar
    • Export Citation
  • 102

    CranneyAHorsleyTO'DonnellS. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess (Full Rep)2007:1235.

    • Search Google Scholar
    • Export Citation
  • 103

    HoughtonLAViethR. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr2006;84:694697.

  • 104

    HolickMFBiancuzzoRMChenTC. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab2008;93:677681.

    • Search Google Scholar
    • Export Citation
  • 105

    HolickMF. Vitamin D deficiency. N Engl J Med2007;357:266281.

  • 106

    GreenspanSLNelsonJBTrumpDLResnickNM. Effect of once-weekly oral alendronate on bone loss in men receiving androgen deprivation therapy for prostate cancer: a randomized trial. Ann Intern Med2007;146:416424.

    • Search Google Scholar
    • Export Citation
  • 107

    Van PoznakC. Managing bone mineral density with oral bisphosphonate therapy in women with breast cancer receiving adjuvant aromatase inhibition. Breast Cancer Res2010;12:110.

    • Search Google Scholar
    • Export Citation
  • 108

    Van PoznakCHannonRAMackeyJR. Prevention of aromatase inhibitor-induced bone loss using risedronate: the SABRE trial. J Clin Oncol2010;28:967975.

    • Search Google Scholar
    • Export Citation
  • 109

    SirisESHarrisSTRosenCJ. Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases. Mayo Clin Proc2006;81:10131022.

    • Search Google Scholar
    • Export Citation
  • 110

    KhanMNKhanAA. Cancer treatment-related bone loss: a review and synthesis of the literature. Curr Oncol2008;15:3040.

  • 111

    CummingsSRSan MartinJMcClungMR. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med2009;361:756765.

    • Search Google Scholar
    • Export Citation
  • 112

    OrwollETeglbjaergCSLangdahlBL. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab2012;97:31613169.

    • Search Google Scholar
    • Export Citation
  • 113

    SmithMRSaadFEgerdieB. Effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. J Urol2009;182:26702675.

    • Search Google Scholar
    • Export Citation
  • 114

    EllisGKBoneHGChlebowskiR. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol2008;26:48754882.

    • Search Google Scholar
    • Export Citation
  • 115

    StopeckATLiptonABodyJJ. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol2010;28:51325139.

    • Search Google Scholar
    • Export Citation
  • 116

    StopeckA. Denosumab findings in metastatic breast cancer. Clin Adv Hematol Oncol2010;8:159160.

  • 117

    RossouwJEAndersonGLPrenticeRL. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA2002;288:321333.

    • Search Google Scholar
    • Export Citation
  • 118

    Questions and answers for estrogen and estrogen with progestin therapies for postmenopausal women (updated). U.S. Food and Drug AdministrationWeb site. Available at: http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm135339.htm. Accessed June 18 2013.

    • Search Google Scholar
    • Export Citation
  • 119

    HolmbergLAndersonH. HABITS (hormonal replacement therapy after breast cancer—is it safe?), a randomised comparison: trial stopped. Lancet2004;363:453455.

    • Search Google Scholar
    • Export Citation
  • 120

    Christin-MaitreS. The role of hormone replacement therapy in the management of premature ovarian failure. Nat Clin Pract Endocrinol Metab2008;4:6061.

    • Search Google Scholar
    • Export Citation
  • 121

    EttingerBBlackDMMitlakBH. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA1999;282:637645.

    • Search Google Scholar
    • Export Citation
  • 122

    Barrett-ConnorEMoscaLCollinsP. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med2006;355:125137.

    • Search Google Scholar
    • Export Citation
  • 123

    MartinoSCauleyJABarrett-ConnorE. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst2004;96:17511761.

    • Search Google Scholar
    • Export Citation
  • 124

    YalcinBBuyukcelikAYalcinS. Re: Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst2005;97:542; author reply 542-543.

    • Search Google Scholar
    • Export Citation
  • 125

    VogelVGCostantinoJPWickerhamDL. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA2006;295:27272741.

    • Search Google Scholar
    • Export Citation
  • 126

    Barrett-ConnorEMoscaLCollinsP. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med2006;355:125137.

    • Search Google Scholar
    • Export Citation
  • 127

    CauleyJANortonLLippmanME. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat2001;65:125134.

    • Search Google Scholar
    • Export Citation
  • 128

    O'ReganRMGajdosCDardesRC. Effects of raloxifene after tamoxifen on breast and endometrial tumor growth in athymic mice. J Natl Cancer Inst2002;94:274283.

    • Search Google Scholar
    • Export Citation
  • 129

    StewartHJForrestAPEveringtonD. Randomised comparison of 5 years of adjuvant tamoxifen with continuous therapy for operable breast cancer. The Scottish Cancer Trials Breast Group. Br J Cancer1996;74:297299.

    • Search Google Scholar
    • Export Citation
  • 130

    Eng-WongJReynoldsJCVenzonD. Effect of raloxifene on bone mineral density in premenopausal women at increased risk of breast cancer. J Clin Endocrinol Metab2006;91:39413946.

    • Search Google Scholar
    • Export Citation
  • 131

    BaumMBuzdarACuzickJ. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer2003;98:18021810.

    • Search Google Scholar
    • Export Citation
  • 132

    FarookiAFornierMGirotraM. Anabolic therapies for osteoporosis. N Engl J Med2007;357:24102411.

  • 133

    MacLeanCNewberrySMaglioneM. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med2008;148:197213.

    • Search Google Scholar
    • Export Citation
  • 134

    CranneyATugwellPZytarukN. Meta-analyses of therapies for postmenopausal osteoporosis. VI. Meta-analysis of calcitonin for the treatment of postmenopausal osteoporosis. Endocr Rev2002;23:540551.

    • Search Google Scholar
    • Export Citation
  • 135

    Background document for meeting of advisory committee for reproductive health drugs and drug safety and risk management advisory committee. U.S. Food and Drug AdministrationWeb site. Available at: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ReproductiveHealthDrugsAdvisoryCommittee/UCM341779.pdf. Accessed July 17 2013.

    • Search Google Scholar
    • Export Citation
  • 136

    BundredNJCampbellIDDavidsonN. Effective inhibition of aromatase inhibitor-associated bone loss by zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: ZO-FAST study results. Cancer2008;112:10011010.

    • Search Google Scholar
    • Export Citation
  • 137

    GnantMMlineritschBSchippingerW. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med2009;360:679691.

  • 138

    ShapiroCLHalabiSHarsV. Zoledronic acid preserves bone mineral density in premenopausal women who develop ovarian failure due to adjuvant chemotherapy: final results from CALGB trial 79809. Eur J Cancer2011;47:683689.

    • Search Google Scholar
    • Export Citation
  • 139

    SmithMREasthamJGleasonDM. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol2003;169:20082012.

    • Search Google Scholar
    • Export Citation
  • 140

    SmithMRMortonRABarnetteKG. Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol2010;184:13161321.

    • Search Google Scholar
    • Export Citation
  • 141

    SmithMREgerdieBHernandez TorizN. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med2009;361:745755.

    • Search Google Scholar
    • Export Citation
  • 142

    GriggAPShuttleworthPReynoldsJ. Pamidronate reduces bone loss after allogeneic stem cell transplantation. J Clin Endocrinol Metab2006;91:38353843.

    • Search Google Scholar
    • Export Citation
  • 143

    TauchmanovàLColaoALombardiG. Bone loss and its management in long-term survivors from allogeneic stem cell transplantation. J Clin Endocrinol Metab2007;92:45364545.

    • Search Google Scholar
    • Export Citation
  • 144

    TauchmanovaLDe SimoneGMusellaT. Effects of various antireabsorptive treatments on bone mineral density in hypogonadal young women after allogeneic stem cell transplantation. Bone Marrow Transplant2006;37:8188.

    • Search Google Scholar
    • Export Citation
  • 145

    BrownJEEllisSPLesterJE. Prolonged efficacy of a single dose of the bisphosphonate zoledronic acid. Clin Cancer Res2007;13:54065410.

  • 146

    GreyABollandMJWattieD. The antiresorptive effects of a single dose of zoledronate persist for two years: a randomized, placebo-controlled trial in osteopenic postmenopausal women. J Clin Endocrinol Metab2009;94:538544.

    • Search Google Scholar
    • Export Citation
  • 147

    HershmanDLMcMahonDJCrewKD. Prevention of bone loss by zoledronic acid in premenopausal women undergoing adjuvant chemotherapy persist up to one year following discontinuing treatment. J Clin Endocrinol Metab2010;95:559566.

    • Search Google Scholar
    • Export Citation
  • 148

    LesterJEDodwellDPurohitOP. Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. Clin Cancer Res2008;14:63366342.

    • Search Google Scholar
    • Export Citation
  • 149

    BrufskyAMHarkerWGBeckJT. Final 5-year results of Z-FAST trial: adjuvant zoledronic acid maintains bone mass in postmenopausal breast cancer patients receiving letrozole. Cancer2012;118:11921201.

    • Search Google Scholar
    • Export Citation
  • 150

    LlombartAFrassoldatiAPaijaO. Immediate administration of zoledronic acid reduces aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer: 12-month analysis of the E-ZO-FAST trial. Clin Breast Cancer2012;12:4048.

    • Search Google Scholar
    • Export Citation
  • 151

    ColemanRde BoerREidtmannH. Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol2013;24:398405.

    • Search Google Scholar
    • Export Citation
  • 152

    Fuleihan GelHSalamounMMouradYA. Pamidronate in the prevention of chemotherapy-induced bone loss in premenopausal women with breast cancer: a randomized controlled trial. J Clin Endocrinol Metab2005;90:32093214.

    • Search Google Scholar
    • Export Citation
  • 153

    HinesSLMinceyBASloanJA. Phase III randomized, placebo-controlled, double-blind trial of risedronate for the prevention of bone loss in premenopausal women undergoing chemotherapy for primary breast cancer. J Clin Oncol2009;27:10471053.

    • Search Google Scholar
    • Export Citation
  • 154

    RippsBAVanGilderKMinhasB. Alendronate for the prevention of bone mineral loss during gonadotropin-releasing hormone agonist therapy. J Reprod Med2003;48:761766.

    • Search Google Scholar
    • Export Citation
  • 155

    GnantMMlineritschBLuschin-EbengreuthG. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol2008;9:840849.

    • Search Google Scholar
    • Export Citation
  • 156

    BrownJESherriffJMJamesND. Osteoporosis in patients with prostate cancer on long-term androgen deprivation therapy: an increasing, but under-recognized problem. BJU Int2010;105:10421043.

    • Search Google Scholar
    • Export Citation
  • 157

    LeeCELeslieWDCzaykowskiP. A comprehensive bone-health management approach for men with prostate cancer receiving androgen deprivation therapy. Curr Oncol2011;18:e163172.

    • Search Google Scholar
    • Export Citation
  • 158

    MichaelsonMDKaufmanDSLeeH. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol2007;25:10381042.

    • Search Google Scholar
    • Export Citation
  • 159

    SmithMRMcGovernFJZietmanAL. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N Engl J Med2001;345:948955.

    • Search Google Scholar
    • Export Citation
  • 160

    BhoopalamNCampbellSCMoritzT. Intravenous zoledronic acid to prevent osteoporosis in a veteran population with multiple risk factors for bone loss on androgen deprivation therapy. J Urol2009;182:22572264.

    • Search Google Scholar
    • Export Citation
  • 161

    GreenspanSLNelsonJBTrumpDL. Skeletal health after continuation, withdrawal, or delay of alendronate in men with prostate cancer undergoing androgen-deprivation therapy. J Clin Oncol2008;26:44264434.

    • Search Google Scholar
    • Export Citation
  • 162

    KlotzLHMcNeillIYKebabdjianM. A phase 3, double-blind, randomised, parallel-group, placebo-controlled study of oral weekly alendronate for the prevention of androgen deprivation bone loss in nonmetastatic prostate cancer: the Cancer and Osteoporosis Research with Alendronate and Leuprolide (CORAL) study. Eur Urol2012;63:927935.

    • Search Google Scholar
    • Export Citation
  • 163

    Serpa NetoATobias-MachadoMEstevesMA. Bisphosphonate therapy in patients under androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis2012;15:3644.

    • Search Google Scholar
    • Export Citation
  • 164

    SmithMRFallonMALeeHFinkelsteinJS. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Metab2004;89:38413846.

    • Search Google Scholar
    • Export Citation
  • 165

    SmithMRMalkowiczSBChuF. Toremifene increases bone mineral density in men receiving androgen deprivation therapy for prostate cancer: interim analysis of a multicenter phase 3 clinical study. J Urol2008;179:152155.

    • Search Google Scholar
    • Export Citation
  • 166

    EidtmannHde BoerRBundredN. Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST Study. Ann Oncol2010;21:21882194.

    • Search Google Scholar
    • Export Citation
  • 167

    GnantMMlineritschBLuschin-EbengreuthG. Long-term follow-up in ABCSG-12: significantly improved overall survival with adjuvant zoledronic acid in premenopausal patients with endocrine-receptor-positive early breast cancer [abstract]. Cancer Res2011;71(24 Suppl):Abstract S1-2.

    • Search Google Scholar
    • Export Citation
  • 168

    DaviesCPanHGodwinJ. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet2013;381:805816.

    • Search Google Scholar
    • Export Citation
  • 169

    PowlesTJHickishTKanisJA. Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol1996;14:7884.

    • Search Google Scholar
    • Export Citation
  • 170

    VehmanenLElomaaIBlomqvistCSaartoT. Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J Clin Oncol2006;24:675680.

    • Search Google Scholar
    • Export Citation
  • 171

    LesterJEDodwellDPurohitOP. Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. Clin Cancer Res2008;14:63366342.

    • Search Google Scholar
    • Export Citation
  • 172

    RabendaVHiligsmannMReginsterJY. Poor adherence to oral bisphosphonate treatment and its consequences: a review of the evidence. Expert Opin Pharmacother2009;10:23032315.

    • Search Google Scholar
    • Export Citation
  • 173

    SheehyOKindunduCBarbeauMLeLorierJ. Adherence to weekly oral bisphosphonate therapy: cost of wasted drugs and fractures. Osteoporos Int2009;20:15831594.

    • Search Google Scholar
    • Export Citation
  • 174

    WeyckerDLameratoLSchooleyS. Adherence with bisphosphonate therapy and change in bone mineral density among women with osteoporosis or osteopenia in clinical practice. Osteoporos Int2013;24:14831489.

    • Search Google Scholar
    • Export Citation
  • 175

    WadeSWCurtisJRYuJ. Medication adherence and fracture risk among patients on bisphosphonate therapy in a large United States health plan. Bone2012;50:870875.

    • Search Google Scholar
    • Export Citation
  • 176

    GalloMDe LucaALamuraLNormannoN. Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: implications for adjuvant therapy of breast cancer. Ann Oncol2012;23:597604.

    • Search Google Scholar
    • Export Citation
  • 177

    BoissierSFerrerasMPeyruchaudO. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res2000;60:29492954.

    • Search Google Scholar
    • Export Citation
  • 178

    SenaratneSGPirianovGMansiJL. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer2000;82:14591468.

  • 179

    TeronenOKonttinenYTSaloT. Bisphosphonates inhibit matrix metalloproteinases—a new possible mechanism of action. Duodecim1999;115:1315.

    • Search Google Scholar
    • Export Citation
  • 180

    van der PluijmGVloedgravenHvan BeekE. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest1996;98:698705.

    • Search Google Scholar
    • Export Citation
  • 181

    DaubineFLe GallCGasserJ. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst2007;99:322330.

    • Search Google Scholar
    • Export Citation
  • 182

    FournierPBoissierSFilleurS. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res2002;62:65386544.

    • Search Google Scholar
    • Export Citation
  • 183

    SasakiABoyceBFStoryB. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res1995;55:35513557.

    • Search Google Scholar
    • Export Citation
  • 184

    PowlesTPatersonSKanisJA. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol2002;20:32193224.

    • Search Google Scholar
    • Export Citation
  • 185

    PowlesTPatersonAMcCloskeyE. Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res2006;8:R13.

    • Search Google Scholar
    • Export Citation
  • 186

    DielIJSolomayerEFCostaSD. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med1998;339:357363.

    • Search Google Scholar
    • Export Citation
  • 187

    DielIJJaschkeASolomayerEF. Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann Oncol2008;19:20072011.

    • Search Google Scholar
    • Export Citation
  • 188

    SaartoTBlomqvistCVirkkunenPElomaaI. Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol2001;19:1017.

    • Search Google Scholar
    • Export Citation
  • 189

    HaTCLiH. Meta-analysis of clodronate and breast cancer survival. Br J Cancer2007;96:17961801.

  • 190

    PatersonAHAndersonSJLemberskyBC. Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol2012;13:734742.

    • Search Google Scholar
    • Export Citation
  • 191

    MöbusVDielIHarbeckN. GAIN study: a phase III trial to compare ETC vs. EC-TX and iIbandronate vs. observation in patients with node-positive primary breast cancer—1st interim efficacy analysis [abstract]. Cancer Res2011;71(24 Suppl):Abstract S2-4.

    • Search Google Scholar
    • Export Citation
  • 192

    ColemanREMarshallHCameronD. Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med2011;365:13961405.

  • 193

    GregoryWMarshallHBellR. Adjuvant zoledronic acid (ZOL) in postmenopausal women with breast cancer and those rendered postmenopausal: results of a meta-analysis [abstract]. J Clin Oncol2012;30(Suppl):Abstract 513.

    • Search Google Scholar
    • Export Citation
  • 194

    GossPEBarriosCHBellR. Denosumab versus placebo as adjuvant treatment for women with early-stage breast cancer who are at high risk of disease recurrence (D-CARE): an international, randomized, double-blind, placebo-controlled phase III clinical trial [abstract]. J Clin Oncol2012;30(Suppl):Abstract TPS670.

    • Search Google Scholar
    • Export Citation
  • 195

    SmithMRKabbinavarFSaadF. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol2005;23:29182925.

    • Search Google Scholar
    • Export Citation
  • 196

    MasonMDSydesMRGlaholmJ. Oral sodium clodronate for nonmetastatic prostate cancer--results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J Natl Cancer Inst2007;99:765776.

    • Search Google Scholar
    • Export Citation
  • 197

    SmithMRSaadFColemanR. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet2012;379:3946.

    • Search Google Scholar
    • Export Citation
  • 198

    SaadFSmithMRShoreND. Effect of denosumab on prolonging bone-metastasis free survival (BMFS) in men with non-metastatic castrate-resistant prostate cancer (CRPC) presenting with aggressive PSA kinetics [abstract]. J Clin Oncol2012;30:Abstract 4510.

    • Search Google Scholar
    • Export Citation
  • 199

    ZEUS study yields no survival benefits and positive results. European Association of UrologyWeb site. http://www.uroweb.org/eau-news/?no_cache=1&aid=648. Accessed July 17 2013

    • Search Google Scholar
    • Export Citation
  • 200

    LiSPengYWeinhandlED. Estimated number of prevalent cases of metastatic bone disease in the US adult population. Clin Epidemiol2012;4:8793.

    • Search Google Scholar
    • Export Citation
  • 201

    MsaouelPPissimissisNHalapasAKoutsilierisM. Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab2008;22:341355.

    • Search Google Scholar
    • Export Citation
  • 202

    KoutsilierisM. Skeletal metastases in advanced prostate cancer: cell biology and therapy. Crit Rev Oncol Hematol1995;18:5164.

  • 203

    WeilbaecherKNGuiseTAMcCauleyLK. Cancer to bone: a fatal attraction. Nat Rev Cancer2011;11:411425.

  • 204

    PapachristouDJBasdraEKPapavassiliouAG. Bone metastases: molecular mechanisms and novel therapeutic interventions. Med Res Rev2012;32:611636.

    • Search Google Scholar
    • Export Citation
  • 205

    MundyGR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer2002;2:584593.

  • 206

    GuiseTAMohammadKSClinesG. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res2006;12:6213s6216s.

    • Search Google Scholar
    • Export Citation
  • 207

    KingsleyLAFournierPGChirgwinJMGuiseTA. Molecular biology of bone metastasis. Mol Cancer Ther2007;6:26092617.

  • 208

    BraunSPantelKMullerP. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med2000;342:525533.

    • Search Google Scholar
    • Export Citation
  • 209

    GiulianoAEHawesDBallmanKV. Association of occult metastases in sentinel lymph nodes and bone marrow with survival among women with early-stage invasive breast cancer. JAMA2011;306:385393.

    • Search Google Scholar
    • Export Citation
  • 210

    LucciAHallCSLodhiAK. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol2012;13:688695.

  • 211

    BraunSVoglFDNaumeB. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med2005;353:793802.

  • 212

    JanniWVoglFDWiedswangG. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res2011;17:29672976.

    • Search Google Scholar
    • Export Citation
  • 213

    WiedswangGBorgenEKaresenR. Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res2004;10:53425348.

    • Search Google Scholar
    • Export Citation
  • 214

    MengSTripathyDSheteS. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A2004;101:93939398.

    • Search Google Scholar
    • Export Citation
  • 215

    RoudierMPVesselleHTrueLD. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis2003;20:171180.

    • Search Google Scholar
    • Export Citation
  • 216

    HsuHLaceyDLDunstanCR. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A1999;96:35403545.

    • Search Google Scholar
    • Export Citation
  • 217

    LogothetisCJLinSH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer2005;5:2128.

  • 218

    StreetJBaoMdeGuzmanL. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A2002;99:96569661.

    • Search Google Scholar
    • Export Citation
  • 219

    DaiJKitagawaYZhangJ. Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res2004;64:994999.

    • Search Google Scholar
    • Export Citation
  • 220

    RoodmanGD. Mechanisms of bone metastasis. N Engl J Med2004;350:16551664.

  • 221

    ColemanRE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev2001;27:165176.

  • 222

    SathiakumarNDelzellEMorriseyMA. Mortality following bone metastasis and skeletal-related events among women with breast cancer: a population-based analysis of U.S. Medicare beneficiaries, 1999-2006. Breast Cancer Res Treat2012;131:231238.

    • Search Google Scholar
    • Export Citation
  • 223

    SathiakumarNDelzellEMorriseyMA. Mortality following bone metastasis and skeletal-related events among men with prostate cancer: a population-based analysis of US Medicare beneficiaries, 1999-2006. Prostate Cancer Prostatic Dis2011;14:177183.

    • Search Google Scholar
    • Export Citation
  • 224

    LageMJBarberBLHarrisonDJJunS. The cost of treating skeletal-related events in patients with prostate cancer. Am J Manag Care2008;14:317322.

    • Search Google Scholar
    • Export Citation
  • 225

    PockettRDCastellanoDMcEwanP. The hospital burden of disease associated with bone metastases and skeletal-related events in patients with breast cancer, lung cancer, or prostate cancer in Spain. Eur J Cancer Care (Engl)2010;19:755760.

    • Search Google Scholar
    • Export Citation
  • 226

    RobertsCCDaffnerRHWeissmanBN. ACR appropriateness criteria on metastatic bone disease. J Am Coll Radiol2010;7:400409.

  • 227

    HamaokaTMadewellJEPodoloffDA. Bone imaging in metastatic breast cancer. J Clin Oncol2004;22:29422953.

  • 228

    DurningPBestJJSellwoodRA. Recognition of metastatic bone disease in cancer of the breast by computed tomography. Clin Oncol1983;9:343346.

    • Search Google Scholar
    • Export Citation
  • 229

    MuindiJCoombesRCGoldingS. The role of computed tomography in the detection of bone metastases in breast cancer patients. Br J Radiol1983;56:233236.

    • Search Google Scholar
    • Export Citation
  • 230

    HannaSLFletcherBDFaircloughDL. Magnetic resonance imaging of disseminated bone marrow disease in patients treated for malignancy. Skeletal Radiol1991;20:7984.

    • Search Google Scholar
    • Export Citation
  • 231

    AvrahamiETadmorRDallyOHadarH. Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans. J Comput Assist Tomogr1989;13:598602.

    • Search Google Scholar
    • Export Citation
  • 232

    FrankJALingAPatronasNJ. Detection of malignant bone tumors: MR imaging vs scintigraphy. AJR Am J Roentgenol1990;155:10431048.

  • 233

    MaJCostelloeCMMadewellJE. Fast dixon-based multisequence and multiplanar MRI for whole-body detection of cancer metastases. J Magn Reson Imaging2009;29:11541162.

    • Search Google Scholar
    • Export Citation
  • 234

    SteinbornMMHeuckAFTilingR. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr1999;23:123129.

    • Search Google Scholar
    • Export Citation
  • 235

    SchmidtGPBaur-MelnykAHaugA. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol2008;65:4758.

    • Search Google Scholar
    • Export Citation
  • 236

    KrishnamurthyGTTubisMHissJBlahdWH. Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA1977;237:25042506.

    • Search Google Scholar
    • Export Citation
  • 237

    ZelinkaTTimmersHJKozupaA. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations. Endocr Relat Cancer2008;15:311323.

    • Search Google Scholar
    • Export Citation
  • 238

    Daldrup-LinkHEFranziusCLinkTM. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol2001;177:229236.

    • Search Google Scholar
    • Export Citation
  • 239

    OhtaMTokudaYSuzukiY. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun2001;22:875879.

    • Search Google Scholar
    • Export Citation
  • 240

    KaoCHHsiehJFTsaiSC. Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res2000;20:21892192.

    • Search Google Scholar
    • Export Citation
  • 241

    DehdashtiFFlanaganFLMortimerJE. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med1999;26:5156.

    • Search Google Scholar
    • Export Citation
  • 242

    MortimerJEDehdashtiFSiegelBA. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol2001;19:27972803.

    • Search Google Scholar
    • Export Citation
  • 243

    CostelloeCMRohrenEMMadewellJE. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol2009;10:606614.

    • Search Google Scholar
    • Export Citation
  • 244

    HanLJAu-YongTKTongWC. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med1998;25:635638.

    • Search Google Scholar
    • Export Citation
  • 245

    RomerWNomayrAUderM. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med2006;47:11021106.

    • Search Google Scholar
    • Export Citation
  • 246

    NdlovuXGeorgeREllmannAWarwickJ. Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies?Nucl Med Commun2010;31:659665.

    • Search Google Scholar
    • Export Citation
  • 247

    HiltonJFAmirEHopkinsS. Acquisition of metastatic tissue from patients with bone metastases from breast cancer. Breast Cancer Res Treat2011;129:761765.

    • Search Google Scholar
    • Export Citation
  • 248

    SchneiderJADivgiCRScottAM. Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer. J Nucl Med1994;35:17481752.

    • Search Google Scholar
    • Export Citation
  • 249

    StaffordSEGralowJRSchubertEK. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol2002;9:913921.

    • Search Google Scholar
    • Export Citation
  • 250

    TherassePArbuckSGEisenhauerEA. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst2000;92:205216.

    • Search Google Scholar
    • Export Citation
  • 251

    EisenhauerEATherassePBogaertsJ. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer2009;45:228247.

    • Search Google Scholar
    • Export Citation
  • 252

    ContePFLatreilleJMauriacL. Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol1996;14:25522559.

    • Search Google Scholar
    • Export Citation
  • 253

    DearnaleyDPMasonMDParmarMK. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol2009;10:872876.

    • Search Google Scholar
    • Export Citation
  • 254

    MorganGJDaviesFEGregoryWM. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet2010;376:19891999.

    • Search Google Scholar
    • Export Citation
  • 255

    LiptonA. Bisphosphonates and metastatic breast carcinoma. Cancer2003;97:848853.

  • 256

    HirshVMajorPPLiptonA. Zoledronic acid and survival in patients with metastatic bone disease from lung cancer and elevated markers of osteoclast activity. J Thorac Oncol2008;3:228236.

    • Search Google Scholar
    • Export Citation
  • 257

    LiptonATheriaultRLHortobagyiGN. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer2000;88:10821090.

    • Search Google Scholar
    • Export Citation
  • 258

    MajorPLortholaryAHonJ. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol2001;19:558567.

    • Search Google Scholar
    • Export Citation
  • 259

    RosenLSGordonDKaminskiM. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer2003;98:17351744.

    • Search Google Scholar
    • Export Citation
  • 260

    KohnoNAogiKMinamiH. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol2005;23:33143321.

    • Search Google Scholar
    • Export Citation
  • 261

    SaadFGleasonDMMurrayR. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst2004;96:879882.

    • Search Google Scholar
    • Export Citation
  • 262

    RosenLSGordonDHDuganWJr. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer2004;100:3643.

    • Search Google Scholar
    • Export Citation
  • 263

    ColemanREWrightJHoustonS. Randomized trial of marker-directed versus standard schedule zoledronic acid for bone metastases from breast cancer [abstract]. J Clin Oncol2012;30(Suppl):Abstract 511.

    • Search Google Scholar
    • Export Citation
  • 264

    AmadoriDAgliettaMAlessiB. ZOOM: a prospective, randomized trial of zoledronic acid (ZOL; q 4 wk vs q 12 wk) for long-term treatment in patients with bone-metastatic breast cancer (BC) after 1 yr of standard ZOL treatment [abstract]. J Clin Oncol2012;30(Suppl):Abstract 9005.

    • Search Google Scholar
    • Export Citation
  • 265

    FizaziKLiptonAMarietteX. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol2009;27:15641571.

    • Search Google Scholar
    • Export Citation
  • 266

    Van PoznakCHTeminSYeeGC. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol2011;29:12211227.

    • Search Google Scholar
    • Export Citation
  • 267

    Zometa [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2012.

  • 268

    Prolia [package insert]. Thousand Oaks, CA: Amgen Inc.; 2011

  • 269

    JossonSMatsuokaYChungLW. Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol2010;21:2632.

  • 270

    PetrylakDPTangenCMHussainMH. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med2004;351:15131520.

    • Search Google Scholar
    • Export Citation
  • 271

    de BonoJSOudardSOzgurogluM. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet2010;376:11471154.

    • Search Google Scholar
    • Export Citation
  • 272

    FizaziKScherHIMolinaA. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol2012;13:983992.

    • Search Google Scholar
    • Export Citation
  • 273

    ScherHIFizaziKSaadF. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med2012;367:11871197.

  • 274

    CostaLBadiaXChowE. Impact of skeletal complications on patients' quality of life, mobility, and functional independence. Support Care Cancer2008;16:879889.

    • Search Google Scholar
    • Export Citation
  • 275

    ArmstrongAJGarrett-MayerEOu YangYC. Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J Clin Oncol2007;25:39653970.

    • Search Google Scholar
    • Export Citation
  • 276

    HalabiSVogelzangNJKornblithAB. Pain predicts overall survival in men with metastatic castration-refractory prostate cancer. J Clin Oncol2008;26:25442549.

    • Search Google Scholar
    • Export Citation
  • 277

    FizaziKMassardCSmithMR. Baseline covariates impacting overall survival (OS) in a phase III study of men with bone metastases from castration-resistant prostate cancer [abstract]. J Clin Oncol2012;30:Abstract 4642.

    • Search Google Scholar
    • Export Citation
  • 278

    TannockIFde WitRBerryWR. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med2004;351:15021512.

    • Search Google Scholar
    • Export Citation
  • 279

    HiganoCSSchellhammerPFSmallEJ. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer2009;115:36703679.

    • Search Google Scholar
    • Export Citation
  • 280

    KantoffPWHiganoCSShoreND. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med2010;363:411422.

  • 281

    SmallEJSchellhammerPFHiganoCS. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol2006;24:30893094.

    • Search Google Scholar
    • Export Citation
  • 282

    KawalecPPaszulewiczAHolkoPPilcA. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. A systematic review and meta-analysis. Arch Med Sci2012;8:767775.

    • Search Google Scholar
    • Export Citation
  • 283

    LogothetisCDe BonoJSMolinaA. Effect of abiraterone acetate (AA) on pain control and skeletal-related events (SRE) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) post docetaxel (D): results from the COU-AA-301 phase III study [abstract]. J Clin Oncol2011;29:Abstract 4520.

    • Search Google Scholar
    • Export Citation
  • 284

    LogothetisCJBaschEMolinaA. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol2012;13:12101217.

    • Search Google Scholar
    • Export Citation
  • 285

    RyanCJSmithMRDe BonoJS. Interim analysis (IA) results of COU-AA-302, a randomized, phase III study of abiraterone acetate (AA) in chemotherapy-naive patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) [abstract]. J Clin Oncol2012;30(Suppl):Abstract LBA4518.

    • Search Google Scholar
    • Export Citation
  • 286

    CookRJColemanRBrownJ. Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res2006;12:33613367.

    • Search Google Scholar
    • Export Citation
  • 287

    BrownJECookRJMajorP. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst2005;97:5969.

    • Search Google Scholar
    • Export Citation
  • 288

    SaadFGleasonDMMurrayR. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst2002;94:14581468.

    • Search Google Scholar
    • Export Citation
  • 289

    FizaziKCarducciMSmithM. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet2011;377:813822.

    • Search Google Scholar
    • Export Citation
  • 290

    SartorAOHeinrichDO'SullivanJM. Radium-223 chloride (Ra-223) impact on skeletal-related events (SREs) and ECOG performance status (PS) in patients with castration-resistant prostate cancer (CRPC) with bone metastases: interim results of a phase III trial (ALSYMPCA) [abstract]. J Clin Oncol2012;30(Suppl):Abstract 4551.

    • Search Google Scholar
    • Export Citation
  • 291

    YuEYMassardCGrossME. Once-daily dasatinib: expansion of phase II study evaluating safety and efficacy of dasatinib in patients with metastatic castration-resistant prostate cancer. Urology2011;77:11661171.

    • Search Google Scholar
    • Export Citation
  • 292

    AraujoJCMathewPArmstrongAJ. Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1-2 study. Cancer2012;118:6371.

    • Search Google Scholar
    • Export Citation
  • 293

    YakesFMChenJTanJ. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther2011;10:22982308.

    • Search Google Scholar
    • Export Citation
  • 294

    HussainMSmithMRSweeneyC. Cabozantinib (XL184) in metastatic castration-resistant prostate cancer (mCRPC): results from a phase II randomized discontinuation trial [abstract]. J Clin Oncol2011;29(Suppl):Abstract 4516.

    • Search Google Scholar
    • Export Citation
  • 295

    SmithMRSweeneyCRathkopfDE. Cabozantinib (XL184) in chemotherapy-pretreated metastatic castration resistant prostate cancer (mCRPC): results from a phase II non-randomized expansion cohort (NRE) [abstract]. J Clin Oncol2012;30(Suppl):Abstract 4513.

    • Search Google Scholar
    • Export Citation
  • 296

    XieJNamjoshiMWuEQ. Economic evaluation of denosumab compared with zoledronic acid in hormone-refractory prostate cancer patients with bone metastases. J Manag Care Pharm2011;17:621643.

    • Search Google Scholar
    • Export Citation
  • 297

    BodyJJDiel